
!SPEECH and
.

!LANGUAGE
.

~~F~/ !PROCESSING

1 An Introduction to
~ Natural Language Processing,
~ Computational Linguistics,
~ and Speech Recognition

~ DANIEL JURAFSKY & JAMES H. MARTIN

1 Comcast, Ex-1107

I Speech and Language Processing

"This book is an absolute necessity for instructors at all levels, as well as an indispensible
reference for researchers. Introducing NLP, computational linguistics, and speech recognition
comprehensively in a single book is an ambitious enterprise. The authors have managed it
admirably, paying careful attention to traditional foundations, relating recent developments and
trends to those foundations, and tying it all together with insight and hnmor. Remarkable."

-Philip Resnik, University of Maryland

" ... ideal for ... linguists who want to learn more about computational modeling and techniqnes
in language processing; computer scientists building language applications who want to learn
more about the linguistic underpinnings of the field; speech technologists who want to learn
more about language understanding, semantics and discourse; and all those wanting to learn
more about speech processing. For instructors ... this book is a dream. It covers virtually every
aspect of NLP ... What's truly astounding is that the book covers such a broad range of topics,
while giving the reader the depth to understand and make use of the concepts, algorithms and
techniques that are presented . .. ideal as a course textbook for advanced undergraduates, as well
as graduate students and researchers in the field.

-Johanna Moore, University of Edinburgh

"Speech and Language Processing is a comprehensive, reader-friendly, and up-to-date guide to
computational linguistics, covering both statistical and symbolic methods and their application.
It will appeal both to senior undergraduate students, who will find it neither too technical nor
too simplistic, and to researchers, who will find it to be a helpful guide to the newly established
techniques of a rapidly growing research field."

- Graeme Hirst, University of Toronto

"The field of human language processing encompasses a diverse array of disciplines, and as
such is an incredibly challenging field to master. This book does a wonderful job of bringing
together this vast body of knowledge in a form that is both accessible and comprehensive. Its
encyclopedic coverage makes it a must-have for people already in the field, while the clear
presentation style and many examples make it an ideal textbook."

-Eric Brill, Microsoft Research

This is quite simply the most complete introduction to natural language and speech technology
ever written. Virtually every topic in the field is covered, in a prose style that is both clear
and engaging. The discussion is linguistically informed, and strikes a nice balance between
theoretical computational models, and practical applications. It is an extremely impressive
achievement.

-Richard Sproat, AT&T Labs -Research

2

-
PRENTICE HALL SERIES
IN ARTIFICIAL INTELLIGENCE
Stuart Russell and Peter Norvig, Editors

GRAHAM

RUSSELL & NORVIG

JURAFSKY & MARTIN

ANSI Common Lisp

Artificial Intelligence: A Modern Approach
Speech and Language Processing

3

Speech and Language Processing
An Introduction to Natural Language Processing,

Computational Linguistics, and Speech Recognition

Daniel Jurafsky and James H. Martin

University of Colorado, Boulder

Contributing writers:
Andrew Kehler, Keith Vander Linden, and Nigel Ward

Prentice Hall
Upper Saddle River, New Jersey 07458

4

-
Library of Congress Cataloging-in-Publication Data

Jurafsky, Daniel S. (Daniel Saul)

Speech and Langauge Processing I Daniel J urafsky, James H. Martin.
p. em.

Includes bibliographical references and index.
ISBN 0-13-095069-6

Editor-in-Chief: Marcia Horton
Publisher: Alan Apt

Editorial/production supervision: Scott Disanno
Editorial assistant: Toni Holm
Executive managing editor: Vince 0 'Brien
Cover design director: Heather Scott
Cover design execution: John Christiana
Manufacturing manager: Trudy Pisciotti
Manufacturing buyer: Pat Brown
Assistant vice-president of production and manufacturing: David W Riccardi

Cover design: Daniel Jurafsky, James H. Martin, and Linda Martin. The front cover drawing
is the action for the Jacquard Loom (Usher, 1954). The back cover drawing is Alexander
Graham Bell's Gallows telephone (Rhodes, 1929).

This book was set in Times-Roman, TIPA (IPA), and PMC (Chinese) by the authors using
lbTJ3)C2e.

© 2000 by Prentice-Hall, Inc.
Pearson Higher Education
Upper Saddle River, New Jersey 07458

The author and publisher of this book have used their best efforts in preparing this book.
These efforts include the development, research, and testing of the theories and programs to
determine their effectiveness. The author and publisher shall not be liable in any event for
incidental or consequential damages in connection with, or arising out of, the furnishing,
performance, or use of these programs.

All rights reserved. No part of this book may be reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3

ISBN 0-13-095069-6
Prentice-Hall futemational (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada, Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Prentice-Hall Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

5

For my parents, Ruth and AI Jurafsky- D.J.

For Linda- J.M.

6

Summary of Contents
Preface . xxi
1 Introduction...... 1

I Words 19
2 Regular Expressions and Automata........ 21
3 Morphology and Finite-State Transducers 57
4 Computational Phonology and Text-to-Speech 91
5 Probabilistic Models of Pronunciation and Spelling 141
6 N-grams ... 191
7 HMMs and Speech Recognition 235

II Syntax 285
8 Word Classes and Part-of-Speech Tagging 287
9 Context-Free Grammars for English 323
10 Parsing with Context-Free Grammars 357
11 Features and Unification 395
12 Lexicalized and Probabilistic Parsing 447
13 Language and Complexity 477

III Semantics 499
14 Representing Meaning 501
15 Semantic Analysis 545
16 Lexical Semantics 589
17 Word Sense Disambiguation and Information Retrieval .. 631

IV Pragmatics 667
18 Discourse .. 669
19 Dialogue and Conversational Agents 719
20 Natural Language Generation ...•....................... 763
21 Machine Translation 799

Appendices 831
A Regular Expression Operators 831
B The Porter Stemming Algorithm 833
C CS and C7 tagsets 837
D Training HMMs: The Forward-Backward Algorithm 843

Bibliography 851

Index 903

vii

7

Contents

Preface xxi

1 Introduction 1
1.1 Knowledge in Speech and Language Processing 2
1.2 Ambiguity 4
1.3 Models and Algorithms 5
1.4 Language, Thought, and Understanding 6
1.5 The State of the Art and the Near-Term Future 9
1.6 Some Brief History 10

Foundational Insights: 1940s and 1950s 10
The Two Camps: 1957-1970 11
Four Paradigms: 1970-1983 12
Empiricism and Finite State Models Redux: 1983-1993 14
The Field Comes Together: 1994-1999 14
On Multiple Discoveries 15
A Final Brief Note on Psychology . 16

1.7 Summary 16
Bibliographical and Historical Notes 17

I Words 19

2 Regular Expressions and Automata 21
2.1 Regular Expressions 22

Basic Regular Expression Patterns . . 23
Disjunction, Grouping, and Precedence 27
A Simple Example 28
A More Complex Example 29
Advanced Operators 30
Regular Expression Substitution, Memory, and ELIZA . 31

2.2 Finite-State Automata 33
Using an FSA to Recognize Sheeptalk 34
Formal Languages 38
Another Example 39
Non-Deterministic FSAs 40
Using an NFSA to Accept Strings . 41
Recognition as Search . 46

ix
8

X Contents

Relating Deterministic and Non-Deterministic Automata 48
2.3 Regular Languages and FSAs 49
2.4 Summary 51
Bibliographical and Historical Notes 52
Exercises 53

3 Morphology and Finite-State Transducers 57
3.1 Survey of (Mostly) English Morphology 59

Inflectional Morphology 61
Derivational Morphology 63

3.2 Finite-State Morphological Parsing 65
The Lexicon and Morphotactics . . 66
Morphological Parsing with Finite-State Transducers 71
Orthographic Rules and Finite-State Transducers . 76

3.3 Combining FST Lexicon and Rules . . . 79
3.4 Lexicon-Free FSTs: The Porter Stemmer
3.5 Human Morphological Processing
3.6 Summary
Bibliographical and Historical Notes
Exercises

4 Computational Phonology and Text-to-Speech
4.1 Speech Sounds and Phonetic Transcription

The Vocal Organs
Consonants: Place of Articulation . .
Consonants: Manner of Articulation
Vowels

4.2 The Phoneme and Phonological Rules
4.3 Phonological Rules and Transducers .
4.4 Advanced Issues in Computational Phonology

Harmony
Templatic Morphology
Optimality Theory

4.5 Machine Learning of Phonological Rules .
4.6 Mapping Text to Phones for TTS

Pronunciation Dictionaries
Beyond Dictionary Lookup: Text Analysis
An FST-based Pronunciation Lexicon .

4.7 Prosody in TTS

82
84
86
87
89

91
93
96
98
99

100
103
105
110
110
112
113
118
120
120
122
125
130

9

Contents

Phonological Aspects of Prosody
Phonetic or Acoustic Aspects of Prosody
Prosody in Speech Synthesis

4.8 Human Processing of Phonology and Morphology
4.9 Summary
Bibliographical and Historical Notes
Exercises

5 Probabilistic Models of Pronunciation and Spelling
5.1 Dealing with Spelling Errors
5.2 Spelling Error Patterns ...
5.3 Detecting Non-Word Errors .
5.4 Probabilistic Models
5.5 Applying the Bayesian Method to Spelling
5.6 Minimum Edit Distance
5.7 English Pronunciation Variation
5.8 The Bayesian Method for Pronunciation .

Decision Tree Models of Pronunciation Variation
5.9 Weighted Automata

Computing Likelihoods from Weighted Automata: The For-
ward Algorithm

Decoding: The Viterbi Algorithm . . .
Weighted Automata and Segmentation
Segmentation for Lexicon-Induction

5.10 Pronunciation in Humans ..
5.11 Sunnnary
Bibliographical and Historical Notes
Exercises

6 N-grams
6.1 Counting Words in Corpora
6.2 Simple (Unsmoothed) N -grams

More on N-grams and Their Sensitivity to the Training Cor­
pus

6.3 Smoothing
Add-One Smoothing . . .
Witten-Bell Discounting .
Good-Turing Discounting

6.4 Backoff

xi

130
132
132
134
135
136
137

141
143
144
146
147
149
153
156
163
168
169

171
176
180
182
184
186
187
188

191
193
196

202
206
207
210
214
216

10

xii

Combining Backoff with Disconnting . .
6.5 Deleted Interpolation
6.6 N -grams for Spelling and Pronunciation

Context-Sensitive Spelling Error Correction
N -grams for Pronnnciation Modeling .

6. 7 Entropy
Cross Entropy for Comparing Models .
The Entropy of English . . .

Bibliographical and Historical Notes
6.8 Summary .
Exercises

7 HMMs and Speech Recognition
7.1 Speech Recognition Architecture
7.2 Overview of Hidden Markov Models
7.3 The Viterbi Algorithm Revisited
7.4 Advanced Methods for Decoding

A* Decoding
7.5 Acoustic Processing of Speech

Sound Waves
How to Interpret a Waveform
Spectra
Feature Extraction

7.6 Computing Acoustic Probabilities .
7.7 Training a Speech Recognizer ...
7.8 Waveform Generation for Speech Synthesis

Pitch and Duration Modification
Unit Selection

7.9 Human Speech Recognition .
7.10 Summary
Bibliographical and Historical Notes
Exercises

II Syntax

8 Word Classes and Part-of-Speech Tagging
8.1 (Mostly) English Word Classes
8.2 Tagsets for English ...
8.3 Part-of-Speech Tagging

Contents

217
220
220
221
223
223
227
227
230
232
232

235
236
241
244
251
254
259
260
261
262
265
267
270
274
275
276
277
279
280
283

285

287
289
296
298

11

Contents

8.4 Rule-Based Part-of-Speech Tagging .
8.5 Stochastic Part-of-Speech Tagging

A Motivating Example
The Actual Algorithm for HMM Tagging .

8.6 Transformation-Based Tagging
How TBL Rules Are Applied
How TBL Rules Are Learned

8.7 Other Issues
Multiple Tags aud Multiple Words
Unknown Words ...
Class-based N-grams

8.8 Summary
Bibliographical aud Historical Notes
Exercises

9 Context-Free Grammars for English
9.1 Constituency
9.2 Context-Free Rules and''rrees
9.3 Sentence-Level Constructions
9.4 The Noun Phrase

Before the Head Noun .
After the Noun .

9.5 Coordination
9.6 Agreement
9.7 The Verb Phrase aud Subcategorization
9. 8 Auxiliaries
9.9 Spoken Language Syntax

Disfl uencies
9.10 Grammar Equivalence aud Normal Form
9.11 Finite-State aud Context-Free Grauunars
9.12 Grammars and Human Processing .
9.13 Summary
Bibliographical and Historical Notes
Exercises

10 Parsing with Context-Free Grammars
10.1 Parsing as Search

Top-Down Parsing
Bottom-Up Parsing

300
303
303
305
307
309
309
312
312
314
316
317
317
320

323
325
326
332
334
335
337
339
340
342
344
345
347
348
348
350
352
353
355

357
358
360
361

xiii

12

xiv

Comparing Top-Down and Bottom-Up Parsing .
10.2 A Basic Top-Down Parser

Adding Bottom-Up Filtering
10.3 Problems with the Basic Top-Down Parser

Left-Recursion
Ambiguity
Repeated Parsing of Subtrees

10.4 The Earley Algorithm
10.5 Finite-State Parsing Methods
10.6 Summary
Bibliographical and Historical Notes
Exercises

11 Features and Unification
11.1 Feature Structures .

11.2 Unification of Feature Structures ..
11.3 Features Structures in the Granunar

Agreement
Head Features
Subcategorization
Long-Distance Dependencies

11.4 Implementing Unification .
Unification Data Structures .
The Unification Algorithm .

11.5 Parsing with Unification Constraints
Integrating Unification into an Earley Parser
Unification Parsing .

11.6 Types and Inheritance
Extensions to Typing
Other Extensions to Unification

11.7 Summary
Bibliographical and Historical Notes
Exercises

12 Lexicalized and Probabilistic Parsing
12.1 Probabilistic Context-Free Granunars .

Probabilistic CYK Parsing of PCFGs
Learning PCFG Probabilities

12.2 Problems with PCFGs

Contents

363
364
368
370
370
372
376
377
385
391
392
393

395
397
400
405
407
410
411
417
418
418
422
427
428
434
437
440
441
442
442
444

447
448
453
454
456

13

Contents

12.3 Probabilistic Lexicalized CFGs
12.4 Dependency Grammars

Categorial Grammar .
12.5 Human Parsing
12.6 Summary
Bibliographical and Historical Notes
Exercises

13 Language and Complexity
13.1 The Chomsky Hierarchy
13.2 How to Tell if a Language Isn't Regular

The Pumping Lemma
Are English and Other Natural Languages Regular Lan-

guages?
13.3 Is Natural Language Context-Free?
13.4 Complexity and Human Processing
13.5 Summary
Bibliographical and Historical Notes

Exercises

Ill Semantics

14 Representing Meaning
14.1 Computational Desiderata for Representations

Verifiability
Unambiguous Representations
Canonical Form
Inference and Variables
Expressiveness

14.2 Meaning Structure of Language
Predicate-Argument Structure .

14.3 First Order Predicate Calculus .
Elements of FOPC
The Semantics of FOPC .
Variables and Quantifiers
Inference

14.4 Some Linguistically Relevant Concepts .

Categories
Events

XV

458
463
466
467
474
474
476

477
478
481
482

485
488
491
496
496
497

499

501
504
504
505
506
508
509
510
510
513
513
516
517
520
522
522
523

14

xvi

Representing Time . .
Aspect
Representing Beliefs .
Pitfalls

14.5 Related Representational Approaches .
14.6 Alternative Approaches to Meaning .

Meaning as Action .
Meaning as Truth

14.7 Summary
Bibliographical and Historical Notes
Exercises

Contents

527
530
534
537
538
539
539
540
540
541
543

15 Semantic Analysis 545
15.1 Syntax-Driven Semantic Analysis 546

Semantic Augmentations to Context-Free Grammar Rules . 549
Quantifier Scoping and the Translation of Complex-Terms . 557

15.2 Attachments for a Fragment of English 558
Sentences . . 559
Noun Phrases 561
Verb Phrases 564
Prepositional Phrases 567

15.3 Integrating Semantic Analysis into the Earley Parser 569
15.4 Idioms and Compositionality 571
15.5 Robust Semantic Analysis . 573

Semantic Grammars . .
Information Extraction . . .

15.6 Summary
Bibliographical and Historical Notes
Exercises

16 Lexical Semantics
16.1 Relaiions Among Lexemes and Their Senses

Homonymy
Polysemy ..
Synonymy .
Hyponymy .

16.2 WordNet: A Database of Lexical Relations
16.3 The Internal Structure of Words

Thematic Roles

573
577
583
584
586

589
592
592
595
598
600
602
606
607

15

Contents

Selectional Restrictions .
Primitive Decomposition
Semantic Fields

16.4 Creativity and the Lexicon .
Metaphor
Metonymy
Computational Approaches to Metaphor and Metonymy

16.5 Summary
Bibliographical and Historical Notes
Exercises

17 Word Sense Disambiguation and Information Retrieval
17.1 Selectional Restriction-Based Disambiguation

Limitations of Selectional Restrictions
17.2 Robust Word Sense Disambiguation

Machine Learning Approaches
Dictionary-Based Approaches .

17.3 Information Retrieval . .
The Vector Space Model . . .
Term Weighting
Term Selection and Creation
Homonymy, Polysemy, and Synonymy
Improving User Queries

17.4 Other Information Retrieval Tasks .
17.5 Summary
Bibliographical and Historical Notes

Exercises ...

IV Pragmatics

18 Discourse
18.1 Reference Resolution

Reference Phenomena
Syntactic and Semantic Constraints on Coreference
Preferences in Pronoun Interpretation .
An Algorithm for Pronoun Resolution

18.2 Text Coherence
The Phenomenon
An Inference Based Resolution Algorithm

xvii

614
619
622
623
623
624
625
626
627
628

631
632
634
636
636
645
646
647
651
654
655
656
658
660
661
664

667

669
671
673
678
681
684
694
695
696

16

xviii Contents

18.3 Discourse Structure 704
18.4 Psycholinguistic Studies of Reference and Coherence 707
18.5 Summary 712
Bibliographical and Historical Notes 713
Exercises 715

19 Dialogue and Conversational Agents 719
19.1 What Makes Dialogue Different? 720

Turns and Utterances . . . 721
Grounding 724
Conversational Implicature 726

19.2 Dialogue Acts 727
19.3 Automatic Interpretation of Dialogue Acts 730

Plan-Inferential Interpretation of Dialogue Acts 733
Cue-based Interpretation of Dialogue Acts 738
Summary . 7 44

19.4 Dialogue Structure and Coherence 744
19.5 Dialogue Managers in Conversational Agents 750
19.6 Sununary 757
Bibliographical and Historical Notes 759
Exercises 7 60

20 Natural Language Generation 763
20.1 Introduction to Language Generation 765
20.2 An Architecture for Generation 767
20.3 Surface Realization

Systemic Grammar
Functional Unification Grammar
Sununary

20.4 Discourse Planning
Text Schemata . . .
Rhetorical Relations
Summary ...

20.5 Other Issues . . .
Microplanning . .
Lexical Selection
Evaluating Generation Systems
Generating Speech .

20.6 Summary

768
769
774
779
779
780
782
788
789
789
790
790
791
792

17

Contents

Bibliographical and Historical Notes
Exercises

21 Machine Translation
21.1 Language Similarities and Differences
21.2 The Transfer Metaphor . .

Syntactic Transformations
Lexical Transfer

21.3 The Interlingua Idea: Using Meaning
21.4 Direct Translation
21.5 Using Statistical Techniques .

Quantifying Fluency . . .
Quantifying Faithfulness
Search

21.6 Usability and System Development
21.7 Summary
Bibliographical and Historical Notes
Exercises

Appendices

A Regular Expression Operators

B The Porter Stemming Algorithm

C CS and C7 tagsets

D Training HMMs: The Forward-Backward Algorithm
Continuous Probability Densities

Bibliography

Index

XlX

792
796

799
802
807
808
810
811
815
818
820
821
822
822
825
826
828

831

831

833

837

843
..... 849

851

903

18

Foreword
Linguistics has a hundred-year history as a scientific discipline, and compu­
tationallinguistics has a forty-year history as a part of computer science. But
it is only in the last five years that language understanding has emerged as an
industry reaching millions of people, with information retrieval and machine
translation available on the internet, and speech recognition becoming pop­
ular on desktop computers. This industry has been enabled by theoretical
advances in the representation and processing of language information.

Speech and Language Processing is the first book to thoroughly cover
language technology, at all levels and with all modem technologies. It com­
bines deep linguistic analysis with robust statistical methods. From the point
of view of levels, the book starts with the word and its components, moving
up to the way words fit together (or syntax), to the meaning (or semantics)
of words, phrases and sentences, and concluding with issues of coherent
texts, dialog, and translation. From the point of view of technologies, the
book covers regular expressions, information retrieval, context free gram­
mars, unification, first-order predicate calculus, hidden Markov and other
probabilistic models, rhetorical structure theory, and others. Previously you
would need two or three books to get this kind of coverage. Speech and Lan­
guage Processing covers the full range in one book, but more importantly, it
relates the technologies to each other, giving the reader a sense of how each
one is best used, and how they can be used together. It does all this with
an engaging style that keeps the reader's interest and motivates the technical
details in a way that is thorough but not dry. Whether you're interested in the
field from the scientific or the industrial point of view, this book serves as
an ideal introduction, reference, and guide to future study of this fascinating
field.

Peter Norvig & Stuart Russell, Editors
Prentice Hall Series in Artificial Intelligence

XX

19

Preface
This is an exciting time to be working in speech and language processing.
Historically distinct fields (natural language processing, speech recognition,
computational linguistics, computational psycho linguistics) have begun to
merge. The commercial availability of speech recognition and the need for
Web-based language techniques have provided an important impetus for de­
velopment of real systems. The availability of very large on-line corpora has
enabled statistical models of language at every level, from phonetics to dis­
course. We have tried to draw on this emerging state of the art in the design
of this pedagogical and reference work:

1. Coverage
In artempting to describe a unified vision of speech and language pro­
cessing, we cover areas that traditionally are taught in different courses
in different departments: speech recognition in electrical engineering;
parsing, semantic interpretation, and pragmatics in natural language
processing courses in computer science departments; and computa­
tional morphology and phonology in computational linguistics courses
in linguistics departments. The book introduces the fundamental al­
gorithms of each of these fields, whether originally proposed for spo­
ken or written language, whether logical or statistical in origin, and
attempts to tie together the descriptions of algorithms from different
domains. We have also included coverage of applications like spelling­
checking and information retrieval and extraction as well as areas like
cognitive modeling. A potential problem with this broad-coverage ap­
proach is that it required us to include introductory material for each
field; thus linguists may want to skip our description of articulatory
phonetics, computer scientists may want to skip such sections as reg­
ular expressions, and electrical engineers skip the sections on signal
processing. Of course, even in a book this long, we didn't have room
for everything. Thus this book should not be considered a substitute
for important relevant courses in linguistics, automata and formal lan­
guage theory, or, especially, statistics and information theory.

2. Emphasis on practical applications
It is important to show how language-related algorithms and tech­
niques (from HMMs to unification, from the lambda calculus to
transformation-based learning) can be applied to important real-world
problems: spelling checking, text document search, speech recogni-

xxi

20

xxii Preface

tion, Web-page processing, part-of-speech tagging, machine transla­
tion, and spoken-language dialogue agents. We have attempted to do
this by integrating the description of language processing applications
into each chapter. The advantage of this approach is that as the relevant
linguistic knowledge is introduced, the student has the background to
understand and model a particular domain.

3. Emphasis on scientific evaluation
The recent prevalence of statistical algorithms in language process­
ing and the growth of organized evaluations of speech and language
processing systems has led to a new emphasis on evaluation. We
have, therefore, tried to accompany most of our problem domains with
a Methodology Box describing how systems are evaluated (e.g., in­
cluding such concepts as training and test sets, cross-validation, and
information-theoretic evaluation metrics like perplexity).

4. Description of widely available language processing resources
Modern speech and language processing is heavily based on com­
mon resources: raw speech and text corpora, annotated corpora and
treebanks, standard tagsets for labeling pronunciation, part-of-speech,
parses, word-sense, and dialogue-level phenomena. We have tried to
introduce many of these important resources throughout the book (e.g.,
the Brown, Switchboard, callhome, ATIS, TREC, MUC, and BNC cor­
pora) and provide complete listings of many useful tagsets and coding
schemes (such as the Penn Treebank, CLAWS C5 and C7, and the
ARPAbet) but same inevitably got left out. Furthermore, rather than
include references to URLs for many resources directly in the text­
book, we have placed them on the book's Web site, where they can
more readily updated.

The book is primarily intended for use in a graduate or advanced un­
dergraduate course or sequence. Because of its comprehensive coverage and
the large number of algorithms, the book is also useful as a reference for
students and professionals in any of the areas of speech and language pro­
cessing.

Overview of the Book
The book is divided into four parts in addition to an introduction and end
matter. Part I, "Words", introduces concepts related to the processing of
words: phonetics, phonology, morphology, and algorithms used to process
them: finite automata, finite transducers, weighted transducers, N -grams,

21

Preface

and Hidden Markov Models. Part II, "Syntax", introduces parts-of-speech
and phrase structure grannnars for English and gives essential algorithms for
processing word classes and structured relationships among words: part-of­
speech taggers based on HMMs and transformation-based learning, the CYK
and Earley algorithms for parsing, unification and typed feature structures,
lexicalized and probabilistic parsing, and analytical tools like the Chomsky
hierarchy and the pumping lemma. Part III, "Semantics", introduces first
order predicate calculus and other ways of representing meaning, several
approaches to compositional semantic analysis, along with applications to
information retrieval, information extraction, speech understanding, and ma­
chine translation. Part IV, "Pragmatics", covers reference resolution and dis­
course structure and coherence, spoken dialogue phenomena like dialogue
and speech act modeling, dialogue structure and coherence, and dialogue
managers, as well as a comprehensive treatment of natural language genera­
tion and of machine translation.

Using this Book
The book provides enough material to be used for a full-year sequence in
speech and language processing. It is also designed so that it can be used for
a number of different useful one-term courses:

NLP NLP Speech+ NLP Comp. Linguistics
I quarter 1 semester 1 semester I quarter

I. Intro I. Intro I. Intro I. Intro
2. Regex,PSA 2. Regex,PSA 2. Regex,PSA 2. Regex,PSA
8. POS tagging 3. Morph.,PST 3. Morph., PST 3. Morph., PST
9. CPGs 6. N-grams 4. Comp. Phonal. 4. Comp. Phonal.

10. Parsing 8. POS tagging 5. Prob. Pronun. 10. Parsing
11. Unification 9. CPGs 6. N-grarns 11. Unification
14. Semantics 10. Parsing 7. HMMs&ASR 13. Complexity
15. Sem. Analysis II. Unification 8. POS tagging 16. Lex. Semantics
18. Discourse 12. Pro h. Parsing 9. CPGs 18. Discourse
20. Generation 14. Semantics 10. Parsing 19. Dialogue

15. Sem. Analysis 12. Prob. Parsing
16. Lex. Semantics 14. Semantics
17. WSD andiR 15. Sem. Analysis
18. Discourse 19. Dialogue
20. Generation 21. Mach. Trans!.
21. Mach. Trans!.

Selected chapters from the book could also be used to augment courses
in Artificial Intelligence, Cognitive Science, or Information Retrieval.

XXlll

22

xxiv Preface

Acknowledgments

The three contributing writers for the book are Andy Kehler, who wrote
Chapter 18 (Discourse), Keith Vander Linden, who wrote Chapter 20 (Gen­
eration), and Nigel Ward, who wrote most of Chapter 21 (Machine Transla­
tion). Andy Kehler also wrote Section 19.4 of Chapter 19. Paul Taylor wrote
most of Section 4.7 and Section 7.8.

Dan would like to thank his parents for encouraging him to do a re­
ally good job of everything he does, finish it in a timely fashion, and make
time for going to the gym. He would also like to thank Nelson Morgan, for
introducing him to speech recognition and teaching him to ask "but does it
work?"; Jerry Feldman, for sharing his intense commitment to finding the
right answers and teaching him to ask "but is it really important?"; Chuck
Fillmore, his first advisor, for sharing his love for language and especially
argmnent structure, and teaching him to always go look at the data, (and
all of them for teaching by example that it's only worthwhile if it's fun); and
Robert Wilensky, his dissertation advisor, for teaching him the importance of
collaboration and group spirit in research. He is also grateful to the CU Lyric
Theater program and the casts of South Pacific, Gianni Schicchi, Guys and
Dolls, Gondoliers, Iolanthe, and Oklahoma, and to Doris and Cary, Elaine
and Eric, Irene and Sam, Susan and Richard, Lisa and Mike, Mike and Pia,
Erin and Chris, Eric and Beth, Pearl and Tristan, Bruce and Peggy, Ramon
and Rebecca, Adele and Ali, Terry, Kevin, Becky, Temmy, Lil, Lin and Ron
and David, Mike, and Jessica and Bill, and all their families for providing
lots of emotional support and often a place to stay during the writing.

Jim would like to thank his parents for encouraging him and allowing
him to follow what must have seemed like an odd path at the time. He would
also like to thank his thesis advisor, Robert Wilensky, for giving him his start
in NLP at Berkeley; Peter Norvig, for providing many positive examples
along the way; Rick Alterman, for encouragement and inspiration at a critical
time; and Chuck Fillmore, George Lakoff, Paul Kay, and Susanna Cumming
for teaching him what little he knows about linguistics. He'd also like to
thank Michael Main for covering for him while he shirked his departmental
duties. Finally, he'd like to thank his wife Linda for all her support and
patience through all the years it took to complete this book.

Boulder is a very rewarding place to work on speech and language
processing. We'd like to thank our colleagues here for their collaborations,
which have greatly influenced our research and teaching: Alan Bell, Barbara
Fox, Laura Michaelis and Lise Menu in linguistics; Clayton Lewis, Gerhard

23

Preface

Fischer, Mike Eisenberg, Mike Mozer, Liz Jessup, and Andrzej Ehrenfeucht
in computer science; Walter Kintsch, Tom Landauer, and Alice Healy in
psychology; Ron Cole, John Hansen, and Wayne Ward in the Center for
Spoken Language Understanding, and our current and former students in the
computer science and linguistics departments: Marion Bond, Noah Coccaro,
Michelle Gregory, Keith Herold, Michael Jones, Patrick Juola, Keith Vander
Linden, Laura Mather, Taimi Metzler, Douglas Roland, and Patrick Schone.

This book has benefited from careful reading and enormously helpful
comments from a number of readers and from course-testing. We are deeply
indebted to colleagues who each took the time to read and give extensive
comments and advice, which vastly improved large parts of the hook, in­
cluding Alan Bell, Bob Carpenter, Jan Daciuk, Graeme Hirst, Andy Kehler,
Kemal Oflazer, Andreas Stolcke, and Nigel Ward. Our editor Alan Apt,
our series editors Peter Norvig and Stuart Russell, and our production editor
Scott DiSanno made many helpful suggestions on design and content. We
are also indebted to many friends and colleagues who read individual sec­
tions of the book or answered our many questions for their comments and
advice, including the students in our classes at the University of Colorado,
Boulder, and in Dan's classes at the University of California, Berkeley, and
the LSA Summer Institute at the University of Illinois at Urbana-Champaign,
as well as

Yoshi Asano, Todd M. Bailey, John Bateman, Giulia Bencini,
Lois Boggess, Michael Braverman, Nancy Chang, Jennifer Chu­
Carroll, Noah Coccaro, Gary Cottrell, Gary Dell, Jeff Elman,
Robert Dale, Dan Pass, Bill Fisher, Eric Fosler-Lussier, James
Garnett, Susan Garnsey, Dale Gerdemann, Dan Gildea, Michelle
Gregory, Nizar Habash, Jeffrey Haemer, Jorge Hankamer, Keith
Herold, Beth Heywood, Derrick Higgins, Erhard Hinrichs, Julia
Hirschberg, Jerry Hobbs, Fred Jelinek, Liz Jessup, Aravind Joshi,
Terry Kleeman, Jean-Pierre Koenig, Kevin Knight, Shalom Lap­
pin, Julie Larson, Stephen Levinson, Jim Magnuson, Jim May­
field, Lise Menn, Laura Michaelis, Corey Miller, Nelson Morgan,
Christine Nakatani, Mike Neufeld, Peter Norvig, Mike O'Connell,
Mick O'Donnell, Rob Oberbreckling, Martha Palmer, Dragomir
Radev, Terry Regier, Ehud Reiter, Phil Resnik, Klaus Ries, Ellen
Riloff, Mike Rosner, Dan Roth, Patrick Schone, Liz Shriberg,
Richard Sproat, Subhashini Srinivasin, Paul Taylor, Wayne Ward,
Pauline Welby, Dekai Wu, and Victor Zue.

XXV

24

XXVl Preface

We'd also like to thank the Institute of Cognitive Science and the De­
partments of Computer Science and Linguistics for their support over the
years. We are also very grateful to the National Science Foundation: Dan
Jnrafsky's time on the book was supported in part by NSF CAREER Award
IIS-9733067 and Andy Kehler was supported in part by NSF Award IIS-
9619126.

Daniel Jnrafsky
James H. Martin

Boulder, Colorado

25

1 INTRODUCTION

Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid I can't do that.

Stanley Kubrick and Arthur C. Clarke,
screenplay of 2001: A Space Odyssey

The HAL 9000 computer in Stanley Kubrick's film 2001: A Space
Odyssey is one of the most recognizable characters in twentieth-century
cinema. HAL is an artificial agent capable of such advanced language­
processing behavior as speaking and understanding English, and at a crucial
moment in the plot, even reading lips. It is now clear that HAL's creator
Arthur C. Clarke was a little optimistic in predicting when an artificial agent
such as HAL would be available. But just how far off was he? What would
it take to create at least the language-related parts of HAL? Minimally, such
an agent would have to be capable of interacting with humans via language,
which includes understanding humans via speech recognition and natural
language understanding (and, of course, lip-reading), and of communicat­
ing with humans via natural language generation and speech synthesis.
HAL would also need to be able to do information retrieval (finding out
where needed textual resources reside), information extraction (extracting
pertinent facts from those textual resources), and inference (drawing con­
clusions based on known facts).

Although these problems are far from completely solved, much of the
language-related technology that HAL needs is currently being developed,
with some of it already available commercially. Solving these problems,
and others like them, is the main concern of the fields known as Natural
Language Processing, Computational Linguistics, and Speech Recognition
and Synthesis, which together we call Speech and Language Processing.
The goal of this book is to describe the state of the art of this technology

26

2 Chapter I. Introduction

at the start of the twenty-first century. The applications we will consider
are all of those needed for agents like HAL as well as other valuable areas
of language processing such as spelling correction, grammar checking,
information retrieval, and machine translation.

1.1 KNOWLEDGE IN SPEECH AND LANGUAGE PROCESSING

By speech and language processing, we have in mind those computational
techniques that process spoken and written human language, as language.
As we will see, this is an inclusive definition that encompasses everything
from mundane applications such as word counting and automatic hyphen­
ation, to cutting edge applications such as automated question answering on
the Web, and real-time spoken language translation.

What distinguishes these language processing applications from other
data processing systems is their use of knowledge of language. Consider the
Unix we program, which is used to count the total number of bytes, words,
and lines in a text file. When used to count bytes and lines, we is an ordinary
data processing application. However, when it is used to count the words
in a file it requires knowledge about what it means to be a word, and thus
becomes a language processing system.

Of course, we is an extremely simple system with an extremely lim­
ited and impoverished knowledge of language. More-sophisticated language
agents such as HAL require much broader and deeper knowledge of lan­
guage. To get a feeling for the scope and kind of knowledge required in
more-sophisticated applications, consider some of what HAL would need to
know to engage in the dialogue that begins this chapter.

To determine what Dave is saying, HAL must be capable of analyzing
an incoming audio signal and recovering the exact sequence of words Dave
used to produce that signal. Sinrilarly, in generating its response, HAL must
be able to take a sequence of words and generate an audio signal that Dave
can recognize. Both of these tasks require knowledge about phonetics and
phonology, which can help model how words are pronounced in colloquial
speech (Chapters 4 and 5).

Note also that unlike Star Trek's Commander Data, HAL is capable
of producing contractions like I'm and can't. Producing and recognizing
these and other variations of individual words (e.g., recognizing that doors is
plural) requires knowledge about morphology, which captures information
about the shape and behavior of words in context (Chapters 2 and 3).

27

Section 1.1. Knowledge in Speech and Language Processing

Moving beyond individual words, HAL must know how to analyze the
structure underlying Dave's request. Such an analysis is necessary among
other reasons for HAL to determine that Dave's utterance is a request for
action, as opposed to a simple statement about the world or a question about
the door, as in the following variations of his original statement.

HAL, the pod bay door is open.

HAL, is the pod bay door open?

In addition, HAL must use similar structural knowledge to properly string
together the words that constitute its response. For example, HAL must
know that the following sequence of words will not make sense to Dave,
despite the fact that it contains precisely the same set of words as the original.

I'm I do, sorry that afraid Dave I'm can't.

The knowledge needed to order and group words together comes under the
heading of syntax.

Of course, simply knowing the words and the syntactic structure of
what Dave said does not tell HAL much about the nature of his request.
To know that Dave's command is actually about opening the pod bay door,
rather than an inquiry about the day's lunch menu, requires knowledge of
the meanings of the component words, the domain of lexical semantics,
and knowledge of how these components combine to form larger meanings,
compositional semantics.

Next, despite its bad behavior, HAL knows enough to be polite to
Dave. It could, for example, have simply replied No or No, I won't open
the door. Instead, it first embellishes its response with the phrases I'm sorry
and I'm afraid, and then only indirectly signals its refusal by saying I can't,
rather than the more direct (and ttuthful) I won 't. 1 The appropriate use of this
kind of polite and indirect language comes under the heading of pragmatics.

Finally, rather than simply ignoring Dave's command and leaving the
door closed, HAL chooses to engage in a sttuctured conversation relevant
to Dave's initial request. HAL's correct use of the word that in its answer
to Dave's request is a simple illustration of the kind of between-utterance
device common in such conversations. Correctly sttucturing these such con­
versations requires knowledge of discourse conventions.

To summarize, the knowledge of language needed to engage in com­
plex language behavior can be separated into six distinct categories.

1 For those unfamiliar with HAL, it is neither sorry nor afraid, nor is it incapable of opening
the door. It has simply decided in a fit of paranoia to kill its crew.

3

28

4 Chapter 1. Introduction

• Phonetics and Phonology - The study of linguistic sounds

• Morphology - The study of the meaningful components of words

• Syntax - The study of fhe structural relationships between words

• Semantics - The study of meaning

• Pragmatics - The study of how language is used to accomplish goals

• Discourse- The study of linguistic units larger than a single utterance

1.2 AMBIGUITY

A perhaps surprising fact about fhe six categories of linguistic knowledge is
fhat most or all tasks in speech and language processing can be viewed as

AMBIGUITY resolving ambiguity at one of fhese levels. We say some input is ambiguous
if fhere are multiple alternative linguistic structures than can be built for it.
Consider the spoken sentence I made her duck. Here"s five different mean­
ings this sentence could have (there are more), each of which exemplifies an
ambiguity at some level:

(1.1) I cooked waterfowl for her.

(1.2) I cooked waterfowl belonging to her.

(1.3) I created the (plaster?) duck she owns.

(1.4) I caused her to quickly lower her head or body.

(1.5) I waved my magic wand and turned her into undifferentiated
waterfowl.

These different meanings are caused by a number of ambiguities. First, the
words duck and her are morphologically or syntactically ambiguous in fheir
part-of-speech. Duck can be a verb or a noun, while her can be a dative
pronoun or a possessive pronoun. Second, fhe word make is semantically
ambiguous; it can mean create or cook. Finally, the verb make is syntacti­
cally ambiguous in a different way. Make can be transitive, fhat is, taking
a single direct object (1.2), or it can be ditransitive, that is, taking two ob­
jects (1.5), meaning fhat fhe first object (her) got made into fhe second object
(duck). Finally, make can take a direct object and a verb (1.4), meaning that
fhe object (her) got caused to perform fhe verbal action (duck). Furthermore,
in a spoken sentence, fhere is an even deeper kind of ambiguity; the first
word could have been eye or fhe second word maid.

We will often introduce fhe models and algorithms we present through­
out the book as ways to resolve or disambiguate fhese ambiguities. For

29

Section 1.3. Models and Algorithms

example deciding whether duck is a verb or a noun can be solved by part­
of-speech tagging. Deciding whether make means "create" or "cook" can
be solved by word sense disambiguation. Resolution of part-of-speech and
word sense ambiguities are two important kinds of lexical disambiguation.
A wide variety of tasks can be framed as lexical disambiguation problems.
For example, a text-to-speech synthesis system reading the word lead needs
to decide whether it should be pronounced as in lead pipe or as in lead me
on. By contrast, deciding whether her and duck are part of the same entity
(as in (1.1) or (1.4)) or are different entity (as in (1.2)) is an example of
syntactic disambiguation and can be addressed by probabilistic parsing.
Ambiguities that don't arise in this particular example (like whether a given
sentence is a statement or a question) will also be resolved, for example by
speech act interpretation.

1.3 MODELS AND ALGORITHMS

One of the key insights of the last 50 years of research in language process­
ing is that the various kinds of knowledge described in the last sections can
be captured through the use of a small number of formal models, or theo­
ries. Fortunately, these models and theories are all drawn from the standard
toolkits of Computer Science, Mathematics, and Linguistics and should be
generally familiar to those trained in those fields. Among the most important
elements in this toolkit are state machines, formal rule systems, logic, as
well as probability theory and other machine learning tools. These mod­
els, in tum, lend themselves to a small number of algorithms from well­
known computational paradigms. Among the most important of these are
state space search algorithms and dynamic programming algorithms.

In their simplest formulation, state machines are formal models that
consist of states, transitions among states, and an input representation. Some
of the variations of this basic model that we will consider are determinis­
tic and non-deterministic finite-state automata, finite-state transducers,
which can write to an output device, weighted automata, Markov models,
and hidden Markov models, which have a probabilistic component.

Closely related to these somewhat procedural models are their declar­
ative counterparts: formal rule systems. Among the more important ones we
will consider are regular grammars and regular relations, context-free
grammars, feature-augmented grammars, as well as probabilistic vari­
ants of them all. State machines and formal rule systems are the main tools

5

30

6 Chapter L Introduction

used when dealing with knowledge of phonology, morphology, and syntax.
The algorithms associated wifh bofh state-machines and formal rule

systems typically involve a search through a space of states representing hy­
potheses about an input Representative tasks include searching fhrough a
space of phonological sequences for a likely input word in speech recog­
nition, or searching through a space of trees for fhe correct syntactic parse
of an input sentence. Among the algorifhms fhat are often used for these
tasks are well-known graph algorifhms such as depth-first search, as well
as heuristic variants such as best-first, and A* search. The dynamic pro­
gramming paradigm is critical to the computational tractability of many of
fhese approaches by ensuring that redundant computations are avoided.

The fhird model fhat plays a critical role in capturing knowledge of
language is logic. We will discuss first order logic, also known as the pred­
icate calculus, as well as such related formalisms as feature-structures, se­
mantic networks, and conceptual dependency. These logical representations
have traditionally been the tool of choice when dealing wifh knowledge of
semantics, pragmatics, and discourse (alfhough, as we will see, applications
in fhese areas are increasingly relying on the simpler mechanisms used in
phonology, morphology, and syntax).

Probability fheory is the final element in onr set of techniques for cap­
turing linguistic knowledge. Each of fhe other models (state machines, for­
mal rule systems, and logic) can be augmented wifh probabilities. One major
use of probability fheory is to solve fhe many kinds of ambiguity problems
fhat we discussed earlier; almost any speech and language processing prob­
lem can be recast as: "given N choices for some ambiguous input, choose
the most probable one".

Anofher major advantage of probabilistic models is fhat they are one of
a class of machine learning models. Machine learning research has focused
on ways to automatically learn the various representations described above;
automata, rule systems, search heuristics, classifiers. These systems can be
trained on large corpora and can be used as a powerful modeling technique,
especially in places where we don't yet have good causal models. Machine
learning algorithms will be described fhroughout the book.

1.4 LANGUAGE, THOUGHT, AND UNDERSTANDING

To many, fhe ability of computers to process language as skillfully as we do
will signal fhe arrival of truly intelligent machines. The basis of this belief is

31

Section 1.4. Language, Thought, and Understanding

the fact that the effective use oflanguage is intertwined with our general cog­
nitive abilities. Among the first to consider the computational implications
of this intimate connection was Alan Turing (1950). In this famous paper,

7

Turing introduced what has come to be known as the Thring Test. Turing TURING TEsT

began with the thesis that the question of what it would mean for a machine
to think was essentially unanswerable due to the inherent imprecision in the
terms machine and think. Instead, he suggested an empirical test, a game,
in which a computer's use of language would form the basis for determin-
ing if it could think. If the machine could win the game it would be judged
intelligent.

In Turing's game, there are three participants: two people and a com­
puter. One of the people is a contestant and plays the role of an interrogator.
To win, the interrogator must determine which of the other two participants
is the machine by asking a series of questions via a teletype. The task of the
machine is to fool the interrogator into believing it is a person by responding
as a person would to the interrogator's questions. The task of the second
human participant is to convince the interrogator that the other participant is
the machine, and that they are human.

The following interaction from Turing's paper illustrates the kind of
interactions he had in mind. Clearly a convincing simulation of humanity
doesn't require being an expert in all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge.
A: Count me out on this one. I never could write poetry.
Q: Add 34957 to 70764.
A: (Pause about 30 seconds and then give answer as) 105621.

Turing predicted that roughly by the end of the twentieth century a machine
with 10 gigabytes of memory would have around a 30% chance of fooling a
human interrogator after 5 minutes of questioning. Given the fact that you
can fool some of the people all the time, it is not clear how rigorous this
particular standard is. Nevertheless, the critical issue for Turing was that
using language as humans do is sufficient, by itself, as an operational test for
intelligence.

Surprisingly, many of the issues raised by Turing became relevant as
early as 1966 in the context of the ELIZA program (Weizenbaum, 1966).
ELIZA was an early natural language processing system capable of carry­
ing on a limited form of conversation with a user. Consider the following
session with a version of ELIZA that imitated the responses of a Rogerian
psychotherapist.

32

8 Chapter 1. Introduction

User1: You are like my father in some ways.
ELIZA1: WHAT RESEMBLANCE DO YOU SEE
User2: You are not very aggressive but I think you don't want me to notice that
ELIZA2 : WHAT MAKES YOU THINK I AM NOT AGGRESSIVE
User3: You don't argue with me.
ELIZA3: WHY DO YOUTHINKIDON'TARGUEWITHYOU
User4: You are afraid of me.
ELIZA,: DOES IT PLEASE YOU TO BELIEVE I AM AFRAID OF YOU

As we will discuss in more detail in Chapter 2, ELIZA is a remarkably sim­
ple program that makes use of pattern-matching to process the input and
translate it into suitable outputs. The success of this simple technique in this
domain is due to the fact that ELIZA doesn't actually need to know anything
to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is one of
the few dialogue genres where the listener can act as if they know nothing of
the world.

ELIZA's deep relevance to Turing's ideas is that many people who in­
teracted with ELIZA came to believe that it really understood them and their
problems. Indeed, Weizenbaum (1976) notes that many of these people con­
tinued to believe in ELIZA's abilities even after the program's operation was
explained to them. In more recent years, Weizenbaum's informal reports
have been repeated in a somewhat more controlled setting. Since 1991, an
event known as the Loebner Prize competition has attempted to put various
computer programs to the Turing test. Although these contests have proven
to have little scientific interest, a consistent result over the years has been
that even the crudest programs can fool some of the judges some of the time
(Shieber, 1994). Not surprisingly, these results have done nothing to quell
the ongoing debate over the suitability of the Turing test as a test for intelli­
gence among philosophers and AI researchers (Searle, 1980).

Fortunately, for the purposes of this book, the relevance ofthese results
does not hinge on whether or not computers will ever be intelligent, or un­
derstand natural language. Far more important is recent related research in
the social sciences that has confirmed another of Turing's predictions from
the same paper.

Nevertheless I believe that at the end of the century the use of
words and educated opinion will have altered so much that we
will be able to speak of machines thinking without expecting to
be contradicted.

It is now clear that regardless of what people believe or know about the in­
ner workings of computers, they talk about them and interact with them as

33

Section 1.5. The State of the Art and the Near-Term Future

social entities. People act toward computers as if they were people; they are
polite to them, treat them as team members, and expect among other things
that computers should be able to understand their needs, and be capable of
interacting with them naturally. For example, Reeves and Nass (1996) found
that when a computer asked a human to evaluate how well the computer had
been doing, the human gives more positive responses than when a different
computer asks the same questions. People seemed to be afraid of being im­
polite. In a different experiment, Reeves and Nass found that people also
give computers higher performance ratings if the computer has recently said
something flattering to the human. Given these predispositions, speech and
language-based systems may provide many users with the most natural inter­
face for many applications. This fact has led to a long-term focus in the field
on the design of conversational agents, artificial entities that communicate
conversationally.

1.5 THE STATE OF THE ART AND THE NEAR- TERM

FUTURE

We can only see a short distance ahead, but we can see plenty there
that needs to be done.

Alan Turing.

This is an exciting time for the field of speech and language processing.
The recent commercialization of robust speech recognition systems, and the
rise of the Web, have placed speech and language processing applications in
the spotlight, and have pointed out a plethora of exciting possible applica­
tions. The following scenarios serve to illustrate some current applications
and near-term possibilities.

A Canadian computer program accepts daily weather data and gener­
ates weather reports that are passed along unedited to the public in English
and French (Chandioux, 1976).

The Babel Fish translation system from Systran handles over 1,000,000
translation requests a day from the Alta Vista search engine site.

A visitor to Cambridge, Massachusetts, asks a computer about places
to eat using only spoken language. The system returns relevant information
from a database of facts about the local restaurant scene (Zue et al., 1991).

These scenarios represent just a few of applications possible given cur­
rent technology. The following, somewhat more speculative scenarios, give

9

34

10 Chapter 1. Introduction

some feeling for applications currently being explored at research and devel­
opment labs around the world.

A computer reads hundreds of typed student essays and grades them
in a manner that is indistinguishable from human graders (Landauer et a!.,
1997).

An automated reading tutor helps improve literacy by having children
read stories and using a speech recognizer to intervene when the reader asks
for reading help or makes mistakes (Mostow and Aist, 1999).

A computer equipped with a vision system watches a short video clip
of a soccer match and provides an automated natural language report on the
game (Wahlster, 1989).

A computer predicts upcoming words or expands telegraphic speech to
assist people with a speech or communication disability (Newell eta!., 1998;
McCoy eta!., 1998).

1.6 SOME BRIEF HISTORY

Historically, speech and language processing has been treated very differ­
ently in computer science, electrical. engineering, linguistics, and psychol­
ogy/cognitive science. Because of this diversity, speech and language pro­
cessing encompasses a number of different but overlapping fields in these
different departments: computational linguistics in linguistics, natural lan­
guage processing in computer science, speech recognition in electrical en­
gineering, computational psycholinguistics in psychology. This section
summarizes the different historical threads which have given rise to the field
of speech and language processing. This section will provide only a sketch;
see the individual chapters for more detail on each area and its terminology.

Foundational Insights: 1940s and 1950s

The earliest roots of the field date to the intellectually fertile period just af­
ter World War II that gave rise to the computer itself. This period from the
1940s through the end of the 1950s saw intense work on two foundational
paradigms: the automaton and probabilistic or information-theoretic
models.

The automaton arose in the 1950s out of Turing's (1936) model of al­
gorithmic computation, considered by many to be the foundation of modem
computer science. Turing's work led first to the McCulloch-Pitts neuron
(McCulloch and Pitts, 1943), a simplified model of the neuron as a kind of

35

Section 1.6. Some Brief History

computing element that could be described in terms of propositional logic,
and then to the work ofKleene (1951) and (1956) on finite automata and reg­
ular expressions. Shannon (1948) applied probabilistic models of discrete
Markov processes to automata for language. Drawing the idea of a finite­
state Markov process from Shannon's work, Chomsky (1956) first consid­
ered finite-state machines as a way to characterize a grammar, and defined
a finite-state language as a language generated by a finite-state grammar.
These early models led to the field of formal language theory, which used
algebra and set theory to define formal languages as sequences of symbols.
This includes the context-free grammar, first defined by Chomsky (1956) for
natural languages but independently discovered by Backus (1959) and Naur
et al. (1960) in their descriptions of the ALGOL programming language.

The second foundational insight of this period was the development of
probabilistic algorithms for speech and language processing, which dates to
Shannon's other contribution: the metaphor of the noisy channel and de­
coding for the transmission of language through media like communication
channels and speech acoustics. Shannon also borrowed the concept of en­
tropy from thermodynamics as a way of measuring the information capacity
of a channel, or the information content of a language, and performed the
first measure of the entropy of English using probabilistic techniques.

It was also during this early period that the sound spectrograph was
developed (Koenig et al., 1946), and foundational research was done in in­
strumental phonetics that laid the groundwork for later work in speech recog­
nition. This led to the first machine speech recognizers in the early 1950s. In
1952, researchers at Bell Labs built a statistical system that could recognize
any of the 10 digits from a single speaker (Davis et al., 1952). The system
had 10 speaker-dependent stored patterns roughly representing the first two
vowel formants in the digits. They achieved 97-99% accuracy by choos­
ing the pattern which had the highest relative correlation coefficient with the
input.

The Two Camps: 1957-1970

By the end of the 1950s and the early 1960s, speech and language processing
had split very cleanly into two paradigms: symbolic and stochastic.

The symbolic paradigm took off from two lines of research. The first
was the work of Chomsky and others on formal language theory and genera­
tive syntax throughout the late 1950s and early to mid 1960s, and the work of
many linguistics and computer scientists on parsing algorithms, initially top­
down and bottom-up and then via dynamic programming. One of the earliest

11

36

12 Chapter 1. Introduction

complete parsing systems was Zelig Harris's Transformations and Discourse
Analysis Project (TDAP), which was implemented between June 1958 and
July 1959 at the University of Pennsylvania (Harris, 1962)2 The second line
of research was the new field of artificial intelligence. In the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester
brought together a group of researchers for a two-month workshop on what
they decided to call artificial intelligence (AI). Although AI always included
a minority of researchers focusing on stochastic and statistical algorithms
(include probabilistic models and neural nets), the major focus of the new
field was the work on reasoning and logic typified by Newell and Simon's
work on the Logic Theorist and the General Problem Solver. At this point
early natural language understanding systems were built, These were sim­
ple systems that worked in single domains mainly by a combination of pat­
tern matching and keyword search with simple heuristics for reasoning and
question-answering. By the late 1960s more formal logical systems were
developed.

The stochastic paradigm took hold mainly in departments of statistics
and of electrical engineering. By the late 1950s the Bayesian method was be­
ginning to be applied to the problem of optical character recognition. Bled­
soe and Browning (1959) built a Bayesian system for text-recognition that
used a large dictionary and computed the likelihood of each observed letter
sequence given each word in the dictionary by multiplying the likelihoods
for each letter. Mosteller and Wallace (1964) applied Bayesian methods to
the problem of authorship attribution on The Federalist papers.

The 1960s also saw the rise of the first serious testable psychological
models of human language processing based on transformational grammar,
as well as the first on-line corpora: the Brown corpus of American English,
a I million word collection of samples from 500 written texts from different
genres (newspaper, novels, non-fiction, academic, etc.), which was assem­
bled at Brown University in 1963-64 (Kucera and Francis, 1967; Francis,
1979; Francis and Kucera, 1982), and WilliamS. Y. Wang's 1967 DOC (Dic­
tionary on Computer), an on-line Chinese dialect dictionary.

Four Paradigms: 1970-1983

The next period saw an explosion in research in speech and language pro­
cessing and the development of a number of research paradigms that still
dominate the field.

2 This system was reimplemented recently and is described by Joshi and Hopely (1999)
and Karttunen (1999), who note that the parser was essentially implemented as a cascade of
finite-state transducers.

37

Section 1.6. Some Brief History

The stochastic paradigm played a huge role in the development of
speech recognition algorithms in this period. particularly the use of the Hid­
den Markov Model and the metaphors of the noisy channel and decoding.
developed independently by Jelinek, Bah!, Mercer, and colleagues at IBM's
Thomas J. Watson Research Center, and by Baker at Carnegie Mellon Uni­
versity, who was influenced by the work of Baum and colleagues at the In­
stitute for Defense Analyses in Princeton. AT&T's Bell Laboratories was
also a center for work on speech recognition and synthesis; see Rabiner and
Juang (1993) for descriptions of the wide range of this work.

The logic-based paradigm was begun by the work of Colmerauer
and his colleagues on Q-systems and metamorphosis grammars (Colmer­
auer, 1970, 1975), the forerunners ofProlog, and Definite Clause Grammars
(Pereira and Warren, 1980). Independently, Kay's (1979) work on functional
grammar, and shortly later, Bresnan and Kaplan's (1982) work on LFG, es­
tablished the importance of feature structure unification.

The natural language understanding field took off during this pe­
riod, beginning with Terry Winograd's SHRDLU system, which simulated a
robot embedded in a world of toy blocks (Winograd, 1972a). The program
was able to accept natural language text commands (Move the red bkick on
top of the smaller green one) of a hitherto unseen complexity and sophisti­
cation. His system was also the first to attempt to build an extensive (for the
time) grammar of English, based on Halliday's systemic grammar. Wino­
grad's model made it clear that the problem of parsing was well-enough
understood to begin to focus on semantics and discourse models. Roger
Schank and his colleagues and students (in what was often referred to as
the Yale School) built a series of language understanding programs that fo­
cused on human conceptual knowledge such as scripts, plans and goals, and
human memory organization (Schank and Albelson, 1977; Schank and Ries­
beck, 1981; Cullingford, 1981; Wilensky, 1983; Lehnert, 1977). This work
often used network-based semantics (Quillian, 1968; Norman and Rumel­
hart, 1975; Schank, 1972; Wilks, 1975c, 1975b; Kintsch, 1974) and began
to incorporate Fillmore's notion of case roles (Fillmore, 1968) into their rep­
resentations (Simmons, 1973).

The logic-based and natural-language understanding paradigms were
unified on systems that used predicate logic as a semantic representation,
such as the LUNAR question-answering system (Woods, 1967, 1973).

The discourse modeling paradigm focused on four key areas in dis­
course. Grosz and her colleagues introduced the study of substructure in
discourse, and of discourse focus (Grosz, 1977a; Sidner, 1983), a number of

13

38

14 Chapter 1. Introduction

researchers began to work on automatic reference resolution (Hobbs, 1978),
and the BDI (Belief-Desire-Intention) framework for logic-based work on
speech acts was developed (Perrault and Allen, 1980; Cohen and Perrault,
1979).

Empiricism and Finite State Models Rednx: 1983-1993

This next decade saw the return of two classes of models which had lost
popularity in the late 1950s and early 1960s, partially due to theoretical
arguments against them such as Chomsky's influential review of Skinner's
Verbal Behavior (Chomsky, 1959b). The first class was finite-state models,
which began to receive attention again after work on finite-state phonology
and morphology by Kaplan and Kay (1981) and finite-state models of syn­
tax by Church (1980). A large body of work on finite-state models will be
described throughout the book

The second trend in this period was what has been called the "return of
empiricism"; most notably here was the rise of probabilistic models through­
out speech and language processing, influenced strongly by the work at the
IBM Thomas J. Watson Research Center on probabilistic models of speech
recognition. These probabilistic methods and other such data-driven ap­
proaches spread into part-of-speech tagging, parsing and attachment ambi­
guities, and connectionist approaches from speech recognition to semantics.

This period also saw considerable work on natnrallanguage generation.

The Field Comes Together: 1994-1999

By the last five years of the millennium it was clear that the field was vastly
changing. First, probabilistic and data-driven models had become quite stan­
dard throughout natural language processing. Algorithms for parsing, part­
of-speech tagging, reference resolution, and discourse processing all began
to incorporate probabilities, and employ evaluation methodologies borrowed
from speech recognition and information retrieval. Second, the increases in
the speed and memory of computers had allowed commercial exploitation
of a number of subareas of speech and language processing, in particular
speech recognition and spelling and grammar checking. Speech and lan­
guage processing algorithms began to be applied to Augmentative and Al­
ternative Communication (AAC). Finally, the rise of the Web emphasized the
need for language-based information retrieval and information extraction.

39

Section 1.6. Some Brief History

On Mnltiple Discoveries

Even in this brief historical overview, we have mentioned a number of cases
of multiple independent discoveries of the same idea. Just a few of the "mul­
tiples" to be discussed in this book include the application of dynamic pro­
gramming to sequence comparison by Viterbi, Vintsyuk, Needleman and
Wunsch, Sakoe and Chiba, Sankoff, Reichert et al., and Wagner and Fischer
(Chapters 5 and 7); the HMM/noisy channel model of speech recognition
by Baker and by Jelinek, Bah!, and Mercer (Chapter 7); the development
of context-free grammars by Chomsky and by Backus and Naur (Chapter
9); the proof that Swiss-German has a non-context-free syntax by Huybregts
and by Shieber (Chapter 13); the application of unification to language pro­
cessing by Cohnerauer et al. and by Kay in (Chapter 11).

Are these multiples to be considered astonishing coincidences? A
well-known hypothesis by sociologist of science Robert K. Merton (1961)
argues, quite the contrary, that

all scientific discoveries are in principle multiples, including those
that on the surface appear to be singletons.

Of course there are many well-known cases of multiple discovery or inven­
tion; just a few examples from an extensive list in Ogburn and Thomas
(1922) include the multiple invention of the calculus by Leibnitz and by
Newton, the multiple development of the theory of natural selection by Wal­
lace and by Darwin, and the multiple invention of the telephone by Gray
and Be113 But Merton gives an further array of evidence for the hypothesis
that multiple discovery is the rule rather than the exception, including many
cases of putative singletons that tum out be a rediscovery of previously un­
published or perhaps inaccessible work. An even stronger piece of evidence
is his ethnomethodological point that scientists themselves act under the as­
sumption that multiple invention is the norm. Thus many aspects of scientific
life are designed to help scientists avoid being "scooped"; submission dates
on journal articles; careful dates in research records; circulation of prelimi­
nary or technical reports.

3 Ogburn and Thomas are generally credited with noticing that the prevalence of multiple
inventions suggests that the cultural milieu and not individual genius is the deciding causal
factor in scientific discovery. In an amusing bit of recursion, however, Merton notes that even
this idea has been multiply discovered, citing sources from the 19th century and earlier!

15

40

16 Chapter 1. Introduction

A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological
research on human processing. Of course. understanding human language
processing is an important scientific goal in its own right and is part of the
general field of cognitive science. However, an understanding of human lan­
guage processing can often be helpful in building better machine models
of language. This seems contrary to the popular wisdom, which holds that
direct mimicry of nature's algorithms is rarely useful in engineering appli­
cations. For example, the argument is often made that if we copied nature
exactly, airplanes would flap their wings; yet airplanes with fixed wings are a
more successful engineering solution. But language is not aeronautics. Crib­
bing from nature is sometimes useful for aeronautics (after all, airplanes do
have wings), but it is particularly usefrd when we are trying to solve human­
centered tasks. Airplane flight has different goals than bird flight; but the
goal of speech recognition systems, for example, is to perform exactly the
task that human court reporters perform every day: transcribe spoken dia­
log. Since people already do this well, we can learn from nature's previous
solution. Since an important application of speech and language processing
systems is for human-computer interaction, it makes sense to copy a solution
that behaves the way people are accustomed to.

1.7 SUMMARY

This chapter introduces the field of speech and language processing. The
following are some of the highlights of this chapter.

o A good way to understand the concerns of speech and language pro­
cessing research is to consider what it would take to create an intelli­
gent agent like HAL from 2001: A Space Odyssey.

o Speech and language technology relies on formal models, or repre­
sentations, of knowledge of language at the levels of phonology and
phonetics, morphology, syntax, semantics, pragmatics and discourse.
A small number of formal models including state machines, formal
rule systems, logic, and probability theory are used to capture this
knowledge.

o The foundations of speech and language technology lie in computer
science, linguistics, mathematics, electrical engineering and psychol­
ogy. A small number of algorithms from standard frameworks are used

41

Section 1.7. Summary

throughout speech and language processing,

o The critical connection between language and thought has placed speech
and language processing technology at the center of debate over intel­
ligent machines. Furthermore, research on how people interact with
complex media indicates that speech and language processing technol­
ogy will be critical in the development of future technologies.

o Revolutionary applications of speech and language processing are cur­
rently in use around the world. Recent advances in speech recognition
and the creation of the World-Wide Web will lead to many more appli­
cations.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

Research in the various subareas of speech and language processing is spread
across a wide number of conference proceedings and journals. The con­
ferences and journals most centrally concerned with computational linguis­
tics and natural language processing are associated with the Association for
Computational Linguistics (ACL), its European counterpart (EACL), and the
International Conference on Computational Linguistics (COLING). The an­
nual proceedings of ACL and EACL, and the biennial COLING conference
are the primary forums for work in this area. Related conferences include
the biennial conference on Applied Natural Language Processing (ANLP)
and the conference on Empirical Methods in Natural Language Processing
(EMNLaP). The journal Computational Linguistics is the premier publica­
tion in the field, although it has a decidedly theoretical and linguistic ori­
entation. The journal Natural Language Engineering covers more practical
applications of speech and language research.

Research on speech recognition, tmderstanding, and synthesis is pre­
sented at the biennial International Conference on Spoken Language Pro­
cessing (ICSLP) which alternates with the European Conference on Speech
Communication and Technology (EUROSPEECH). The IEEE International
Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP)
is held annually, as is the meeting of the Acoustical Society of America.
Speech journals include Speech Communication, Computer Speech and Lan­
guage, and the IEEE Transactions on Pattern Analysis and Machine Intelli­
gence.

17

42

18 Chapter I. Introduction

Work on language processing from an Artificial Intelligence perspec­
tive can be found in the annual meetings of the American Association for
Artificial Intelligence (AAAI), as well as the biennial International Joint
Conference on Artificial Intelligence (IJCAI) meetings. The following arti­
ficial intelligence publications periodically feature work on speech and lan­
guage processing: Artificial Intelligence, Computational Intelligence, IEEE
Transactions on Intelligent Systems, and the Journal of Artificial Intelligence
Research. Work on cognitive modeling of language can be found at the an­
nual meeting of the Cognitive Science Society, as well as its journal Cogni­
tive Science. An influential series of invitation-only workshops was held by
ARPA, called variously the DARPA Speech and Natural Language Process­
ing Workshop or the ARPA Workshop on Human Language Technology.

There are a fair number of textbooks available covering various aspects
of speech and language processing. Manning and Schiitze (1999) (Founda­
tions of Statistical Language Processing) focuses on statistical models of
tagging, parsing, disambiguation, collocations, and other areas. Charniak
(1993) (Statistical Language Learning) is an accessible, though older and
less-extensive, introduction to similar material. Allen (1995) (Natural Lan­
guage Understanding) provides extensive coverage of language processing
from the AI perspective. Gazdar and Mellish (1989) (Natural Language Pro­
cessing in Lisp/Prolog) covers especially automata, parsing, features, and
unification. Pereira and Shieber (1987) gives a Prolog-based introduction to
parsing and interpretation. Russell and Norvig (1995) is an introduction to
artificial intelligence that includes chapters on natural language processing.
Partee et a!. (1990) has a very broad coverage of mathematical linguistics.
Cole (1997) is a volume of survey papers covering the entire field of speech
and language processing. A somewhat dated but still tremendously useful
collection of foundational papers can be found in Grosz eta!. (1986) (Read­
ings in Natural Language Processing).

Of course, a wide-variety of speech and language processing resources
are now available on the World-Wide Web. Pointers to these resources are
maintained on the home-page for this book at:

http://www.cs.colorado.edu/~martin/slp.html.

43

Part I
WORDS

Words are the fundamental building block of language. Every human
language, spoken, signed, or written, is composed of words. Every
area of speech and language processing, from speech recognition to
machine translation to information retrieval on the Web, requires ex­
tensive knowledge about words. Psycholinguistic models of human
language processing and models from generative linguistics are also
heavily based on lexical knowledge.

The six chapters in this part introduce computational models
of the spelling, pronunciation, and morphology of words and cover
three important real-world tasks that rely on lexical knowledge: auto­
matic speech recognition (ASR), text-to-speech synthesis (TTS), and
the correction of spelling errors. Finally, these chapters define per­
haps the most important computational model for speech and lan­
guage processing: the automaton. Four kinds of automata are cov­
ered: finite-state automata (FSAs) and regular expressions, finite-state
transducers (FSTs), weighted transducers, and the Hidden Markov
Model (HMM), as well as theN-gram model of word sequences.

44

2
REGULAR EXPRESSIONS
AND AUTOMATA

In the old days, if you wanted to impeach a witness you had to go
back and fumble through endless transcripts. Now it's on a screen
somewhere or on a disk and I can search for a particular word­
say every time the witness used the word glove- and then quickly
ask a question about what he said years ago. Right away you see
the witness get flustered.

Johnnie L. Cochran Jr., attorney, New York Times, 9/28/97

Imagine that you have become a passionate fan of woodchucks. De­
siring more information on this celebrated woodland creature, you tum to
your favorite Web browser and type in woodchuck. Your browser returns
a few sites. You have a flash of inspiration and type in woodchucks. This
time you discover "interesting links to woodchucks and lemurs" and "all
about Vermont's unique, endangered species". Instead of having to do this
search twice, you would have rather typed one search command specifying
something like woodchuck with an optional final s. Furthermore, you might
want to find a site whether or not it spelled woodchucks with a capital W
(Woo<k·huck). Or perhaps you might want to search for all the prices in some
document; you might want to see all strings that look like $199 or $25 or
$24.99. In this chapter we introduce the regular expression, the standard
notation for characterizing text sequences. The regular expression is used
for specifYing text strings in situations like this Web-search example, and in
other information retrieval applications, but also plays an important role in
word-processing (in PC, Mac, or UNIX applications), computation of fre­
quencies from corpora, and other such tasks.

After we have defined regular expressions, we show how they can be
implemented via the finite-state automaton. The finite-state automaton is
not ouly the mathematical device used to implement regular expressions, but

45

22 Chapter 2. Regular Expressions and Automata

also one of the most significant tools of computational linguistics. Variations
of automata such as finite-state transducers. Hidden Markov Models, and
N -gram grammars are important components of the speech recognition and
synthesis, spell-checking, and information-extraction applications that we
will introduce in later chapters.

2.1 REGULAR EXPRESSIONS

REGULAR
EXPRESSION

STRINGS

CORPUS

SIR ANDREW Her C's, her U's and her T's: why that?
Shakespeare, Twelfth Night

One of the unsung successes in standardization in computer science
has been the regular expression (RE), a language for specifying text search
strings. The regular expression languages used for searching texts in UNIX
(vi, Perl, Emacs, grep), Microsoft Word (version 6 and beyond), and Word­
Perfect are almost identical, and many RE features exist in the various Web
search engines. Besides this practical use, the regular expression is an im­
portant theoretical tool throughout computer science and linguistics.

A regular expression (first developed by Kleene (1956) but see the His­
tory section for more details) is a formula in a special language that is used
for specifying simple classes of strings. A string is a sequence of symbols;
for the purpose of most text-based search techniques, a string is any sequence
of alphanumeric characters (letters, numbers, spaces, tabs, and punctuation).
For these purposes a space is just a character like any other, and we represent
it with the symbol ~·

Formally, a regular expression is an algebraic notation for characteriz­
ing a set of strings. Thus they can be used to specify search strings as well as
to define a language in a formal way. We will begin by talking about regular
expressions as a way of specifying searches in texts, and proceed to other
uses. Section 2.3 shows that the use of just three regular expression opera­
tors is sufficient to characterize strings, but we use the more convenient and
commonly-used regular expression syntax of the Perl language throughout
this section. Since common text-processing programs agree on most of the
syntax of regular expressions, most of what we say extends to all UNIX, Mi­
crosoft Word, and WordPerfect regular expressions. Appendix A shows the
few areas where these programs differ from the Perl syntax.

Regular expression search requires a pattern that we want to search
for, and a corpus of texts to search through. A regular expression search

46

Section 2.1. Regular Expressions

function will search through the corpus returning all texts that contain the
pattern. In au information retrieval (IR) system such as a Web search engine.
the texts might be entire documents or Web pages. In a word-processor, the
texts might be individual words, or lines of a document. In the rest of this
chapter, we will use this last paradigm. Thus when we give a search pattern,
we will assume that the search engine returns the line of the document re­
turned. This is what the UNIX grep command does. We will underline the
exact part of the pattern that matches the regular expression. A search can be
designed to return all matches to a regular expression or only the first match.
We will show only the first match.

Basic Regular Expression Patterns

The simplest kind of regular expression is a sequence of simple characters.
For example, to search for woodchuck, we type /woodchuck/. So the reg­
ular expression /Buttercup I matches any string containing the substring
Buttercup, for example the line I'm called little Buttercup) (recall that we
are assuming a search application that returns entire lines). From here on
we will put slashes around each regular expression to make it clear what is
a regular expression and what is a pattern. We use the slash since this is the
notation used by Perl, but the slashes are not part of the regular expressions.

The search string can consist of a single letter (like I ! I) or a sequence
ofletters (like /urgl/); The .first instance of each match to the regular ex­
pression is underlined below (although a given application might choose to
return more than just the first instance):

RE Example Patterns Matched
/woodchucks/ "interesting links to woodchucks and lemurs"
/a/ "M~y Ann stopped by Mona's"
/Claire~says,/ "Dagmar, my gift please," Claire says,"
/song/ "all our pretty songs"

I ! I "You've left the burglar behind again!" said Nori

Regular expressions are case sensitive; lowercase Is I is distinct from
uppercase Is I; (! s I matches a lower case s but not au uppercaseS). This
means that the pattern /woodchucks/ will uot match the string Wood­
chucks. We can solve this problem with the use of the square braces [and J .
The string of characters inside the braces specify a disjunction of characters
to match. For example Figure 2.1 shows that the pattern I [wW] I matches
patterns containing either w or W.

23

47

24 Chapter 2. Regular Expressions and Automata

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck "Woodchuck"
/[abc]/ 'a', 'b', or 'c' "In uomini, in _sold~ti"
/[1234567890]/ any digit "plenty of 7 to 5"

Figure2.1 The use of the brackets [] to specify a disjunction of characters.

The regular expression I [12 3 4 56 7 8 9 0] I specified any single digit.
While classes of characters like digits or letters are important building blocks
in expressions, they can get awkward (e.g., it's inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean "any capital letter"). In these cases the brackets can be used with
RANGE the dash (-) to specify any one character in a range. The pattern 1 [2-

5] I specifies any one of the characters 2, 3, 4, or 5. The pattern I [b-g] I
specifies one of the characters b, c, d, e,f, or g. Some other examples:

RE Match Example Patterns Matched
/[A-Z]/ an uppercase letter "we should call it 'Drenched Blossoms'"
I [a-z] I a lowercase letter "my beans were impatient to be hoed!"
/[0-9]/ a single digit "Chapter I: Down the Rabbit Hole"

Figure2.2 The use of the brackets [J plus the dash - to specify a range.

The square braces can also be used to specify what a single charac­
ter cannot be, by use of the caret A. If the caret A is the first symbol after
the open square brace [, the resulting pattern is negated. For example, the
pattern I [A a] I matches any single character (including special characters)
except a. This is only true when the caret is the first symbol after the open
square brace. If it occurs anywhere else, it usually stands for a caret; Fig­
ure 2.3 shows some examples.

RE Match (single characters) Example Patterns Matched
['A-Z] not an uppercase letter "Orfn pripetchik"
['Ss] neither 'S' nor's' "!have no exquisite reason for'!"
[A\ • J not a period "Qur resident Djinn"
[e' l either 'e' or '"' "look up:_ now"
a'b the pattern 'a 'b' "look up a' b now"

Figure2.3 Uses of the caret ' for negation or just to mean "'

48

Section 2.1. Regular Expressions

The use of square braces solves our capitalization problem for wood­
chucks. But we still haven't answered our original question; how do we
specify both woodchuck and woodchucks? We can't use the square brack­
ets, because while they allow us to say "s or S", they don't allow us to say
"s or nothing". For this we use the question-mark I ? I, which means "the
preceding character or nothing", as shown in Figure 2.4.

RE Match Example Patterns Matched
woodchucks? woodchuck or woodchucks "woodchuck"
colou?r color or colour "colour"

Figure 2.4 The question-mark? marks optionality of the previous expres-
sion.

We can think of the question-mark as meaning "zero or one instances
of the previous character". That is, it's a way of specifying how many of
something that we want. So far we haven't needn't to specify that we want
more than one of something. But sometimes we need regular expressions
that allow repetitions of things. For example, consider the language of (cer­
tain) sheep, which consists of strings that look like the following:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!

This language consists of strings with a b, followed by at least two as,
followed by an exclamation point. The set of operators that allow us to say
things like "some number of as" are based on the asterisk or *, commonly
called the Kleene * (pronounced "cleany star"). The Kleene star means KLEENE •

"zero or more occurrences of the immediately previous character or regular
expression". So I a* I means "any string of zero or more as". This will
match a or aaaaaa but it will also match Off Minor, since the string Off
Minor has zero as. So the regular expression for matching one or more a is
I a a* I, meaning one a followed by zero or more as. More complex patterns
can also be repeated. So I [ab] * I means "zero or more as orbs" (not "zero
or more right square braces"). This will match strings like aaaa or ababab
or bbbb.

25

49

26

KLEENE +

ANCHORS

Chapter 2. Regular Expressions and Automata

We now know enough to specify part of our regular expression for
prices: multiple digits. Recall that the regular expression for an individual
digit was I [0- 9] I. So the regular expression for an integer (a string of
digits) is I [0-9] [0-9 J *I. (Why isn't it just I [0-9 J * /)?

Sometimes it's annoying to have to write the regular expression for dig­
its twice, so there is a shorter way to specify "at least one" of some character.
This is the Kleene +,which means "one or more of the previous character".
Thus the expression I [0- 9] +I is the normal way to specify "a sequence of
digits". There are thus two ways to specify the sheep language: /baaa * ! I
or /baa+!/.

One very important special character is the period (! . I, a wildcard
expression that matches any single character (except a carriage return):

RE Match Example Patterns
/beg.n/ any character between beg and n begin, heg'n, begun

Figure2.5 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean "any
string of characters". For example suppose we want to find any line in which
a particular word, for example aardvark, appears twice. We can specify this
with the regular expression I aardvark.* aardvark/.

Anchors are special characters that anchor regular expressions to par­
ticular places in a string. The most common anchors are the caret A and the
dollar-sign $. The caret' matches the start of a line. The pattern rThe/
matches the word The only at the start of a line. Thus there are three uses
of the caret A: to match the start of a line, as a negation inside of square
brackets, and just to mean a caret. (What are the contexts that allow Perl to
know which function a given caret is supposed to have?). The dollar sign $
matches the end of a line. So the pattern ~$ is a useful pattern for matching
a space at the end of a line, and I A The dog\ . $I matches a line that con­
tains only the phrase The dog. (We have to use the backslash here since we
want the . to mean "period" and not the wildcard).

There are also two other anchors: \ b matches a word boundary, while
\B matches a non-boundary. Thus I \bthe \b/ matches the word the but
not the word other. More technically, Perl defines a word as any sequence
of digits, underscores or letters; this is based on the definition of "words"
in programming languages like Perl or C. For example, I \b9 9 I will match
the string 99 in There are 99 bottles of beer on the wall (because 99 follows

50

Section 2.1. Regular Expressions

a space) but not 99 in There are 299 bottles of beer on the wall (since 99
follows a number). But it will match 99 in $99 (since 99 follows a dollar
sign($), which is not a digit, underscore, or letter).

Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly
interested in cats and dogs. In such a case we might want to search for either
the string cat or the stting dog. Since we can't use the square-brackets to
search for "cat or dog" (why not?) we need a new operator, the disjunction
operator, also called the pipe symbol 1 . The pattern I cat I dog I matches
either the stting cat or the stting dog.

Sometimes we need to use this disjunction operator in the midst of
a larger sequence. For example, suppose I want to search for information
about pet fish for my cousin David. How can I specify both guppy and
guppies? We cannot simply say I guppy I ies I, because that would match
only the sttings guppy and ies. This is because sequences like guppy take
precedence over the disjunction operator I . In order to make the disjunction
operator apply only to a specific pattern, we need to use the parenthesis
operators (and) . Enclosing a pattern in parentheses makes it act like a
single character for the purposes of neighboring operators like the pipe I

and the Kleene*. So the pattern I gupp (y I ies) I would specify that we
meant the disjunction only to apply to the suffixes y and i e s.

The parenthesis operator (is also useful when we are using counters
like the Kleene*. Unlike the 1 operator, the Kleene* operator applies by
default only to a single character, not a whole sequence. Suppose we want
to match repeated instances of a stting. Perhaps we have a line that has
column labels of the form Column 1 Column 2 Column 3. The expression
I Co 1 umn~ [0- 9] +~*I will not match any column; instead, it will match
a column followed by any number of spaces! The star here applies only to
the space ~ that precedes it, not the whole sequence. With the parentheses,
we could write the expression I (Column~ [0- 9] +~ *) *I to match the
word Column, followed by a number and optional spaces, the whole pattern
repeated any number of times.

This idea that one operator may take precedence over another, requir­
ing us to sometimes use parentheses to specify what we mean, is formalized
by the operator precedence hierarchy for regular expressions. The follow­
ing table gives the order of RE operator precedence, from highest precedence
to lowest precedence;

27

DISJUNCTION

PRECEDENCE

OPERATOR
PRECEDENCE

51

28 Chapter 2. Regular Expressions and Automata

Parenthesis ()

Counters * + ? {}

Sequences and anchors the ~ my end$
Disjunction I

Thus, because counters have a higher precedence than sequences,
/the* I matches theeeee but not thethe. Because sequences have a higher
precedence than disjunction, I the I any I matches the or any but not theny.

Patterns can be ambiguous in another way. Consider the expression
I [a- z] *I when matching against the text once upon a time. Since I [a­

z l *I matches zero or more letters, this expression could match nothing, or
just the first letter o, or on, or one, or once. In these cases regular expressions

GREEDY always match the largest string they can; we say that patterns are greedy,
expanding to cover as much of a string as they can.

A Simple Example

Suppose we wanted to write aRE to find cases of the English article the. A
simple (but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins
a sentence and hence is capitalized (i.e., The). This might lead us to the
following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other
words (e.g., other or theology). So we need to specify that we want instances
with a word boundary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/? We might
want this since I \b! won't treat underscores and numbers as word bound­
aries; but we might want to find the in some context where it might also have
underlines or numbers nearby (the_ or the25). We need to specify that we
want instances in which there are no alphabetic letters on either side of the
the:

I [~a-zA-Z] [tT]he[~a-zA-Z] I

52

Section 2.1. Regnlar Expressions

But there is still one more problem with this pattern: it won't find the
word the when it begins a line. This is because the regular expression [~a­
zA- z] , which we used to avoid embedded thes, implies that there must be
some single (although non-alphabetic) character before the the. We can
avoid this by specifying that before the the we require either the beginning­
of-line or a non-alphabetic character:

I ('I ['a-zA-Z]) [tTl he ['a-zA-Z] I

A More Complex Example

Let's try out a more significant example of the power of REs. Suppose we
want to build an application to help a user buy a computer on the Web. The
user might want "any PC with more than 500 MHz and 32 Gb of disk space
for less than $1000". In order to do this kind of retrieval we will first need
to be able to look for expressions like 500 MHz or 32 Gb or Compaq or Mac
or $999.99. In the rest of this section we'll work out some simple regular

expressions for this task.
First, let's complete our regular expression for prices. Here's a regnlar

expression for a dollar sign followed by a string of digits. Note that Perl is
smart enough to realize that $ here doesn't mean end-of-line; how might it

know that?

1$[0-9]+1

Now we just need to deal with fractions of dollars. We'll add a decimal

point and two digits afterwards:

1$ [0-91 +\. [0-9] [0-9] I

This pattern only allows $199.99 but not $199. We need to make the
cents optional, and make sure we're at a word boundary:

1\b$[0-9]+(\. [0-9] [0-9])?\bl

How about specifications for processor speed (in megahertz = MHz or

gigahertz = GHz)? Here's a pattern for that:

l\b[0-9l+~*(MHzl [Mm]egahertziGHzl [Gg]igahertz)\bl

Note that we use I~* I to mean "zero or more spaces", since there
might always be extra spaces lying around. Dealing with disk space (in Gb
=gigabytes), or memory size (in Mb =megabytes or Gb =gigabytes), we

29

53

30 Chapter 2. Regular Expressions and Automata

need to allow for optional gigabyte fractious again (5.5 Gb). Note the use of
? for making the final s optional:

1\b[0-9]+~* (Mbl [Mm]egabytes?) \bl
1\b[0-9] (\. [0-9] +I?~* (Gbl [Gg] igabytes?) \bl

Finally, we might want some simple patterns to specify operating sys­
tems and vendors:

l\b(Win951Win981WinNTIWindows~*(NTI9519812000)?)\bl

1\b(MaciMacintoshiApple)\bl

Advanced Operators

RE Expansion Match Example Patterns
\d [0-9] any digit Party~oC2.

\D ['0-9] any non-digit ~lue~moon

\w [a-zA-Z0-9~] any alphanumeric or space Daiyu
\W [, \ w] a non-alphanumeric l!!!
\s l~\r\t\n\f] whitespace (space, tab)
\S ['\s] Non-whitespace in~ Concord

Figure2.6 Aliases for common sets of characters.

There are also some useful advanced regular expression operators. Fig­
ure 2.6 shows some useful aliases for common ranges, which can be used
mainly to save typing. Besides the Kleene * and Kleene +, we can also use
explicit numbers as counters, by enclosing them in curly brackets. The reg­
ular expression I { 3} I means "exactly 3 occurrences of the previous char­
acter or expression". So I a\ . { 2 4 } z I will match a followed by 24 dots
followed by z (but not a followed by 23 or 25 dots followed by a z).

A range of numbers can also be specified; so I { n, m} I specifies from
n tom occurrences of the previous char or expression, while I { n, } I means
at least n occurrences of the previous expression. REs for counting are sum­
marized in Figure 2. 7.

Finally, certain special characters are referred to by special notation
NEWLINE based on the backslash (\). The most common of these are the newline

character \ n and the tab character \ t. To refer to characters that are special
themselves, (like . , *, [, and \), precede them with a backslash, (i.e., I \ . I,
I* I, I\ [I, and I\\ 1).

54

Section 2.1. Regular Expressions

RE Match

* zero or more occurrences of the previous char or expression

+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
(n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n, } at least n occurrences of the previous char or expression

Figure2.7 Regular expression operators for counting.

RE Match Example Patterns Matched
* an asterisk "*" "K:_A*P*L*A*N"
\. a period "." "Dr.:. Livingston, I presume"
\? a question mark "Would you light my candle1"
\n a newline
\t a tab

Figure2.8 Some characters that need to be backslashed.

The reader should consult Appendix A for further details of regular
expressions, and especially for the differences between regular expressions
in Perl, UNIX, and Microsoft Word.

Regular Expression Substitution, Memory, and ELIZA

31

An important use of regular expressions is in substitutions. For example, the sussTITUTIDN

Perl substitution operator s I regexpl I regexp2 I allows a string charac-
terized by one regular expression to be replaced by a string characterized by
a different regular expression:

slcolourlcolorl

It is often useful to be able to refer to a particular subpart of the string
matching the first pattern. For example, suppose we wanted to put angle
brackets around all integers in a text, changing e.g., the 35 boxes to the <35>
boxes. We'd like a way to refer back to the integer we've found so that we
can easily add the brackets. To do this, we put parentheses (and) around
the first pattern, and use the number operator \1 in the second pattern to
refer back. Here's how it looks:

sl ([0-9] +) 1<\1>1

55

32 Chapter 2. Regular Expressions and Automata

The parenthesis and number operators can also be nsed to specify that
a certain string or expression must occur twice in the text For example,
suppose we are looking for the pattern "the Xer they were, the Xer they will
be", where we want to constrain the two X's to be the same string. We do
this by surrounding the first X with the parenthesis operator, and replacing
the second X with the number operator \ 1, as follows:

/the (,*)er they were, the \1er they will be/

Here the \ 1 will be replaced by whatever string matched the first item in
parentheses. So this will match The bigger they were, the bigger they will be
but not The bigger they were, the faster they will be.

The number operator can be used with other numbers: if you match
two different sets of parenthesis, \ 2 means whatever matched the second
set For example

/the (,*)er they (,*), the \1er they \2/

will match The bigger they were, the bigger they were but not The bigger they
REGISTERS were, the bigger they will be. These numbered memories are called registers

(e.g. register 1, register 2, register 3, etc). This memory feature is not part
of every regular expression language and is often considered an "extended"
feature of regular expressions.

Substitutions using memory are very useful in implementing a simple
natural-language understanding program like ELIZA (Weizenbaum, 1966).
Recall that ELIZA simulated a Rogerian psychologist and could carry on
conversations with the user like the following:

Userr: Men are all alike.
ELIZA1: INWHATWAY
Userz: They're always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I'm depressed much of the time:
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED.

Eliza worked by having a cascade of regular expression substitutions
that each matched some part of the input lines and changed them. The first
substitutions changed all instances of my to YOUR, and I'm to YOU ARE,
and so on. The next set of substitutions looked for relevant patterns in the
input and created an appropriate output; here are some examples:

s/.* YOU ARE (depressed! sad) .*/I AM SORRY TO HEAR YOU ARE \1/

56

Section 2.2. Finite-State Automata

s/.* YOU ARE (depressedlsad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

Since multiple substitutions could apply to a given input, substitutions
were assigned a rank and were applied in order. Creation of such patterns is
addressed in Exercise 2.2.

2.2 FINITE-STATE AUTOMATA

The regular expression is more than just a convenient metalanguage for text
searching. First, a regular expression is one way of describing a finite-state
automaton (FSA). Finite-state automata are the theoretical foundation of a
good deal of the computational work we will describe in this book. Any
regular expression can be implemented as a finite-state automaton (except
regular expressions that use the memory feature; more on this later). Sym­
metrically, any finite-state automaton can be described with a regular expres­
sion. Second, a regular expression is one way of characterizing a particular
kind of formal language called a regular language. Both regular expres­
sions and finite-state automata can be used to described regular languages.
The relation among these three theoretical constructions is sketched out in
Figure 2.9.

regular
expressions ,,

I \
I \

I \
I \

I \
I \

.l--------~ finite
automata

regular
languages

Figure 2.9 The relationship between finite automata. regular expressions,
and regular languages; figure suggested by Martin Kay.

This section will begin by introducing finite-state automata for some of
the regular expressions from the last section, and then suggest how the map­
ping from regular expressions to automata proceeds in general. Although
we begin with their use for implementing regular expressions, FSAs have a
wide variety of other uses that we will explore in this chapter and the next.

33

FINITE-STATE
AUTOMATON

FSA

REGULAR
LANGUAGE

57

34 Chapter 2. Regular Expressions aud Automata

Using an FSA to Recognize Sheeptalk

After a while, with the parrot's help, the Doctor got to learn the lan­
guage of the animals so well that he could talk to them himself and
understand everything they said.

Hugh Lofting, The Story of Doctor Do little

Let's begin with the "sheep language" we discussed previously. Recall
that we defined the sheep language as any string from the following (infinite)
set:

baa!
baaa!
baaaa!
baaaaa!
baaaaaa!

a

Figure 2.10 A finite-state automaton for talking sheep.

The regular expression for this kind of "sheeptalk" is I baa+ ! I. Fig-
AUTOMAmN ure 2.10 shows au automaton for modeling this regular expression. The

automaton (i.e., machine, also called finite automaton, finite-state automa­
ton, or FSA) recognizes a set of strings, in this case the strings characterizing
sheep talk, in the same way that a regular expression does. We represent the
automaton as a directed graph: a finite set of vertices (also called nodes),
together with a set of directed links between pairs of vertices called arcs.
We'll represent vertices with circles aud arcs with arrows. The automaton

STATE has five states, which are represented by nodes in the graph. State 0 is the
sTART STATE start state which we represent by the incoming arrow. State 4 is the final

state or accepting state, which we represent by the double circle. It also has
four transitions, which we represent by arcs in the graph.

The FSA cau be used for recognizing (we also say accepting) strings
in the following way. First, think of the input as being written on a long tape

58

Section 2.2. Finite-State Automata

broken up into cells, with one symbol written in each cell of the tape, as in
Figure 2.11.

~
i a I b I a I ' I b I I I ~ •

Figure2.11 A tape with cells.

The machine starts in the start state (q0), and iterates the following
process: Check the next letter of the input. If it matches the symbol on
an arc leaving the current state, then cross that arc, move to the next state,
and also advance one symbol in the input. If we are in the accepting state
(q4) when we run out of input, the machine has successfully recognized an
instance of sheeptalk. If the machine never gets to the final state, either
because it runs out of input, or it gets some input that doesn't match an arc
(as in Figure 2.11), or if it just happens to get stuck in some non-final state,
we say the machine rejects or fails to accept an input.

We can also represent an automaton with a state-transition table. As
in the graph notation, the state-transition table represents the start state, the
accepting states, and what transitions leave each state with which symbols.
Here's the state-transition table for the FSA of Figure 2.10.

Input
State b a l

0 1 0 0
1 0 2 0
2 0 3 0
3 0 3 4
4: 0 0 0

Figure 2.12 The state-transition table for the FSA of Figure 2.10.

We've marked state 4 with a colon to indicate that it's a final state (you
can have as many final states as you want), and the 0 indicates an illegal or
missing transition. We can read the first row as "if we're in state 0 and we
see the input b we must go to state 1. If we're in state 0 and we see the input
a or!, we fail".

35

REJECTS
STATE­
TRANSITION
TABLE

59

36

DETERMINIS·
TIC

Chapter 2. Regular Expressions and Automata

More formally, a finite automaton is defined by the following five pa­
rameters:

o Q: a finite set of N states qo, q1, ... , qN

• 2:: a finite input alphabet of symbols

• qo: the start state
• F: the set of final states, F c;; Q
• o(q, i): the transition function or transition matrix between states.

Given a state q E Q and an input symbol i E 2:, o(q, i) returns a new
state q' E Q. o is thus a relation from Q x 2: to Q;

For the sheeptalk automaton in Figure 2.10, Q = {qo,ql,qz,q3,q4},
2: = {a, b, !}, F = { q4 }, and o(q, i) is defined by the transition table in Fig­
ure 2.12.

Figure 2.13 presents an algorithm for recognizing a string using a state­
transition table. The algorithm is called D-RECOGNIZE for "deterministic
recognizer". A deterministic algorithm is one that has no choice points;
the algorithm always knows what to do for any input. The next section will
introduce non-deterministic automata that must make decisions about which
states to move to.

D-RECOGNIZE takes as input a tape and an automaton. It returns ac­
cept if the string it is pointing to on the tape is accepted by the automaton,
and reject otherwise. Note that since D-RECOGNIZE assumes it is already
pointing at the string to be checked, its task is ouly a subpart of the general
problem that we often use regular expressions for, finding a string in a cor­
pus. (The general problem is left as an exercise to the reader in Exercise 2.9.)

D-RECOGNIZE begins by initializing the variable index the beginning
of the tape, and current-state to the machine's initial state. D-RECOGNIZE

then enters a loop that drives the rest of the algorithm. It first checks whether
it has reached the end of its input. If so, it either accepts the input (if the
current state is an accept state) or rejects the input (if not).

If there is input left on the tape, D-RECOGN!ZE looks at the transition
table to decide which state to move to. The variable current-state indicates
which row of the table to consult, while the current symbol on the tape indi­
cates which column of the table to consult. The resulting transition-table cell
is used to update the variable current-state and index is incremented to move
forward on the tape. If the transition-table cell is empty then the machine
has nowhere to go and must reject the input.

Figure 2.14 traces the execution of this algorithm on the sheep lan­
guage FSA given the sample input string baaa!.

60

Section 2.2. Finite-State Automata

function D-RECOGNIZE(tape, machine) returns accept or reject

index+- Beginning of tape
current-state+--- Initial state of machine
loop
if End of input has been reached then
if current-state is an accept state then

return accept
else

return reject
elsif transition-table[current-state,tape[index]] is empty then

return reject
else

current-state+--- transition-table [current-state, tape [index]]
index+--- index + 1

end

Figure 2.13 An algorithm for deterministic recognition of FSAs. This al­
gorithm returns accept if the entire string it is pointing at is in the language
defined by the FSA, and reject if the stting is not in the language.

b ' • a a a

Figure 2.14 Tracing the execution of FSA #1 on some sheeptalk.

Before examining the beginning of the tape, the machine is in state qo.
Finding a b on input tape, it changes to state q1 as indicated by the contents
of transition-table[q0 ,b] in Figure 2.12 on page 35. It then finds an a and
switches to state qz, another a puts it in state q3, a third a leaves it in state q3,
where it reads the"!", and switches to state q4 • Since there is no more input,
the End of input condition at the beginning of the loop is satisfied for
the first time and the machine halts in q4. State q4 is an accepting state,
and so the machine has accepted the string baaa! as a sentence in the sheep

. language.

37

61

38

FAIL STATE

Chapter 2. Regular Expressions and Automata

The algorithm will fail whenever there is no legal transition for a given
combination of state and input. The input abc will fail to be recognized since
there is no legal transition out of state q0 on the input a, (i.e., this entry of
the transition table in Figure 2.12 on page 35 has a 0). Even if the automaton
had allowed an initial a it would have certaiuly failed on c, since c isn't even
in the sheeptalk alphabet!. We can think of these "empty" elements in the
table as if they all pointed at one "empty" state, which we might call the fail
state or sink state. In a sense then, we could view any machine with empty
transitions as if we had augmented it with a fail state, and drawn in all the
extra arcs, so we always had somewhere to go from any state on any possible
input. Just for completeness, Figure 2.15 shows the FSA from Figure 2.10
with the fail state qF filled in.

a

Figure 2.15 Adding a fail state to Figure 2.10.

Formal Languages

We can use the same graph in Figure 2.10 as an automaton for GENERATING

sheeptalk. If we do, we would say that the automaton starts at state qo, and
crosses arcs to new states, printing out the symbols that label each arc it
follows. When the automaton gets to the final state it stops. Notice that at
state 3, the automaton has to chose between printing out a ! and going to
state 4, or printing out an a and returning to state 3. Let's say for now that
we don't care how the machine makes this decision; maybe it flips a coin.
For now, we don't care which exact string of sheeptalk we generate, as long
as it's a string captured by the regular expression for sheeptalk above.

62

Section 2.2. Finite-State Automata

Key Concept #1. Formal Language: A model which can both gener­
ate and recognize all and only the strings of a formal language acts as
a definition of the formal language.

A formal language is a set of strings, each string composed of symbols
from a finite symbol-set called an alphabet (the same alphabet used above
for defining an automaton!). The alphabet for the sheep language is the set
L = {a,b, !}. Given a model m (such as a particular FSA), we can use L(m)
to mean "the formal language characterized by m". So the formal language
defined by our sheeptalk automaton min Figure 2.10 (and Figure 2.12) is the
infinite set:

L(m) = {baa!,baaa!,baaaa!,baaaaa!,baaaaaa!, ... } (2.1)

The usefulness of an automaton for defining a language is that it can
express an infinite set (such as this one above) in a closed form. Formal
languages are not the same as natural languages, which are the kind of
languages that real people speak. In fact, a formal language may bear no
resemblance at all to a real language (e.g., a formal language can be used
to model the different states of a soda machine). But we often use a formal
language to model part of a natural language, such as parts of the phonology,
morphology, or syntax. The term generative grammar is sometimes used
in linguistics to mean a granunar of a formal language; the origin of the term
is this use of an automaton to define a language by generating all possible
strings.

Another Example

In the previous examples our formal alphabet consisted of letters; but we
can also have a higher level alphabet consisting of words. In this way we
can write finite-state automata that model facts about word combinations.
For example, suppose we wanted to build an FSA that modeled the subpart
of English dealing with amounts of money. Such a formal language would
model the subset of English consisting of phrases like ten cents, three dol­
lars, one dollar thirty-five cents and so on.

We might break this down by first building just the automaton to ac­
count for the numbers from 1 to 99, since we'll need them to deal with cents.
Figure 2.16 shows this.

We could now add cents and dollars to our automaton. Figure 2.17
shows a simple version of this, where we just made two copies of the au­
tomaton in Figure 2.16 and appended the words cents and dollars.

39

FORMAL
LANGUAGE

ALPHABET

NATURAL
LANGUAGES

63

40 Chapter 2.

one six ten
two seven twenty
three eight thirty
four nme forty
five fifty

Regular Expressions and Automata

sixty
seventy
eighty
ninety

eleven sixteen
twelve seventeen
thirteen eighteen
fourteen nineteen
fifteen

one
two seven
three eight
four nine
five

Figure 2.16 An FSA for the words for English numbers 1-99.

one six
tw<> seven
three eight
fuur rune
five

ten ,;My eleven sixteen
twenty seventy tweh•e 'eventeen
thirty eighty thirteen eighteen
forty ninety fourteen nineteen
fifty tlftoen cents

one six ten sixty eleven sixteen
two seven twenty seventy twelve seveuteen
three eight thirty eighty thineen eighteen
four nine fOrty ninety fourteen nineteen
five f]fty Ilfteen

Figure 2.17 FSA for the simple dollars and cents.

We would now need to add in the grammar for different amounts of
dollars; including higher numbers like hundred, thousand. We'd also need to
make sure that the nouns like cents and dollars are singular when appropriate
(one cent, one dollar), and plural when appropriate (ten cents, two dollars).
This is left as an exercise for the reader (Exercise 2.3). We can think of the
FSAs in Figure 2.16 and Figure 2.17 as simple grammars of parts of English.
We will return to grammar-building in Part II of this book, particularly in
Chapter 9.

Non-Deterministic FSAs

Let's extend our discussion now to another class ofFSAs: non-deterministic
FSAs (or NFSAs). Consider the sheeptalk automaton in Figure 2.18, which
is much like our first automaton in Figure 2.10:

The only difference between this automaton and the previous one is
that here in Figure 2.18 the self-loop is on state 2 instead of state 3. Con­
sider using this network as an automaton for recognizing sheeptalk. When
we get to state 2, if we see an a we don't know whether to remain in state

64

Section 2.2. Finite-State Automata

a

Figure 2.18 A non-deterministic finite-state automaton for talking sheep
(NFSA #!).Compare with the deterministic automaton in Figure 2.10.

2 or go on to state 3. Automata with decision points like this are called
non-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2.10
specified a deterministic automaton, i.e., one whose behavior during recog­
nition is fully detennined by the state it is in and the symbol it is looking at.
A deterministic automaton can be referred to as a DFSA. That is not true for
the machine in Figure 2.18 (NFSA #1).

There is another common type of non-determinism, caused by arcs
that have no symbols on them (called £-transitions). The automaton in
Figure 2.19 defines the exact same language as the last one, or our first one,
but it does it with an £-transition.

b a a

Figure 2.19 Another NFSA for the sheep language (NFSA #2). It differs
from NFSA #I in Figure 2.18 in having an E-transition.

We interpret this new arc as follows: If we are in state 3, we are al­
lowed to move to state 2 without looking at the input, or advancing our input
pointer. So this introduces another kind of non-determinism -we might not
know whether to follow the £-transition or the ! arc.

Using an NFSA to Accept Strings

If we want to know whether a string is an instance of sheeptalk or not, and
if we use a non-deterministic machine to recognize it, we might follow the
wrong arc and reject it when we should have accepted it. That is, since there
is more than one choice at some point, we might take the wrong choice. This

41

NON­
DETERMINISTIC

NFSA

DFSA

£-TRANSITION

65

42

SEARCH­
STATE

Chapter 2. Regular Expressions and Auto~ata

problem of choice in non-deterministic models will come up again and again
as we build computational models, particularly for parsing.

There are three standard solutions to this problem:

o Backup: Whenever we come to a choice point, we could put a marker
to mark where we were in the input, and what state the automaton was
in. Then if it turns out that we took the wrong choice, we could back
up and try another path.

o Look-ahead: We could look ahead in the input to help us decide which
path to take.

o Parallelism: Whenever we come to a choice point, we could look at
every alternative path in parallel.

We will focus here ou the backup approach and defer discussion of the
look-ahead and parallelism approaches to later chapters.

The backup approach suggests that we shonld blithely make choices
that might lead to deadends, knowing that we can always return to unex­
plored alternative choices. There are two keys to this approach: we need
to remember all the alternatives for each choice point, and we need to store
sufficient information about each alternative so that we can return to it when
necessary. When a backup algorithm reaches a point in its processing where
no progress can be made (because it runs out of input, or has no legal tran­
sitions), it returns to a previous choice point, selects one of the unexplored
alternatives, and continues from there. Applying this notion to our non­
deterministic recognizer, we need only remember two things for each choice
point: the state, or node, of the machine that we can go to and the corre­
sponding position on the tape. We will call the combination of the node and
position the search-state of the recognition algorithm. To avoid confusion,
we will refer to the state of the automaton (;Is- opposed to the state of the
search) as a node or a machine-state. Figure 2.21 presents a recognition
algorithm based on this approach.

Before going on to describe the main part of this algorithm, we should
note two changes to the transition table that drives it. First, in order to rep­
resent nodes that have outgoing £-transitions, we add a new £-column to the
transition table. If a node has an £-transition, we list the destination node in
the £-column for that node's row. The second addition is needed to account
for multiple transitions to different nodes from the same input symbol. We
let each cell entry consist of a list of destination nodes rather than a single
node. Figure 2.20 shows the transition table for the machine in Figure 2.18
(NFSA #1). While it has no £-transitions, it does show that in machine-state

66

Section 2.2. Finite-State Automata

Input
State b a ! E

0 1 0 0 0
1 0 2 0 0
2 0 2,3 0 0
3 0 0 4 0
4: 0 0 0 0

Figure 2.20 The transition table from NFSA #1 in Figure 2.18.

q2 the input a can lead back to qz or on to q3.
Figure 2.21 shows the algorithm for using a non-deterministic FSA

to recognize an input string. The function ND-RECOGNIZE uses the variable
agenda to keep track of all tbe currently unexplored choices generated during
the course of processing. Each choice (search state) is a tuple consisting of a
node (state) of the machine aud a position on the tape. The variable current­
search-state represents the brauch choice being currently explored.

ND-RECOGNIZE begins by creating au initial search-state and placing
it on the agenda. For now we don't specify what order the search-states are
placed on the agenda. This search-state consists of the initial machine-state
of the machine aud a pointer to the beginning of the tape. The function NEXT

is then called to retrieve au item from the agenda aud assign it to the variable

current-search-state.
As with D-RECOGNIZE, the first task of the main loop is to determine

if the entire contents of the tape have been successfully recognized. This
is done via a call to ACCEPT-STATE?, which returns accept if the current
search-state contains both an accepting machine-state aud a pointer to the
end of the tape. If we're not done, the machine generates a set of possible
next steps by calling GENERATE-NEW-STATES, which creates search-states
for auy £-transitions aud auy normal input-symbol transitions from the tran­
sition table. All of these search-state tuples are then added to the current

agenda.
Finally, we attempt to get a new search-state to process from the agenda.

If the agenda is empty we've run out of options and have to reject the input.
Otherwise, an unexplored option is selected aud the loop continues.

It is important to understand why ND-RECOGNIZE returns a value of
reject only when the agenda is found to be empty. Unlike D-RECOGNIZE, it
does not return reject when it reaches the end of the tape in an non-accept
machine-state or when it finds itself unable to advance the tape from some

43

67

44 Chapter 2. Regular Expressions and Automata

machine-state. This is because, in the non-deterministic case, such road­
blocks only indicate failure down a given path, not overall failure. We can
only be sure we can reject a string when all possible choices have been ex­
amined and found lacking.

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda+--- {(Initial state of machine, beginning of tape)}
current-search-state+--- NEXT(agenda)
loop

if ACCEPT-STATE?(current-search-state) returns true then
return accept

else
agenda+--- agenda U GENERATE-NEW-STATES(current-search-state)

if agenda is empty then
return reject

else
current-search-state+--- NEXT(agenda)

end

function GENERATE-NEW-STATES(current-state) returns a set of search­
states

current-node f- the node the current search-state is in
index+--- the point on the tape the current search-state is looking at
retnrn a list of search states from transition table as follows:

(transition-table[current-node,£], index)
u
(transition-table[current-node, tape[index]], index+ I)

function ACCEPT-STATE ?(search-state) returns true or false

current-node f- the node search-state is in
index+-the point on the tape search-state is looking at
if index is at the end of the tape and current-node is an accept state of machine

then
return true

else
return false

Figure 2.21 An algorithm for NFSA recognition. The word node means
a state of the FSA, while state or search-state means "the state of the search
process", i.e., a combination of node and tape-position.

68

Section 2.2. Finite-State Automata

1 'l

2 'l

3

Figure 2.22 Tracing the execution of NFSA #! (Figure 2.18) on some
sheep talk.

Figure 2.22 illustrates the progress of ND-RECOGNIZE as it attempts to
handle the input baaa ! . Each strip illustrates the state of the algorithm at
a given point in its processing. The current-search-state variable is captured
by the solid bubbles representing the machine-state along with the arrow rep­
resenting progress on the tape. Each strip lower down in the figure represents
progress from one current-search-state to the next.

Little of interest happens until the algorithm finds itself in state q2

while looking at the second a on the tape. An examination of the entry
for transition-table[q2 ,a] returns both q2 and q3 . Search states are created
for each of these choices and placed on the agenda. Unfortunately, our al­
gorithm chooses to move to state q3 , a move that results in neither an accept
state nor any new states since the entry for transition-table[q3 , a] is empty.
At this point, the algorithm simply asks the agenda for a new state to pursue.
Since the choice of returning to q2 from q2 is the only unexamined choice on
the agenda it is returned with the tape pointer advanced to the next a. Some-

45

69

46

STATE ..SPACE
SEARCH

Chapter 2. Regular Expressions and Automata

what diabolically, ND-RECOGNIZE finds itself faced with the same choice.
The entry for transition-table[q2 ,a] still indicates that looping back to qz or
advancing to q3 are valid choices. As before, states representing both are
placed on the agenda. These search states are not the same as the previous
ones since their tape index values have advanced. This time the agenda pro­
vides the move to q3 as the next move. The move to q4, and success, is then
uniquely determined by the tape and the transition-table.

Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular
language by providing a way to systematically explore all the possible paths
through a machine. If this exploration yields a path ending in an accept
state, it accepts the stting, otherwise it rejects it. This systematic exploration
is made possible by the agenda mechanism, which on each iteration selects a
partial path to explore and keeps track of any remaining, as yet unexplored,
partial paths.

Algorithms such as ND-RECOGNIZE, which operate by systematically
searching for solutions, are known as state-space search algorithms. In
such algorithms, the problem definition creates a space of possible solu­
tions; the goal is to explore this space, returning an answer when one is
found or rejecting the input when the space has been exhaustively explored.
In ND-RECOGNIZE, search states consist of pairings of machine-states with
positions on the input tape. The state-space consists of all the pairings of

(machine-state and tape positions that are possible given the machine in ques­
tion. The goal of the search is to navigate through this space from one state to
another looking for a pairing of an accept state with an end of tape position.

The key to the effectiveness of such programs is often the order in
which the states in the space are considered. A poor ordering of states may
lead to the examination of a large number of unfruitful states before a suc­
cessful solution is discovered. Unfortunately, it is typically not possible to
tell a good choice from a bad one, and often the best we can do is to insure
that each possible solution is eventually considered.

Careful readers may have noticed that the ordering of states in ND­

RECOGNIZE has been left unspecified. We know only that unexplored states
are added to the agenda as they are created and that the (undefined) func­
tion NEXT returns an unexplored state from the agenda when asked. How
should the function NEXT be defined? Consider an ordering strategy where
the states that are considered next are the most recently created ones. Such

70

Section 2.2. Finite-State Automata

a policy can be implemented by placing newly created states at the front
of the agenda and having NEXT return the state at the front of the agenda
when called. Thus the agenda is implemented by a stack. This is commonly

47

referred to as a depth-first search or Last In First Out (LIFO) strategy. DEPTH·FIRST

Such a strategy dives into the search space following newly developed
leads as they are generated. It will only return to consider earlier options
when progress along a current lead has been blocked. The trace of the ex­
ecution of ND-RECOGNIZE on the string baaa! as shown in Figure 2.22
illustrates a depth-first search. The algorithm hits the first choice point after
seeing ba when it has to decide whether to stay in q2 or advance to state
q3• At this point, it chooses one alternative and follows it until it is sure it's
wrong. The algorithm then backs up and tries another older alternative.

Depth first strategies have one major pitfall: under certain circum­
stances they can enter an infinite loop. This is possible either if the search
space happens to be set up in such a way that a search-state can be acciden­
tally re-visited, or if there are an infinite number of search states. We will
revisit this question when we turn to more complicated search problems in
parsing in Chapter I 0.

The second way to order the states in the search space is to consider
states in the order in which they are created. Such a policy can be imple-
mented by placing newly created states at the back of the agenda and still
have NEXT return the ~tate at the front of the agenda. Thus the agenda is
implemented via a queue. This is commonly referred to as a breadth-first BREADTH·FIRsr

search or First In First Out (FIFO) strategy. Consider a different trace
of the execution of ND-RECOGNIZE on the string baaa! as shown in Fig-
ure 2.23. Again, the algorithm hits its first choice point after seeing ba when
it had to decide whether to stay in q2 or advance to state q3. But now rather
than picking one choice and following it up, we imagine examining all pos-
sible choices, expanding one ply of the search tree at a time.

Like depth-first search, breadth-first search has its pitfalls. As with
depth-first if the state-space is infinite, the search may never terminate. More
importantly, due to growth in the size of the agenda if the state-space is
even moderately large, the search may require an impractically large amount
of memory. For small problems, either depth-first or breadth-first search
strategies may be adequate, although depth-first is normally preferred for its
more efficient use of memory. For larger problems, more complex search
techniques such as dynamic programming or A* must be used, as we will
see in Chapters 7 and 10.

71

48 Chapter 2. Regular Expressions and Automata

I I l 5

Figure 2.23 A breadth-first trace of FSA #1 on some sheeptalk.

Relating Deterministic and Non-Deterministic Automata

It may seem that allowing NFSAs to have non-deterministic features like £­

transitions would make them more powerful than DFSAs. In fact this is not
the case; for any NFSA. there is an exactly equivalent DFSA. In fact there is
a simple algorithm for converting an NFSA to an equivalent DFSA, although
the number of states in this equivalent deterministic automaton may be much
larger. See Lewis and Papadimitriou (1981) or Hopcroft and Ullman (1979)
for the proof of the correspondence. The basic intuition of the proof is worth
mentioning, however, and builds on the way NFSAs parse their input. Recall
that the difference between NFSAs and DFSAs is that in an NFSA a state q1

may have more than one possible next state given an input i (for example qa
and qb). The algorithm in Figure 2.21 dealt with this problem by choosing
either qa or qb and then backtracking if the choice turned out to be wrong.
We mentioned that a parallel version of the algorithm would follow both
paths (toward qa and qb) simultaneously.

The algorithm for converting a NFSA to a DFSA is like this parallel
algorithm; we build an automaton that has a deterministic path for every path
our parallel recognizer might have followed in the search space. We imagine
following both paths simultaneously, and group together into an equivalence
class all the states we reach on the same input symbol (i.e., qa and qb)· We
now give a new state label to this new equivalence class state (for example

72

Section 2.3. Regular Languages and FSAs

qabl· We continue doing this for every possible input for every possible group
of states. The resulting DFSA can have as many states as there are distinct
sets of states in the original NFSA. The number of different subsets of a set
with N elements is zN. hence the new DFSA can have as many as zN states.

2.3 REGULAR LANGUAGES AND FSAs

As we suggested above, the class of languages that are definable by regular
expressions is exactly the same as the class of languages that are character­
izable by finite-state automata (whether deterministic or non-deterministic).
Because of this, we call these languages the regular languages. In order to
give a formal definition of the class of regular languages, we need to refer
back to two earlier concepts: the alphabet L, which is the set of all symbols in
the language, and the empty string £, which is conventionally not included in
L. In addition, we make reference to the empty set Q) (which is distinct from
£). The class of regular languages (or regular sets) over Lis then formally
defined as follows: 1

1. Q) is a regular language

2. Va E L U £, {a} is a regular language

3. If L1 and Lz are regular languages, then so are:

(a) L1 ·~={xylxEL1,YE~}, theconcatenationofL1andLz
(b) L1 U ~' the union or disjunction of L1 andLz
(c) Li, the Kleeue closure of L1

All and only the sets of languages which meet the above properties
are regular languages. Since the regular languages are the set of languages
characterizable by regular expressions, it must be the case that all the regu­
lar expression operators introduced in this chapter (except memory) can be
implemented by the three operations which define regular languages: con­
catenation, disjunction/union (also called "I"), and Kleene closure. For ex­
ample all the counters (* ,+, {n, m}) are just a special case of repetition plus
Kleene *. All the anchors can be thought of as individual special symbols.
The square braces [] are a kind of disjunction (i.e., [ab] means "a orb", or
the disjunction of a and b). Thus it is true that any regular expression can be
turned into a (perhaps larger) expression which only makes use of the three
primitive operations.

1 Following van Santen and Sproat (1998), Kaplan and Kay (1994), and Lewis and Pa­
padimitriou (1981).

49

REGULAR
LANGUAGES

73

50 Chapter 2. Regulat Expressions and Automata

Regulat languages ate also closed under the following operations (Z'
means the infinite set of all possible strings formed from the alphabet Z):

o intersection: if L1 and Lz are regulat languages, then so is L1 n Lz, the
language consisting of the set of strings that ate in both L1 and Lz.

o difference: if L1 and L2 ate regular languages, then so is L1 - Lz, the
language consisting of the set of strings that ate in L1 but not Lz.

o complementation: If Lr is a regulat language, then so is Z'- LJ, the
set of all possible strings that aten't in L 1.

o reversal: If L1 is a regulat language, then so is Lf, the language con­
sisting of the set of reversals of all the strings in LJ.

The proof that regulat expressions ate equivalent to finite-state au­
tomata can be found in Hopcroft and Ullman (1979), and has two patts:
showing that an automaton can be built for each regulat language, and cou­
versely that a regulat language can be built for each automaton. We won't
give the proof, but we give the intuition by showing how to do the first patt:
take any regulat expression and build an automaton from it. The intuition is
inductive: for the base case we build an automaton to correspond to regulat
expressions of a single symbol (e.g., the expression a) by creating an initial
state and an accepting final state, with an ate between them labeled a. For
the inductive step, we show that each of the primitive operations of a regulat
expression (concatenation, union, closure) can be imitated by an automaton:

o concatenation: We just string two FSAs next to each other by con­
necting all the final states of FSA1 to the initial state of FSA2 by an
£-transition.

Figure 2.24 The concatenation of two FSAs.

o closure: We connect all the final states of the FSA back to the initial
states by £-transitions (this implements the repetition patt of the Kleene
*), and then put direct links between the initial and final states by E-

74

Section 2.4. Summary

transitions (this implements the possibly of having zero occurrences).
We'd leave out this last part to implement Kleene-plus instead.

Figure 2.25 The closure (Kleene *) of an FSA.

• union: We add a single new initial state q~. and add new transitions
from it to all the former initial states of the two machines to be joined.

FSA 2

Figure 2.26 The union Cll of two FSAs.

2.4 SUMMARY

This chapter introduced the most important fundamental concept in language
processing, the finite automaton, and the practical tool based on automaton,
the regular expression. Here's a summary of the main points we covered
about these ideas:

• The regular expression language is a powerful tool for pattern-match­
ing.

• Basic operations in regular expressions include concatenation of sym­
bols, disjunction of symbols ([] , I , and .), counters (*, +, and

51

75

52 Chapter 2. Regular Expressions and Automata

{ n, m)), anchors (', $) and precedence operators ((,)).

• Any regular expression can be realized as a finite state automaton
(FSA).

• Memory (\ 1 together with ()) is an advanced operation that is often
considered part of regular expressions, but which cannot be realized as
a finite automaton.

• An automaton implicitly defines a formal language as the set of strings
the automaton accepts.

• An automaton can use any set of symbols for its vocabulary, including
letters, words, or even graphic images.

• The behavior of a deterministic automaton (DFSA) is fully deter­
mined by the state it is in.

• A non-deterministic automaton (NFSA) sometimes has to make a
choice between multiple paths to take given the same current state and
next input.

• Any NFSA can be converted to a DFSA.

• The order in which a NFSA chooses the next state to explore on the
agenda defines its search strategy. The depth-first search or LIFO
strategy corresponds to the agenda-as-stack; the breadth-first search
or FIFO strategy corresponds to the agenda-as-queue.

• Any regular expression can be automatically compiled into a NFSA
and hence into a FSA.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

MCCULLOCH­
PITTS
NEURON

Finite automata arose in the 1950s out of Turing's (1936) model of algo­
rithmic computation, considered by many to be the foundation of modern
computer science. The Turing machine was an abstract machine with a finite
control and an input/output tape. In one move, the Turing machine could
read a symbol on the tape, write a different symbol on the tape, change state,
and move left or right. (Thus the Turing machine differs from a finite-state
automaton mainly in its ability to change the symbols on its tape).

Inspired by Turing's work, McCulloch and Pitts built an automata-like
model of the neuron (see von Neumann, 1963, p. 319). Their model, which
is now usually called the McCulloch-Pitts neuron (McCulloch and Pitts,
1943), was a simplified model of the neuron as a kind of "computing ele-

76

Section 2.4. Summary

ment"' that could be described in terms of propositional logic. The model
was a binary device, at any point either active or not, which took excitatory
and inhibitatory input from other neurons and fired if its activation passed
some fixed threshold. Based on the McCulloch-Pitts neuron, Kleene (1951)
and (1956) defined the finite automaton and regular expressions, and proved
their equivalence. Non-deterministic automata were introduced by Rabin
and Scott (1959), who also proved them equivalent to deterministic ones.

Ken Thompson was one of the first to build regular expressions compil­
ers into editors for text searching (Thompson, 1968). His editor ed included
a command "g/regular expression/p", or Global Regular Expression Print,
which later became the UNIX grep utility.

There are many general-purpose introductions to the mathematics un­
derlying automata theory; such as Hopcroft and Ullman (1979) and Lewis
and Papadimitriou (1981). These cover the mathematical foundations the
simple automata of this chapter, as well as the finite-state transducers of
Chapter 3, the context-free grammars of Chapter 9, and the Chomsky hier­
archy of Chapter 13. Friedl (1997) is a very useful comprehensive guide to
the advanced use of regular expressions.

The metaphor of problem-solving as search is basic to Artificial Intel­
ligence (AI); more details on search can be found in any AI textbook such as
Russell and Norvig (1995).

EXERCISES

2.1 Write regular expressions for the following languages: You may use
either Perl notation or the minimal "algebraic" notation of Section 2.3, but
make sure to say which one you are using. By "word", we mean an alpha­
betic string separated from other words by white space, any relevant punctu­
ation, line breaks, and so forth.

a. the set of all alphabetic strings.

b. the set of all lowercase alphabetic strings ending in a b.

c. the set of all strings with two consecutive repeated words (e.g., "Hum­
bert Humbert" and '1he the" but not "the bug" or "the big bug").

53

77

54 Chapter 2. Regular Expressions and Automata

d. the set of all strings from the alphabet a, b such that each a is immedi­
ately preceded and immediately followed by a b.

e. all strings which start at the beginning of the line with an integer (i.e.,
1,2,3, ... ,10, ... ,10000, ...) and which end at the end of the line with a
word.

f. all strings which have both the word grotto and the word raven in them.
(but not, for example, words like grottos that merely contain the word
grotto).

g. write a pattern which places the first word of an English sentence in a
register. Deal with punctuation.

2.2 Implement an ELIZA-like program, using substitutions such as those
described on page 32. You may choose a different domain than a Rogerian
psychologist, if you wish, although keep in mind that you would need a
domain in which your program can legitimately do a lot of simple repeating­
back.

2.3 Complete the FSA for English money expressions in Figure 2.16 as
suggested in the text following the figure. You should handle amounts up
to $100,000, and make sure that "cent" and "dollar" have the proper plural
endings when appropriate.

2.4 Design an FSA that recognizes simple date expressions like March 15,
the 22nd of November, Christtnas. You should try to include all such "abso­
lute" dates, (e.g. not "deictic" ones relative to the current day like the day
before yesterday). Each edge of the graph should have a word or a set of
words on it. You should use some sort of shorthand for classes of words to
avoid drawing too many arcs (e.g., furniture -+ desk, chair, table).

2.5 Now extend your date FSA to handle deictic expressions like yesterday,
tomorrow, a week from tomorrow, the day before yesterday, Sunday, next
Monday, three weeks from Saturday.

2.6 Write an FSA for time-of-day expressions like eleven o'clock, twelve­
thirty, midnight, or a quarter to ten and others.

2.7 (Due to Pauline Welby; this problem probably requires the ability to
knit.) Write a regular expression (or draw an FSA) which matches all knit­
ting patterns for scarves with the following specification: 32 stitches wide,
Kl PI ribbing on both ends, stockinette stitch body, exactly two raised stripes.
All knitting patterns must include a east-on row (to put the correct number of

78

Section 2.4. Summary

stitches on the needle) and a bind-off row (to end the pattern and prevent un­
raveling). Here"s a sample pattern for one possible scarf matching the above
description:2

l. Cast on 32 stitches.
2. Kl PI across row (i.e. do (Kl PI) 16 times).
3. Repeat instruction 2 seven more times.
4. K32, P32.
5. Repeat instruction 4 an additiona113 times.
6. P32, P32.
7. K32, P32.
8. Repeat instruction 7 an additional251 times.
9. P32, P32.

10. K32, P32.
11. Repeat instruction 10 an additiona113 times.
12. Kl PI across row.
13. Repeat instruction 12 an additional 7 times.
14. Bind off 32 stitches.

cast on; puts stitches on needle
Kl PI ribbing
adds length
stockinette stitch
adds length
raised stripe stitch
stockinette stitch
adds length
raised stripe stitch
stockinette stitch
adds length
Kl PI ribbing
adds length
binds off row: ends pattern

2.8 Write a regular expression for the language accepted by the NFSA in
Figure 2.27.

a b

Figure 2.27 A mystery language

2.9 Currently the function D-RECOGNIZE in Figure 2.13 only solves a sub­
part of the important problem of finding a string in some text. Extend the
algorithm to solve the following two deficiencies: (1) D-RECOGNIZE cur­
rently assumes that it is already pointing at the string to be checked, and (2)
2 Knit and purl are two different types of stitches. The notation Kn means don knit stitches.
Similarly for purl stitches. Ribbing has a striped texture-most sweaters have ribbing at the
sleeves, bottom, and neck. Stockinette stitch is a series of knit and purl rows that produces a
plain pattern~ socks or stockings are knit with this basic pattern, hence the name.

55

79

56 Chapter 2. Regular Expressions and Automata

D-RECOGNIZE fails if the string it is pointing includes as a proper substring
a legal string for the FSA. That is, D-RECOGNIZE fails if there is an extra
character at the end of the string.

2.10 Give an algorithm for negating a deterministic FSA. The negation
of an FSA accepts exactly the set of strings that the original FSA rejects
(over the same alphabet), and rejects all the strings that the original FSA
accepts.

2.11 Why doesn't your previous algorithm work with NFSAs? Now extend
your algorithm to negate an NFSA.

80

3
MORPHOLOGY AND
FINITE-STATE
TRANSDUCERS

A writer is someone who writes, and a stinger is something that
stings. But fingers don'tjing, grocers don't grace, haberdash­
ers don't haberdash, hammers don't ham, and humdingers don't
humding.

Richard Lederer, Crazy English

Chapter 2 introduced the regular expression, showing for example how
a single search string could help a web search engine find both woodchuck
and woodchucks. Hunting for singular or plural woodchucks was easy; the
plural just tacks an s on to the end. But suppose we were looking for another
fascinating woodland creatures; let's say a fox, and a fish, that surly peccary
and perhaps a Canadian wild goose. Hunting for the plurals of these animals
takes more than just tacking on an s. The plural of fox is foxes; of peccary,
peccaries; and of goose, geese. To confuse matters further, fish don't usually
change their form when they are plural (as Dr. Seuss points out: one fish two
fish, redfish, bluefish).

It takes two kinds of knowledge to correctly search for singulars and
plurals of these forms. Spelling rules tell us that English words ending in -y
are pluralized by changing the -y to -i- and adding an -es. Morphological
rules tell us that fish has a null plural, and that the plural of goose is formed
by changing the vowel.

The problem of recognizing that foxes breaks down into the two mor­
phemes fox and -es is called morphological parsing.

Key Concept #2. Parsing means taking an input and producing some PARSING

sort of structure for it.

We will use the term parsing very broadly throughout this book, including
many kinds of structures that might be produced; morphological, syntactic,

81

58 Chapter 3. Morphology and Finite-State Transducers

semantic, pragmatic; in the form of a string, or a tree, or a network. In
the information retrieval domain, the similar (but not identical) problem of

sTEMMING mapping from foxes to fox is called stemming. Morphological parsing or
stemming applies to many affixes other than plurals; for example We might
need to take any English verb form ending in -ing (going, talking, congrat­
ulating) and parse it into its verbal stem plus the -ing morpheme. So given

suRFACE the surface or input form going, we might want to produce the parsed form
VERB-go + GERUND- ing. This chapter will survey the kinds of mor­
phological knowledge that needs to be represented in different languages and
introduce the main component of an important algorithm for morphological
parsing: the finite-state transducer.

Why don't we just list all the plural forms of English nouns, and all the
-ing forms of English verbs in the dictionary? The major reason is that -ing

PRODUCTIVE is a productive suffix; by this we mean that it applies to every verb. Simi­
larly -s applies to almost every noun. So the idea of listing every noun and
verb can be quite inefficient. Furthermore, productive suffixes even apply to
new words (so the new word fax automatically can be used in the -ing form:
faxing). Since new words (particularly acronyms and proper nouns) are cre­
ated every day, the class of nouns in English increases constantly, and we
need to be able to add the plural morpheme -s to each of these. Additionally,
the plural form of these new nouns depends on the spelling/pronunciation
of the singular form; for example if the noun ends in -z then the plural
form is -es rather than -s. We'll need to encode these rules somewhere. Fi­
nally, we certainly cannot list all the morphological variants of every word in
morphologically complex languages like Turkish, which has words like the
following:

(3 .1) uygarla§tiramachklammzdannn§ simzcasma

uygar +Ia~ +tzr +ama +dzk +lar +zmzz
civilized +BEC +CAUS +NEGABLE +PPART +PL +PlPL
+dan + mz§ + sznzz + caszna
+ABL +PAST +2PL +Aslf

"(behaving) as if you are among those whom we could not
civilize/cause to become civilized"

The vartous pieces of this word (the morphemes) have these meanings:

+BEC

+CAUS
+NEGABLE

is "become" in English
is the causative voice marker on a verb
is "not able" in English

82

Section 3.1. Survey of (Mostly) English Morphology

+ PPart marks a past participle form
+PlPL is 1st person pl possessive agreement
+2PL is 2nd person pi
+ABL is the ablative (from/among) case marker
+ Aslf is a derivational marker that forms an adverb from a finite verb form

In such languages we clearly need to parse the input since it is impossi­
ble to store every possible word. Kemal Oflazer (personal communication),
who carne up with this example, notes that verbs in Turkish have 40,000
forms not counting derivational suffixes; adding derivational suffixes allows
a theoretically infinite number of words. This is true because, for exam­
ple, any verb can be "causativized" like the example above, and multiple
instances of causativization can be embedded in a single word (You cause X
to cause Y to ... do W). Not all Turkish words look like this; Oflazer finds
that the average Turkish word has about three morphemes (a root plus two
suffixes). Even so, the fact that such words are possible means that it will be
difficult to store all possible Turkish words in advance.

Morphological parsing is necessary for more than just information re­
trieval. We will need it in machine translation to realize that the French
words va and aZZer should both translate to forms of the English verb go.
We will also need it in spell checking; as we will see, it is morphological
knowledge that will tell us that misclam and antiundoggingly are not words.

The next sections will summarize morphological facts about English
and then introduce the finite-state transducer.

3.1 SURVEY OF (MOSTLY) ENGLISH MORPHOLOGY

Morphology is the stndy of the way words are built up from smaller meaning-

59

bearing units, morphemes. A morpheme is often defined as the minimal MORPHEMEs

meaning-bearing unit in a language. So for example the word fox consists of
a single morpheme (the morpheme fox) while the word cats consists of two:
the morpheme cat and the morpheme -s.

As this example suggests, it is often useful to distinguish two broad
classes of morphemes: stems and affixes. The exact details of the distinc- sTEMs

tion vary from language to language, but intuitively, the stern is the "main" AFFIXEs

morpheme of the word, supplying the main meaning, while the affixes add
"additional" meanings of various kinds.

Affixes are further divided into prefixes, suffixes, infixes, and circum­
fixes. Prefixes precede the stern, suffixes follow the stern, circumfixes do

83

60 Chapter 3. Morphology and Finite-State Transducers

both, and infixes are inserted inside the stern. For example, the word eats is
composed of a stern eat and the suffix -s. The word unbuckle is composed of
a stern buckle and the prefix un-. English doesn't have any good examples
of circurnfixes, but many other languages do. In German, for example, the
past participle of some verbs formed by adding ge- to the beginning of the
stern and -t to the end; so the past participle of the verb sagen (to say) is
gesagt (said). Infixes, in which a morpheme is inserted in the middle of a
word, occur very commonly for example in the Philipine language Tagalog.
For example the affix um, which marks the agent of an action, is infixed to
the Tagalog stem hingi "borrow" to produce humingi. There is one infix that
occurs in some dialects of English in which taboo morpheme like "f**king"
or "bl**dy" or others like it are inserted in the middle of other words ("Man­
f**king-hattan", "abso-bl**dy-lutely"1) (McCawley, 1978).

Prefixes and suffixes are often called concatenative morphology since
a word is composed of a number of morphemes concatenated together. A
number of languages have extensive non-concatenative morphology, in
which morphemes are combined in more complex ways. The Tagalog in­
fixation example above is one example of non-concatenative morphology,
since two morphemes (hingi and um) are intermingled. Another kind of
non-concatenative morphology is called templatic morphology or root­
and-pattern morphology. This is very common in Arabic, Hebrew, and
other Semitic languages. In Hebrew, for example, a verb is constructed us­
ing two components: a root, consisting usually of three consonants (CCC)
and carrying the basic meaning, and a template, which gives the ordering of
consonants and vowels and specifies more semantic information about the
resulting verb, such as the semantic voice (e.g., active, passive, middle). For
example the Hebrew tri-consonantal root lmd, meaning 'learn' or 'study',
can be combined with the active voice CaCaC template to produce the word
lamad, 'he studied', or the intensive CiCeC template to produce the word
limed, 'he taught', or the intensive passive template CuCaC to produce the
word lumad, 'he was taught'.

A word can have more than one affix. For example, the word rewrites
has the prefix re-, the stern write, and the suffix -s. The word unbelievably
has a stern (believe) plus three affixes (un-, -able, and -ly). While English
doesn't tend to stack more than four or five affixes, languages like Turk­
ish can have words with nine or ten affixes, as we saw above. Languages

1 Alan Jay Lerner, the lyricist of My Fair Lady, bowdlerized the latter to abso-bloomin'lutely
in the lyric to "Wouldn't It Be Loverly?" (Lerner, 1978, p. 60).

84

Section 3.1. Survey of (Mostly) English Morphology

that tend to string affixes together like Turkish does are called agglutinative
languages.

There are two broad (and partially overlapping) classes of ways to form

61

words from morphemes: inflection and derivation. Inflection is the combi- INFLECTION

nation of a word stem with a grammatical morpheme, usually resulting in a DERIVATION

word of the same class as the original stem, and usually filling some syntac-
tic function like agreement. For example, English has the inflectional mor-
pheme -s for marking the plural on nouns, and the inflectional morpheme
-ed for marking the past tense on verbs. Derivation is the combination of a
word stem with a grammatical morpheme, usually resulting in a word of a
different class, often with a meaning hard to predict exactly. For example the
verb computerize can take the derivational suffix -ation to produce the noun
computerization.

Inflectional Morphology

English has a relatively simple inflectional system; only nouns, verbs, and
sometimes adjectives can be inflected, and the number of possible inflec­
tional affixes is quite small.

English nouns have only two kinds of inflection: an affix that marks
plural and an affix that marks possessive. For example, many (but not all) PLURAL

English nouns can either appear in the bare stem or singular form, or take a SINGULAR

plural suffix. Here are examples of the regular plural suffix -s, the alternative
spelling -es, and irregular plurals:

I Regular Nouns II Irregular Nouns I
Singular cat thrush mouse ox
Plural cats thrushes mice oxen

While the regular plural is spelled -s after most nouns, it is spelled -es
after words ending in-s (ibis/ibises) , -z, (waltz/waltzes) -sh, (thrush/thrushes)
-ch, (finch/finches) and sometimes -x (box/boxes). Nouns ending in -y pre­
ceded by a consonant change the -y to -i (butterfly/butterflies).

The possessive suffix is realized by apostrophe + -s for regular singular
nouns (llama's) and plural nouns not endfug in -s (children's) and often by a
lone apostrophe after regular plural nouns (llamas') and some names ending
in-s or -z (Euripides' comedies).

English verbal inflection is more complicated than nominal inflection.
First, English has three kinds of verbs; main verbs, (eat, sleep, impeach),
modal verbs (can, will, should), and primary verbs (be, have, do) (using

85

62

REGULAR

IRREGULAR
VERBS

PRETERITE

Chapter 3. Morphology and Finite-State Transducers

the terms of Quirk et al., 1985). In this chapter we will mostly be concerned
with the main and primary verbs, because it is these that have inflectional
endings. Of these verbs a large class are regular, that is to say all verbs of
this class have the same endings marking the same functions. These regular
verbs (e.g. walk, or inspect), have four morphological forms, as follow:

Morphological Form Classes Regularly Inflected Verbs
stern walk merge try map
-s form walks merges tries maps
-ing participle walking rnergmg trying mapping
Past form or -ed participle walked merged tried mapped

These verbs are called regular because just by knowing the stern we
can predict the other forms, by adding one of three predictable endings, and
making some regular spelling changes (and as we will see in Chapter 4, reg­
ular pronunciation changes). These regular verbs and forms are significant in
the morphology of English first because they cover a majority of the verbs,
and second because the regular class is productive. As discussed earlier, a
productive class is one that automatically includes any new words that enter
the language. For example the recently-created verb fax (My mom faxed me
the note from cousin Everett), takes the regular endings -ed, -ing, -es. (Note
that the -s form is spelled faxes rather than fax~; we will discuss spelling
rules below).

The irregular verbs are those that have some more or less idiosyn­
cratic forms of inflection. Irregular verbs in English often have five different
forms, but can have as many as eight (e.g., the verb be) or as few as three (e.g.
cut or hit). While constituting a much smaller class of verbs (Quirk et al.
(1985) estimate there are only about 250 irregular verbs, not counting auxil­
iaries), this class includes most of the very frequent verbs of the language2

The table below shows some sample irregular forms. Note that an irregular
verb can inflect in the past form (also called the preterite) by changing its
vowel (eat/ate), or its vowel and some consonants (catch/caught), or with no
ending at all (cut/cut).

2 In general, the more frequent a word form, the more likely it is to have idiosyncratic
properties; this is due to a fact about language change; very frequent words preserve their
fonn even if other words around them are changing so as to become more regular.

86

Section 3.1. Survey of (Mostly) English Morphology

Morphological Form Classes Irregularly Inflected Verbs
stem eat catch cut
-s form eats catches cuts
-ing participle eating catching cutting
Past form ate caught cut
-ed participle eaten caught cut

The way these forms are used in a sentence will be discussed in Chap­
ters 8-12 but is worth a brief mention here. The -s form is used in the "habit­
ual present" form to distinguish the third-person singular ending (She jogs
every Tuesday) from the other choices of person and number (!!you/we/they
jog every Tuesday). The stem form is used in the infinitive form, and also
after certain other verbs (I'd rather walk home, I want to walk home). The
-ing participle is used when the verb is treated as a noun; this particular
kind of nominal use of a verb is called a gerund use: Fishing is fine if you GERUND

live near water. The -ed participle is used in the perfect construction (He's PERFECT

eaten lunch already) or the passive construction (The verdict was overturned
yesterday.).

In addition to noting which suffixes can be attached to which stems,
we need to capture the fact that a number of regular spelling changes occur
at these morpheme boundaries. For example, a single consonant letter is
doubled before adding the -ing and -ed suffixes (beg/begging/begged). If the
final letter is "c", the doubling is spelled "ck" (picnic/picnicking/picnicked).
If the base ends in a silent -e, it is deleted before adding -ing and -ed (merge!­
merging/merged). Just as for nouns, the -s ending is spelled -es after verb
stems ending in -s (toss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes) -ch,
(catch/catches) and sometimes -x (tax/taxes). Also like nouns, verbs ending
in -y preceded by a consonant change the-y to -i (try/tries).

The English verbal system is much simpler than for example the Eu­
ropean Spanish system, which has as many as fifty distinct verb forms for
each regular verb. Figure 3.1 shows just a few of the examples for the verb
amar, 'to love'. Other languages can have even more forms than this Spanish
example.

Derivational Morphology

While English inflection is relatively simple compared to other languages,
derivation in English is quite complex. Recall that derivation is the combi-

63

87

64

NOMINAUZATlON

Chapter 3. Morphology and Finite-State Transducers

~~~esent lmper. Imperfect Future Preterite Present Conditional Imperfect Future 
dicative Indicative Subjnct. Subjnct. Subjnct. 

amo amaba amare ame arne arnaria amara amare 
amas ama amabas amanis amaste ames amarfas amaras amares 

ames 
ama amaba amara am6 arne amaria amara armireme 
amamos am:ibamos amaremos amamos amemos amariamos amaramos amiremos 
amais amad arnabais amar6is amasteis am6is amariais arnarais amareis 

am<iis 
aman amaban amanin arnaron amen amarfan amaran amaren 

Figure3.1 To love in Spanish. 

nation of a word stern with a grammatical morpheme, usually resulting in a 
word of a different class, often with a meaning hard to predict exactly. 

A very common kind of derivation in English is the formation of new 
nouns, often from verbs or adjectives. This process is called nominalization. 
For example, the suffix -ation produces nouns from verbs ending often in the 
suffix -ize (computerize -+ computerization). Here are examples of some 
particularly productive English nomiualizing suffixes. 

I Suffix II Base Verb/Adjective !Derived Noun 

-ation computerize (V) computerization 
-ee appoint (V) appointee 
-er kill (V) killer 
-ness fuzzy (A) fuzziness 

Adjectives can also be derived from nouns and verbs. Here are exam­
ples of a few suffixes deriving adjectives from nouns or verbs. 

I Suffix II Base Noun/Verb I Derived Adjective I 
-al computation (N) computational 
-able embrace (V) embraceable 
-less clue (N) clueless 

Derivation in English is more complex than inflection for a number of 
reasons. One is that it is generally less productive; even a norninalizing suf­
fix like -ation, which can be added to almost any verb ending in -ize, cannot 
be added to absolutely every verb. Thus we can't say *eatation or *spella­
tion (we use an asterisk (*) to mark "non-examples" of English). Another 
is that there are subtle and complex meaning differences among norninaliz-

88



Section 3.2. Finite-State Morphological Parsing 

ing suffixes. For example sincerity has a subtle difference in meaning from 
sincereness. 

3.2 FINITE-STATE MORPHOLOGICAL PARSING 

Let's now proceed to the problem of parsing English morphology. Consider 
a simple example: parsing just the productive nominal plural (-s) and the 
verbal progressive (-ing). Our goal will be to take input forms like those in 
the first column below and produce output forms like those in the second 
column. 

Input Morphological Parsed Output 
cats cat +N +PL 

cat cat +N +SG 

cities city +N +PL 

geese goose +N +PL 

goose (goose +N +SG) or (goose +V) 

gooses goose +V +3SG 

merging merge +V +PRES-PART 

caught (catch +V +PAST-PART) or (catch +V +PAST) 

65 

The second column contains the stem of each word as well as assorted 
morphological features. These features specify additional information about FEATUREs 

the stem. For example the feature +N means that the word is a noun; +SG 

means it is singular. + PL that it is plural. We will discuss features in Chap-
ter 11; for now. consider + SG to be a primitive unit that means "singular''. 
Note that some of the input forms (like caught or goose) will be ambiguous 
between different morphological parses. 

In order to build a morphological parser, we'll need at least the 
following: 

1. lexicon: the list of stems and affixes, together with basic information LEXICON 

about them (whether a stem is a Noun stem or a Verb stem, etc.). 

2. morphotactics: the model of morpheme ordering that explains which MDRPHDTACTics 

classes of morphemes can follow other classes of morphemes inside a 
word. For example, the rule that the English plural morpheme follows 
the noun rather than preceding it. 

3. orthographic ru1es: these spelling rules are used to model the changes 
that occur in a word, usually when two morphemes combine (e.g., the 

89



66 Chapter 3. Morphology and Finite-State Transducers 

y -+ ie spelling rule discussed above that changes city + -s to cities 
rather than citys). 

The next part of this section will discuss how to represent a simple ver­
sion of the lexicon just for the sub-problem of morphological recognition, 
including how to use FSAs to model morphotactic knowledge. We will then 
introduce the finite-state transducer (FST) as a way of modeling morpholog­
ical features in the lexicon. and addressing morphological parsing. Finally, 
we show how to use FSTs to model orthographic rules. 

The Lexicon and Morphotactics 

A lexicon is a repository for words. The simplest possible lexicon would 
consist of an explicit list of every word of the language (every word, i.e., 
including abbreviations ("AAA:") and proper names ("Jane"' or "Beijing") as 
follows: 

a 
AAA 
AA 
Aachen 
aardvark 
aardwolf 
aba 
abaca 
aback 

Since it will often be inconvenient or impossible, for the various rea­
sons we discussed above, to list every word in the language, computational 
lexicons are usually structured with a list of each of the stems and affixes of 
the language together with a representation of the morphotactics that tells us 
how they can fit together. There are many ways to model morphotactics; one 
of the most common is the finite-state automaton. A very simple finite-state 
model for English nominal inflection might look like Figure 3.2. 

The FSA in Figure 3.2 assumes that the lexicon includes regular nouns 
(reg-noun) that take the regular -s plural (e.g., cat, dog, fox, aardvark). 
These are the vast majority of English nouns since for now we will ignore 
the fact that the plural of words like fox have an inserted e: foxes. The 
lexicon also includes irregular noun forms that don't take -s, both singular 
irreg-sg-noun (goose, mouse) and plural irreg-pl-noun (geese, mice). 

90



Section 3.2. Finite-State Morphological Parsing 

plural (-s) 

irreg-pl-noun 

irreg-sg-noun 

Figure 3.2 A finite-state automaton for English nominal inflection. 

reg-noun irreg-pl-noun irreg-sg-noun plural 
fox geese goose -s 
cat sheep sheep 
dog mice mouse 
aardvark 

A similar model for English verbal inflection might look like Fig­
ure 3.3. 

irreg-past-verb-form 

reg-verb-stem 

Figure 3.3 A finite-state automaton for English verbal inflection 

This lexicon has three stern classes (reg-verb-stern, irreg-verb-stern, 
and irreg-past-verb-form), plus fonr more affix classes ( -ed past, -ed partici­
ple, -ing participle, and third singular-s): 

67 

91



68 Chapter 3. Morphology and Finite-State Transducers· 

reg-verb- irreg-verb- irreg-past- past past-part pres-part 3sg 
stem stem verb 

walk cnt caught -ed -ed -ing -s 
fry speak ate 
talk sing eaten 
impeach sang 

spoken 

English derivational morphology is significantly more complex than 
English inflectional morphology, and so automata for modeling English deri­
vation tend to be quite complex. Some models of English derivation, in fact, 
are based on the more complex context-free grammars of Chapter 9 (Sproat, 
1993; Orgun, 1995). 

As a preliminary example, though, of the kind of analysis it would 
require, we present a small part of the morphotactics of English adjectives, 
taken from Antworth (1990). Antworth offers the following data on English 
adjectives: 

big, bigger, biggest 
cool, cooler, coolest, coolly 
red, redder, reddest 
clear, clearer, clearest, clearly, unclear, unclearly 
happy, happier, happiest, happily 
unhappy, unhappier, unhappiest, unhappily 
real, unreal, really 

An initial hypothesis might be that adjectives can have an optional pre­
fix (un-), an obligatory root (big, cool, etc) and an optional suffix (-er, -est, 
or -ly). This might suggest the the FSA in Figure 3.4. 

-er -est 
un- adj-root -ly 

~ 
Figure 3.4 An FSA for a fragment of English adjective morphology: 
Antworth 's Proposal #1. 

92



Section 3.2. Finite-State Morphological Parsing 

Alas, while this FSA will recognize all the adjectives in the table above, 
it will also recognize ungrammatical forms like unbig, red/:y, and realest. 
We need to set up classes of roots and specify wbich can occur with which 
suffixes. So adj-root1 would include adjectives that can occur with un- and 
-ly (clear, happy, and real) while adj-root2 will include adjectives that can't 
(big, cool, and red). Antworth (1990) presents Figure 3.5 as a partial solution 
to these problems. 

adj-root1 

Figure 3.5 An FSA for a fragment of English adjective morphology: 
Antworth's Proposal #2. 

This gives an idea of the complexity to be expected from English 
derivation. For a further example, we give in Figure 3.6 another fragment 
of an FSA for English nominal and verbal derivational morphology, based 
on Sproat (1993), Bauer (1983), and Porter (1980). This FSA models a 
number of derivational facts, such as the well known generalization that any 
verb ending in -ize can be followed by the norninalizing suffix-ation (Bauer, 
1983; Sproat, 1993)). Thus since there is a word fossilize, we can predict the 
word fossilization by following states qo, q1, and q2 . Similarly, adjectives 
ending in -al or -able at qs (equal, formal, realizable) can take the suffix -ity, 
or sometimes the suffix -ness to state q6 (naturalness, casualness). We leave 
it as an exercise for the reader (Exercise 3.2) to discover some of the indi­
vidual exceptions to many of these constraints, and also to give examples of 
some of the various noun and verb classes. 

We can now use these FSAs to solve the problem of morphological 
recognition; that is, of determining whether an input string of letters makes 
up a legitimate English word or not. We do this by taking the morphotactic 
FSAs, and plugging in each "sub-lexicon" into the FSA. That is, we expand 
each arc (e.g., the reg-noun-stem arc) with all the morphemes that make up 
the set of reg-noun-stem. The resulting FSA can then be defined at the level 
of the individual letter. 

69 

93



70 Chapter 3. Morphology and Finite-State Transducers 

nouni -izeN -ation/N 

-ly/Adv 

Figure 3.6 An FSA for another fragment of English derivational morphol­
ogy. 

Figure 3.7 Compiled FSA for a few English nouns with their inflection. 
Note that this automaton will incorrectly accept the inputfoxs. We will see 
beginning on page 76 how to correctly deal with the inserted e in foxes. 

Figure 3.7 shows the noun-recognition FSA produced by expanding 
the Nominal Inflection FSA of Figure 3.2 with sample regular and irregular 
nouns for each class. We can use Figure 3.7 to recognize strings like aard­
varks by simply starting at the initial state, and comparing the input letter 

94



Section 3.2. Finite-State Morphological Parsing 

by letter with each word on each outgoing arc. and so on, just as we saw in 
Chapter 2. 

Morphological Parsing with Finite-State Transducers 

Now that we've seen how to use FSAs to represent the lexicon and inciden­
tally do morphological recognition, let's move on to morphological parsing. 
For example, given the input cats, we'd like to output cat +N +PL, telling 

71 

us that cat is a plural noun. We will do this via a version of two-level mor- TWO-LEVEL 

phology, first proposed by Koskenniemi (1983). Two-level morphology rep-
resents a word as a correspondence between a lexical level, which represents 
a simple concatenation of morphemes making up a word, and the surface suRFACE 

level, which represents the actual spelling of the final word. Morphological 
parsing is implemented by building mapping rules that map letter sequences 
like cats on the surface level into morpheme and features sequences like 
cat + N + PL on the lexical level. Figure 3.8 shows these two levels for the 
word cats. Nate that the lexical level has the stem for a word, followed by 
the morphological information + N + PL which tells us that cats is a plural 
noun. 

Lexical { I c I a I t I+NI+P~ I I 1 
Suiface { I c I a I t Is I I I I ~ 

Figure 3.8 Example of the lexical and surface tapes. 

The automaton that we use for performing the mapping between these 
two levels is the finite-state transducer or FST. A transducer maps between FST 

one set of symbols and another; a finite-state transducer does this via a fi-
nite automaton. Thus we usually visualize an FST as a two-tape automaton 
which recognizes or generates pairs of strings. The FST thus has a more 
general function than an FSA; where an FSA defines a formal language by 
defining a set of strings, an FST defines a relation between sets of strings. 
This relates to another view of an FST; as a machine that reads one string 
and generates another. Here's a summary of this four-fold way of thinking 
about transducers: 

95



72 

MEALY 
MACHINE 

FEASiaLE 
PAIRS 

REGULAR 
RELATIONS 

Chapter 3. Morphology and Finite-State Transducers 

• FST as recognizer: a transducer that takes a pair of strings as input 
and outputs accept if the string-pair is in the string-pair language, and 
a reject if it is not. 

• FST as generator: a machine that outputs pairs of strings of the lan­
guage. Thus the output is a yes or no, and a pair of output strings. 

• FST as translator: a machine that reads a string and outputs another 
string 

• FST as set relater: a machine that computes relations between sets. 

An FST can be formally defined in a number of ways; we will rely 
on the following definition, based on what is called the Mealy machine 
extension to a simple FSA: 

• Q: a finite set of N states qo, q1, ... , qN 

• :E: a finite alphabet of complex symbols. Each complex symbol is 
composed of an input-output pair i : a; one symbol i from an input 
alphabet I, and one symbol a from an output alphabet 0, thus :E ~ 
I x 0. I and 0 may each also include the epsilon symbol£. 

• qo: the start state 

• F: the set of final states, F ~ Q 

• li(q,i: a): the transition function or transition matrix between states. 
Given a state q E Q and complex symbol i: a E :E, li(q,i: a) returns a 
new state q E Q. li is thus a relation from Q x :E to Q. 

Where an FSA accepts a language stated over a finite alphabet of single 
symbols, such as the alphabet of our sheep language: 

:E = {b,a, !} (3.2) 

au FST accepts a language stated over pairs of symbols, as in: 

L={a:a, b:b,! :!, a:!, a:£, E:!} (3.3) 

In two-level morphology, the pairs of symbols in :E are also called feasible 
pairs. 

Where FSAs are isomorphic to regular languages, FSTs are isomor­
phic to regular relations. Regular relations are sets of pairs of strings, a 
natural extension of the regular languages, which are sets of strings. Like 
FSAs and regular languages, FSTs and regular relations are closed under 
union, although in general they are not closed under difference, complemen­
tation and intersection (although some useful subclasses of FSTs are closed 
under these operations; in general FSTs that are not augmented with the 

96



Section 3.2. Finite-State Morphological Parsing 

are more likely to have such closure properties). Besides union, FSTs have 
two additional closure properties that tum out to be extremely useful: 

• inversion: The inversion of a transducer T (T- 1) simply switches the 
input and output labels. Thus if T maps from the input alphabet I to 
the output alphabet 0, T-1 maps from 0 to I. 

• composition: If T1 is a transducer from I1 to 0 1 and T2 a transducer 
from h to Oz, then T1 o Tz maps from h to Oz. 

Inversion is useful because it makes it easy to convert a FST-as-parser 
into an FST-as-generator. Composition is useful because it allows us to take 
two transducers that run in series and replace them with one more complex 
transducer. Composition works as in algebra; applying T1 o T2 to an input 
sequence S is identical to applying T1 to S and then T2 to the result; thus 
T1 o Tz(S) = Tz(T1 (S)). We will see examples of composition below. 

We mentioned that for two-level morphology it's convenient to view 
an FST as having two tapes. The upper or lexical tape, is composed from 
characters from the left side of the a : b pairs; the lower or surface tape, 
is composed of characters from the right side of the a : b pairs. Thus each 
symbol a : b in the transducer alphabet L expresses how the symbol a from 
one tape is mapped to the symbol b on the another tape. For example a : E 

means that an a on the upper tape will correspond to nothing on the lower 
tape. Just as for an FSA, we can write regular expressions in the complex 
alphabet :E. Since it's most common for symbols to map to themselves, in 
two-level morphology we call pairs like a : a default pairs, and just refer to 
them by the single letter a. 

We are now ready to build an FST morphological parser out of our 
earlier morphotactic FSAs and lexica by adding an extra "lexical" tape and 
the appropriate morphological features. Figure 3.9 shows an augmentation 
of Figure 3.2 with the nominal morphological features (+SG and +PL) that 
correspond to each morpheme. Note that these features map to the empty 
string E or the word/morpheme boundary symbol #since there is no segment 
corresponding to them on the output tape. 

In order to use Figure 3.9 as a morphological noun parser, it needs to be 
augmented with all the individual regular and irregular noun stems, replacing 
the labels regular-noun-stem etc. In order to do this we need to update the 
lexicon for this transducer, so that irregular plurals like geese will parse into 
the correct stem goose +N +PL. We do this by allowing the lexicon to 
also have two levels. Since surface geese maps to underlying goose, the 
new lexical entry will be "g: g o: e o: e s: s e: e". Regular forms are 

73 

INVERSION 

COMPOSITION 

LEXICAL TAPE 

DEFAULT 
PAIRS 

97



74 

@SYMBOL 

Chapter 3. Morphology and Finite-State Transducers 

Figure 3.9 A transducer for English nominal number inflection Tnum· 
Since both q1 and q2 are accepting states, regular nouns can have the plural 
suffix or not. The morpheme-boundary symbol ' and word-boundary marker 
#will be discussed below. 

simpler; the two-level entry for fox will now be "f: f o: o x: x", but by 
relying on the orthographic convention that f stands for f : f and so on, we 
can simply refer to it as fox and the form for geese as "g o : e o : e s 
e". Thus the lexicon will look only slightly more complex: 

I reg-noun irreg-pl-noun irreg-sg-noun 

fox g o:e o:e s e goose 
cat sheep sheep 
dog m o:i u:e s:c e mouse 
aardvark 

Our proposed morphological parser needs to map from surface forms 
like geese to lexical forms like goose +N +SG. We conld do this by cas­
cading the lexicon above with the singular/plural automaton of Figure 3.9. 
Cascading two automata means running them in series with the output of 
the first feeding the input to the second. We would first represent the lexi­
con of stems in the above table as the FST Tstems of Figure 3.10. This FST 
maps e.g. dog to reg-noun-stem. In order to allow possible suffixes, Tstems 

in Figure 3.10 allows the forms to be followed by the wildcard@ symbol; 
@ : @ stands for "any feasible pair". A pair of the form @ : x, for example will 
mean "any feasible pair which has x on the surface level", and correspond­
ingly for the form x: @. The output of this FST wonld then feed the number 
automaton Tnum· 

Instead of cascading the two transducers, we can compose them using 
the composition operator defined above. Composing is a way of taking a 

98



Section 3.2. Finite-State Morphological Parsing 

cascade of transducers with many different levels of inputs and outputs and 
converting them into a single "two-level'" transducer with one input tape and 
one output tape. The algorithm for composition bears some resemblance to 
the algorithm for determinization of FSAs from page 48; given two automata 
T1 and T2 with state sets Ql and Q2 and transition functions 01 and 02. we 
create a new possible state (x,y) for every pair of states x E Ql andy E Q2. 
Then the new automaton has the transition function: 

03((xa,Ya),i: o) = (xb,Yb) if 

3cs.t. OJ(Xa,i:c)=xb 

and o2(Ya,c: o) = Yb (3.4) 

The resulting composed automaton, Tzex = Tnum o Tstems. is shown in 
Figure 3.11 (compare this with the FSA lexicon in Figure 3.7 on page 70)3 

Note that the final automaton still has two levels separated by the :. Because 
the colon was reserved for these levels, we had to use the I symbol in Tstems 

in Figure 3.10 to separate the upper and lower tapes. 

reg-noun-stem I a a r d v a r k 

reg-noun-stem 1 d o g 

reg-noun-stem 1 c a t 

reg-noun-stem ! f o x 

irreg-pl-noun-fonn I s h e e p 

irreg-pl-noun-fonn I m o:i u: ES:c e 

Figure 3.10 The transducer Tstems. which maps roots to their root-class. 

This transducer will map plural nouns into the stem plus the morpho­
logical marker + PL, and singular nouns into the stem plus the morpheme 
+SG. Thus a surface cats will map to cat +N +PL as follows: 

c:c a:a t:t +N:E +PL:'s# 

That is, c maps to itself, as do a and t, while the morphological feature 
+N (recall that this means "noun") maps to nothing (E), and the feature +PL 

3 Note that for the purposes of clear exposition, Figure 3.11 has not been minimized in the 
way that Figure 3.7 has. 

75 

99



76 

MORPHEME 
BOUNDARY 
# 

WORD 
BOUNDARY 

SPELLING 
RULES 

Chapter 3. Morphology and Finite-State Transducers 

+PL:'s# 
6 (iJ 

+SG:# 

Figure 3.11 A fleshed-out English nominal inflection FST Ttex = Tnum o 
Tstems. 

(meaning "plural") maps to As. The symbol A indicates a morpheme bound­
ary, while the symbol# indicates a word boundary, Figure 3.12 refers to 
tapes with these morpheme boundary markers as intermediate tapes; the 
next section will show how the boundary marker is removed. 

Lexical { f 0 X I +N I+PLI I ~ 
Intermediate { I f I 0 X A s I u I 1 

Figure3.12 An example of the lexical and intermediate tapes. 

Orthographic Rules and Finite-State Transducers 

The method described in the previous section will successfully recognize 
words like aardvarks and mice. But just concatenating the morphemes won't 
work for cases where there is a spelling change; it would incorrectly reject 
an input like foxes and accept an input like foxs. We need to deal with the 
fact that English often requires spelling changes at morpheme boundaries by 
introducing spelling rules (or orthographic rules). This section introduces 
a number of notations for writing such rules and shows how to implement 
the rules as transducers. Some of these spelling rules: 

100



Section 3.2. Finite-State Morphological Parsing 

\Name \Description of Rule \Example 

Consonant !-letter consonant doubled before -ingl-ed beg/begging 
doubling 
E deletion Silent e dropped before -ing and -ed make/making 
E insertion e added after -s,-z,-x,-ch, -sh before -s watcb/watches 
Y replacement -y changes to -ie before -s, -i before -ed try/tries 
K insertion verbs ending with vowel + -c add -k panic/panicked 

We can think of these spelling changes as taking as input a simple 
concatenation of morphemes (the "intermediate output" of the lexical trans­
ducer in Figure 3.11) and producing as output a slightly-modified, (correctly­
spelled) concatenation of morphemes. Figure 3.13 shows the three levels we 
are talking about: lexical, intermediate, and surface. So for example we 
could write an E-insertion rule that performs the mapping from the interme­
diate to surface levels shown in Figure 3.13. Such a rule ntight say some-

Lexical { I f 0 X I +N I+PLj I 1 
Intermediate { f 0 X II js I #I I 1 

Surface { I t I o I X e js I I 1 
Figure 3.13 An example of the lexical, intermediate, and surface tapes. 
Between each pair of tapes is a two-level transducer; the lexical transducer of 
Figure 3.11 between the lexical and intermediate levels, and theE-insertion 
spelling rule between the intermediate and surface levels. The E-insertion 
spelling rule inserts an e on the surface tape when the intermediate tape has a 
morpheme boundary- followed by the morpheme-s. 

thing like "insert an e on the surface tape just when the lexical tape has a 
morpheme ending in x (or z, etc) and the next morpheme is -s". Here's a 
formalization of the rule: 

(3.5) 

Tltis is the rule notation of Chomsky and Halle (1968); a rule of the 
form a -+ b I c_d means "rewrite a as b when it occurs between c and 

77 

101



78 Chapter 3. Morphology and Finite-State Transducers 

d". Since the symbol E means an empty transition, replacing it means in­
serting something. The symbol ' indicates a morpheme boundary. These 
boundaries are deleted by including the symbol ':£ in the default pairs for 
the transducer; thus morpheme boundary markers are deleted on the surface 
level by default. (Recall that the colon is used to separate symbols on the in­
termediate and surface forms). The #symbol is a special symbol that marks 
a word boundary. Thus (3.5) means "insert an e after a morpheme-final x, 
s, or z, and before the morphemes". Figure 3.14 shows an automaton that 
corresponds to this rule. 

#,other # 

Figure 3.14 The transducer for theE-insertion rule of (3.5), extended from 
a similar transducer in Antworth (1990). 

The idea in building a transducer for a particular rule is to express only 
the constraints necessary for that rule, allowing any other string of symbols 
to pass through unchanged. This rule is used to insure that we can only 
see the £:e pair if we are in the proper context. So state qo, which models 
having seen only default pairs unrelated to the rule, is an accepting state, 
as is q1, which models having seen a z, s, or x. q2 models having seen the 
morpheme boundary after the z, s, or x, and again is an accepting state. State 
q3 models having just seen theE-insertion; it is not an accepting state, since 
the insertion is only allowed if it is followed by the s morpheme and then the 
end-of-word symbol #. 

The other symbol is used in Figure 3.14 to safely pass through any 
parts of words that don't play a role in the E-insertion rule. other means 
"any feasible pair that is not in this transducer"; it is thus a version of @:@ 

which is context-dependent in a transdncer-by-transdncer way. So for exam­
ple when leaving state qo, we go to q1 on the z, s, or x symbols, rather than 

102



Section 3.3. Combining FST Lexicon and Rules 

following the other arc and staying in q0 . The semantics of other depends 
on what symbols are on ofher arcs; since # is mentioned on some arcs, it 
is (by definition) not included in other, and thus, for example, is explicitly 
mentioned on fhe arc from q2 to q0. 

A transducer needs to correctly reject a stting that applies the rule when 
it shouldn't. One possible bad stting would have the correct environment for 
theE-insertion, but have no insertion. State q5 is used to insure that the e 
is always inserted whenever the environment is appropriate; fhe transducer 
reaches qs only when it has seen an s after an appropriate morpheme bound­
ary. If fhe machine is in state qs and the next symbol is#, the machine rejects 
the stting (because there is no legal transition on# from q5). Figure 3.15 
shows fhe transition table for fhe rule which makes fhe illegal transitions 
explicit wifh fhe "-" symbol. 

State \Input s:s x:x z:z ':E E:e # other 

qo: I 1 I 0 - 0 0 
ql: 1 1 1 2 - 0 0 
q2: 5 1 1 0 3 0 0 
q3 4 - - - - - -

q4 - - - - - 0 -

qs 1 1 1 2 - - 0 

Figure 3.15 The state-transition table forE-insertion rule of Figore 3.14, 
extended from a similar transducer in Antworth (1990). 

The next section will show a trace of fhis E-insertion transducer run­
ning on a sample input stting. 

3.3 COMBINING FST LEXICON AND RULES 

We are now ready to combine our lexicon and rule transducers for parsing 
and generating. Figure 3.16 shows fhe architecture of a two-level morphol­
ogy system, whefher used for parsing or generating. The lexicon transducer 
maps between the lexical level, with its stems and morphological features, 
and an intermediate level that represents a simple concatenation of mor­
phemes. Then a host of transducers, each representing a single spelling rule 
constraint, all run in parallel so as to map between fhis intermediate level and 
the surface level. Putting all the spelling rules in parallel is a design choice; 

79 

103



80 Chapter 3. Morphology and Finite-State Transducers 

we could also have chosen to run all the spelling rules in series (as a long 
cascade), if we slightly changed each rule. 

Lexical { f 0 X I +N I+PLI I 1 
l r--------1...--------, 

I LEXICON-FST1 
I I 
L--------T--------~ 

l 

Intermediate { I f I ol X I /1. Is I I i 
l 

·-----l----~---1------, 
,~8.1-T--: arlhagrnphic rule' ~~8~-T--: I ,, 1 I e e e I ,, n I 

L---,---' L------' , _____ j ____ T ___ j ______ j 

l 

Suiface{ ltlolxlelsl I i 
Figure 3.16 Generating or parsing with FST lexicon and rules 

The architecture in Figure 3.16 is a two-level cascade of transducers. 
Recall that a cascade is a set of transducers in series, in which the output 
from one transducer acts as the input to another transducer; cascades can 
be of arbitrary depth, and each level might be built out of many individual 
transducers. The cascade in Figure 3.16 has two transducers in series: the 
transducer mapping from the lexical to the intermediate levels, and the col­
lection of parallel transducers mapping from the intermediate to the surface 
level. The cascade can be run top-down to generate a string, or bottom-up 
to parse it; Figure 3.17 shows a trace of the system accepting the mapping 
from fox's to foxes. 

The power of finite-state transducers is that the exact same cascade 
with the same state sequences is used when the machine is generating the 
surface tape from the lexical tape, or when it is parsing the lexical tape from 
the surface tape. For example, for generation, imagine leaving the Interme­
diate and Surface tapes blank. Now if we run the lexicon transducer, given 
fox + N + PL, it will produce fox's# on the Iotermediate tape via the same 
states that it accepted the Lexical and Intermediate tapes in our earlier exam­
ple. If we then allow all possible orthographic transducers to run in paralleL 
we will produce the same surface tape. 

104



Section 3.3. Combining FST Lexicon and Rules 

Lexical f 0 X +N +PL 

0 1 

Te-insert 

Surface f o x e s 

Figure 3.17 Accepting foxes: The lexicon transducer Tzex from Figure 3.11 
cascaded with theE-insertion transducer in Figure 3.14. 

Parsing can be slightly more complicated than generation, because of 
the problem of ambiguity. For example, foxes can also be a verb (albeit a 
rare one, meaning "to baffle or confuse"), and hence the lexical parse for 
foxes could be fox +V +3SG as well as fox +N +PL. How are we to 
know which one is the proper parse? In fact, for ambiguous cases of this sort, 
the transducer is not capable of deciding. Disambiguating will require some 
external evidence such as the surrounding words. Thus foxes is likely to be 
a noun in the sequence I saw two foxes yesterday, but a verb in the sequence 
That trickster foxes me every time!. We will discuss such disambiguation 
algorithms in Chapters 8 and 17. Barring such external evidence, the best our 
transducer can do is just enumerate the possible choices; so we can transduce 
foxAs#into both fox +V +3SG and fox +N +PL. 

There is a kind of ambiguity that we need to handle: local ambiguity 
that occurs during the process of parsing. For example, imagine parsing the 
input verb assess. After seeing ass, our E-insertion transducer may propose 
that the e that follows is inserted by the spelling rule (for example, as far as 
the transducer is concerned, we might have been parsing the word asses). It 
is not tmtil we don't see the# after asses, but rather run into another s, that 
we realize we have gone down an incorrect path. 

Because of this non-determinism, FST-parsing algorithms need to in­
corporate some sort of search algorithm. Exercise 3.8 asks the reader to 
modify the algorithm for non-deterruiuistic FSA recognition in Figure 2.21 
in Chapter 2 to do FST parsing. 

81 

AMBIGUITY 

DISAMBIGUAT· 
lNG 

105



82 Chapter 3. Morphology and Finite-State Transducers 

Running a cascade. particularly one with many levels, can be unwieldy. 
Luckily, we've already seen how to compose a cascade of transducers in se­
ries into a single more complex transducer. Transducers in parallel can be 

INTERSECTION combined by automaton intersection. The automaton intersection algo­
rithm just takes the Cartesian product of the states, i.e., for each state q; in 
machine I and state q1 in macltine 2, we create a new state q11 . Then for 
any input symbol a, if machine I would transition to state qn and machine 2 
would transition to state qm, we transition to state qnm· 

Figure 3.18 sketches how tltis intersection (I\) and composition ( o) pro­
cess might be carried out. 

$ : .;. : $}~' 

Figure 3.18 Intersection and composition of transducers. 

I 

LEXICON-FST 
0 

FSTA 

' 

Since there are a number of rule-+ PST compilers, it is almost never 
necessary in practice to write an PST by hand. Kaplan and Kay (1994) give 
the mathematics that define the mapping from rules to two-level relations, 
and Antworth (1990) gives details of the algoritlrms for rule compilation. 
Mohri (1997) gives algorithms for transducer minimization and determiniza­
tion. 

3.4 LEXICON-FREE FSTS: THE PORTER STEMMER 

While building a transducer from a lexicon plus rules is the standard al­
gorithm for morphological parsing, there are simpler algorithms that don't 
require the large on-line lexicon demanded by this algorithm. These are used 
especially in Information Rerrieval (IR) tasks (Chapter 17) in which a user 
needs some information, and is looking for relevant documents (perhaps on 
the web, perhaps in a digital library database). She gives the system a query 
with some important characteristics of documents she desires, and the IR 
system retrieves what it thinks are the relevant documents. One common 

106



Section 3.4. Lexicon-Free FSTs: The Porter Stemmer 83 

type of query is Boolean combinations of relevant keywords or phrases, e.g. KEYWORDS 

(marsupial OR kangaroo OR koala). The system then returns documents that 
have these words in them. Since a document with the word marsupials might 
not match the keyword marsupial, some IR systems first run a stemmer on 
the keywords and on the words in the document. Since morphological pars-
ing in IR is only used to help form equivalence classes, the details of the 
suffixes are irrelevant; what matters is determining that two words have the 
same stem. 

One of the most widely used such stemming algorithms is the simple sTEMMING 

and efficient Porter (1980) algorithm, which is based on a series of simple 
cascaded rewrite rules. Since cascaded rewrite rules are just the sort of thing 
that could be easily implemented as an FST, we think of the Porter algorithm 
as a lexicon-free FST stemmer (this idea will be developed further in the 
exercises (Exercise 3.7). The algorithm contains rules like: 

(3.6) ATIONAL--+ ATE (e.g., relational--+ relate) 

(3.7) ING--+ £if stem contains vowel (e.g., motoring--+ motor) 

The algorithm is presented in detail in Appendix B. 
Do stemmers really improve the performance of information retrieval 

engines? One problem is that stemmers are not perfect. For example Krovetz 
(1993) summarizes the following kinds of errors of omission and of commis­
sion in the Porter algorithm: 

Errors of Commission Errors of Omission 
organization organ European Europe 
doing doe analysis analyzes 
generalization generic matrices matrix 
numerical numerous noise nmsy 
policy police sparse sparsity 
university umverse explain explanation 
negligible negligent urgency urgent 

Krovetz also gives the results of a number of experiments testing whether 
the Porter Stemmer actually improved IR performance. Overall he found 
some improvement, especially with smaller documents (the larger the docu­
ment, the higher the chance the keyword will occur in the exact form used 
in the query). Since any improvement is quite small, IR engines often don't 
use stemming. 

107



84 Chapter 3. Morphology and Finite-State Transducers 

3.5 HUMAN MORPHOLOGICAL PROCESSING 

FULL LISTING 

MINIMUM 
REDUNDANCY 

PRIMED 

In this section we look at psychological stndies to learn how multi-morphemic 
words are represented in the minds of speakers of English. For example, con­
sider the word walk and its inflected forms walks, and walked. Are all three 
in the human lexicon? Or merely walk plus as well as -ed and -s? How 
about the word happy and its derived forms happily and happiness? We can 
imagine two ends of a theoretical spectrum of representations. The full list­
ing hypothesis proposes that all words of a language are listed in the mental 
lexicon without any internal morphological structnre. On this view, mor­
phological structure is simply an epiphenomenon, and walk, walks, walked, 
happy, and happily are all separately listed in the lexicon. This hypothesis 
is certainly untenable for morphologically complex languages like Turkish 
(Hankamer (1989) estimates Turkish as 200 billion possible words). The 
minimum redundancy hypothesis suggests that only the constitnent mor­
phemes are represented in the lexicon, and when processing walks, (whether 
for reading, listening, or talking) we must access both morphemes (walk and 
-s) and combine them. 

Most modern experimental evidence suggests that neither of these is 
completely true. Rather, some kinds of morphological relationships are men­
tally represented (particularly inflection and certain kinds of derivation), but 
others are not, with those words being fully listed. Stanners et al. (1979), for 
example, found that derived forms (happiness, happily) are stored separately 
from their stem (happy), but that regularly inflected forms (pouring) are not 
distinct in the lexicon from their stems (pour). They did this by using a rep­
etition priming experiment. In short, repetition priming takes advantage of 
the fact that a word is recognized faster if it has been seen before (if it is 
primed). They found that lifting primed lift, and burned primed burn, but 
for example selective didn't prime select. Figure 3.19 sketches one possible 
representation of their finding: 

~~~-s 
~-mg

Figure 3.19 Stanners eta!. (1979) result: Different representations of in­
flection and derivation.

108

Section 3.5. Human Morphological Processing

In a more recent study, Marslen-Wilson eta!. (1994) found that spoken
derived words can prime their stems, but only if the meaning of the derived
form is closely related to the stem. For example government primes govern,
but department does not prime depart. Grainger eta!. (1991) found similar
results with prefixed words (but not with suffixed words). Marslen-Wilson
eta!. (1994) represent a model compatible with their own findings as follows:

-al -ure -s

~~~-~-mg 
Figure 3.20 Marslen-Wilson eta!. (1994) result: Derived words are linked 
to their stems only if semantically related 

Other evidence that the human lexicon represents some morphological 
structure comes from speech errors, also called slips of the tongue. In 
normal conversation, speakers often mix up the order of the words or initial 
sounds: 

if you break it it'll drop 
I don't have time to work to watch television because I have to 
work 

But inflectional and derivational affixes can also appear separately from 
their stems, as these examples from Fromkin and Ratner (1998) and Garrett 
(1975) show: 

it's not only us who have screw loose~ (for "screws loose") 
word~ of rule formation (for "rules of word formation") 
easy enoughly (for "easily enough") 
which by itself is the most unimplausible sentence you can imagine 

The ability of these affixes to be produced separately from their stem 
suggests that the mental lexicon must contain some representation of the 
morphological structure of these words. 

In summary, these results suggest that morphology does play a role in 
the human lexicon, especially productive morphology like inflection. They 
also emphasize the important of semantic generalizations across words, and 
suggest that the human auditory lexicon (representing words in terms of their 
sounds) and the orthographic lexicon (representing words in terms ofletters) 

85 

109



86 Chapter 3. Morphology and Finite-State Transducers 

may have similar structures. Finally, it seems that many properties of lan­
guage processing, like morphology, may apply equally (or at least similarly) 
to language comprehension and language production. 

3.6 SUMMARY 

This chapter introduced morphology, the arena oflanguage processing deal­
ing with the subparts of words, and the finite-state transducer, the com­
putational device that is commonly used to model morphology. Here's a 
summary of the main points we covered about these ideas: 

• Morphological parsing is the process of finding the constituent mor­
phemes in a word (e.g., cat +N +PL for cats). 

• English mainly uses prefixes and suffixes to express inflectional and 
derivational morphology. 

• English inflectional morphology is relatively simple and includes per­
son and number agreement (-s) and tense markings (-ed and -ing). 

• English derivational morphology is more complex and includes suf­
fixes like -ation, -ness, -able as well as prefixes like co- andre-. 

• Many constraints on the English morphotactics (allowable morpheme 
sequences) can be represented by finite automata. 

• Finite-state transducers are an extension of finite-state automata that 
can generate output symbols. 

• Two-level morphology is the application of finite-state transducers to 
morphological representation and parsing. 

• Spelling rules can be implemented as transducers. 

• There are automatic transducer-compilers that can produce a trans­
ducer for any simple rewrite rule. 

• The lexicon and spelling rules can be combined by composing and 
intersecting various transducers. 

• The Porter algorithm is a simple and efficient way to do stemming, 
stripping off affixes. It is not as accurate as a transducer model that in­
cludes a lexicon, but may be preferable for applications like informa­
tion retrieval in which exact morphological structure is not needed. 

110



Section 3 .6. Summary 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Despite the close mathematical similarity of finite-state transducers to finite­
state automata, the two models grew out of somewhat different traditions. 
Chapter 2 described how the finite automaton grew out of Turing's (1936) 
model of algorithmic computation, and McCulloch and Pitts finite-state-like 
models of the neuron. The influence of the Turing machine on the trans­
ducer was somewhat more indirect. Huffman (1954) proposed what was 
essentially a state-transition table to model the behavior of sequential cir­
cuits, based on the work of Shannon (1938) on an algebraic model of relay 
circuits. Based on Turing and Shannon's work, and unaware of Huffman's 
work, Moore (1956) introduced the term finite automaton for a machine 
with a finite number of states with an alphabet of input symbols and an al­
phabet of output symbols. Mealy (1955) extended and synthesized the work 
of Moore and Huffman. 

The finite automata in Moore's original paper, and the extension by 
Mealy differed in an important way. In a Mealy machine, the input/output 
symbols are associated with the transitions between states. The finite-state 
transducers in this chapter are Mealy machines. In a Moore machine, the 
input/output symbols are associated with the state; we will see examples of 
Moore machines in Chapter 5 and Chapter 7. The two types of transduc­
ers are equivalent; any Moore machine can be converted into an equivalent 
Mealy machine and vice versa. 

Many early programs for morphological parsing used an affix-strip­
ping approach to parsing. For example Packard's (1973) parser for ancient 
Greek iteratively stripped prefixes and suffixes off the input word, making 
note of them, and then looked up the remainder in a lexicon. It returned 
any root that was compatible with the stripped-off affixes. This approach 
is equivalent to the bottom-up method of parsing that we will discuss in 
Chapter 10. 

AMPLE (A Morphological Parser for Linguistic Exploration) (Weber 
and Mann, 1981; Weber eta!., 1988; Hankamer and Black, 1991) is another 
early bottom-up morphological parser. It contains a lexicon with all possible 
surface variants of each morpheme (these are called allomorphs), together 
with constraints on their occurrence (for example in English the -es allo­
morph of the plural morpheme can only occur after s, x, z, sh, or ch). The 
system finds every possible sequence of morphemes which match the input 
and then filters out all the sequences which have failing constraints. 

87 

111



88 Chapter 3. Morphology and Finite-State Transducers 

An alternative approach to morphological parsing is called generate­
and-test or analysis-by-synthesis approach. Hankamer's (1986) keCi is a 
morphological parser for Turkish which is guided by a finite-state represen­
tation of Turkish morphemes. The program begins with a morpheme that 
might match the left edge of the word, and applies every possible phonolog­
ical rule to it, checking each result against the input. If one of the outputs 
succeeds, the program then follows the finite-state morphotactics to the next 
morpheme and tries to continue matching the input. 

The idea of modeling spelling rules as finite-state transducers is really 
based on Johnson's (1972) early idea that phonological rules (to be discussed 
in Chapter 4) have finite-state properties. Johnson's insight unfortunately did 
not attract the attention of the community, and was independently discovered 
by Roland Kaplan and Martin Kay, first in an unpublished talk (Kaplan and 
Kay, 1981) and then finally in print (Kaplan and Kay, 1994) (see page 15 
for a discussion of multiple independent discoveries). Kaplan and Kay's 
work was followed up and most fully worked out by Koskenniemi (1983), 
who described finite-state morphological rules for Finnish. Karttunen (1983) 
built a program called KIMMO based on Koskenniemi's models. Antworth 
(1990) gives many details of two-level morphology and its application to En­
glish. Besides Koskenniemi's work on Finnish and that of Antworth (1990) 
on English, two-level or other finite-state models of morphology have been 
worked out for many languages, such as Turkish (Oflazer, 1993) and Ara­
bic (Beesley, 1996). Antworth (1990) summarizes a number of issues in 
finite-state analysis of languages with morphologically complex processes 
like infixation and reduplication (e.g., Tagalog) and gemination (e.g., He­
brew). Karttnnen (1993) is a good summary of the application of two-level 
morphology specifically to phonological rules of the sort we will discuss in 
Chapter 4. Barton et a!. (1987) bring up some computational complexity 
problems with two-level models, which are responded to by Koskeuniemi 
and Church (1988). 

Students interested in further details of the fundamental mathematics 
of automata theory should see Hopcroft and Ullman (1979) or Lewis and 
Papadimitriou (1981). Mohri (1997) and Roche and Schabes (1997b) give 
additional algorithms and mathematical foundations for language applica­
tions, including, for example, the details of the algorithm for transducer min· . 
imization. Sproat (1993) gives a broad general introduction to computational 
morphology. 

112



Section 3.6. Summary 

EXERCISES 

3.1 Add some adjectives to the adjective FSA in Figure 3.5. 

3.2 Give examples of each of the noun and verb classes in Figure 3.6, and 
find some exceptions to the rules. 

3.3 Extend the transducer in Figure 3.14 to deal with sh and ch. 

3.4 Write a transducer(s) for the K insertion spelling rule in English. 

3.5 Write a transducer(s) for the consonant doubling spelling rule in En­
glish. 

3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a 
method commonly used in libraries and older Census records for represent­
ing people's names. It has the advantage that versions of the names that are 
slightly misspelled or otherwise modified (common, for example, in hand­
written census records) will still have the same representation as correctly­
spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map to 
J612). 

a. Keep the first letter of the name, and drop all occurrences of non-initial 
a, e, h, i, o, u, w, y 

b. Replace the remaining letters with the following numbers: 

b, f, p, v --+ 1 
C, g,j, k, q, S, X, Z---+ 2 
d,t--+3 
1--+ 4 
m,n--+5 
r--+ 6 

c. Replace any sequences of identical numbers with a single number (i.e., 
666 --+ 6) 

d. Convert to the form Letter Digit Digit Digit by dropping 
digits past the third (if necessary) or padding with trailing zeros (if 
necessary). 

The exercise: write a FST to implement the Soundex algorithm. 

3.7 Implement one of the steps of the Porter Stemmer as a transducer. 

89 

113



90 Chapter 3. Morphology and Finite-State Transducers 

3.8 Write the algorithm for parsing a finite-state transducer, using the pseu­
do-code introduced in Chapter 2. You should do this by modifying the algo­
rithm NO-RECOGNIZE in Figure 2.21 in Chapter 2. 

3.9 Write a program that takes a word and, using an on-line dictionary, 
computes possible anagrams of the word, each of which is a legal word. 

3.10 In Figure 3.14, why is there a z, s, x arc from qs to q1? 

114



4 
COMPUTATIONAL 
PHONOLOGY AND 
TEXT-TO-SPEECH 

You like po-tay-to and I like po-tah-to. 
You like to-may-to and I like to-mah-to. 
Po-tay-to, po-tah-to, 
To-may-to, to-mah-to, 
Let's call the whole thing off! 

George and Ira Gershwin, Let's Call the 
Whole Thing 0./ffrom Shall We Dance, 
1937 

The debate between the "whole language" and "phonics" methods of 
teaching reading to children seems at very glance like a purely modem edu­
cational debate. Like many modem debates, however, this one recapitulates 
an important historical dialectic, in this case in writing systems. The earliest 
independently-invented writing systems (Sumerian, Chinese, Mayan) were 
mainly logographic: one symbol represented a whole word. But from the 
earliest stages we can find, most such systems contain elements of syllabic 
or phonemic writing systems, in which symbols are used to represent the 
sounds that make up the words. Thus the Sumerian symbol pronounced ba 
and meaning "ration" could also function purely as the sound !bal. Even 
modem Chinese, which remains primatily Iogographic, uses sound-based 
characters to spell out foreign words and especially geographical names. 
Purely sound-based writing systems, whether syllabic (like Japanese hira­
gana or katakana), alphabetic (like the Roman alphabet used in this book), 
or consonantal (like Semitic writing systems), can generally be traced back 
to these early logo-syllabic systems, often as two cultures came together. 
Thus the Arabic, Aramaic, Hebrew, Greek, and Roman systems all derive 
from a West Semitic script that is presumed to have been modified by West­
ern Semitic mercenaries from a cursive form of Egyptian hieroglyphs. The 

115



92 Chapter 4. Computational Phonology and Text-to-Speech 

Japanese syllabaries were modified from a cursive form of a set of Chinese 
characters which were used to represent sounds. These Chinese characters 
themselves were used in Chinese to phonetically represent the Sanskrit in 
the Buddhist scriptures that were brought to China in the Tang dynasty. 

Whatever its origins. the idea implicit in a sound-based writing system. 
that the spoken word is composed of smaller units of speech. is the Ur-theory 
that underlies all our modem theories of phonology. In the next four chapters 
we begin our exploration of these ideas. as we introduce the fundamental 
insights and algorithms necessary to understand modem speech recognition 
and speech synthesis technology. and the related branch of linguistics called 
computational phonology. 

Let's begin by defining these areas. The core task of automatic speech 
recognition is take an acoustic waveform as input and produce as output 
a string of words. Conversely, the core task of text -to-speech synthesis is 
to take a sequence of text words and produce as output an acoustic wave­
form. The uses of speech recognition and synthesis are manifold, including 
automatic dictation/transcription, speech-based interfaces to computers and 
telephones, voice-based input and output for the disabled, and many others 
that will be discussed in greater detail in Chapter 7. 

This chapter will focus on an important part of both speech recognition 
and text-to-speech systems: how words are pronounced in terms of individ­
ual speech units called phones. A speech recognition system needs to have 
a pronunciation for every word it can recognize, and a text-to-speech system 
needs to have a pronunciation for every word it can say. The first section of 
this chapter will introduce phonetic alphabets for describing pronunciation, 

PHONETics part of the field of phonetics. We then introduce articulatory phonetics, the 
Af'1Jggh1!lf~l study of how speech sounds are produced by articulators in the mouth. 

Modeling pronunciation would be much simpler if a given phone was 
always pronounced the same in every context. Unfortunately this is not the 
case. As we will see, the phone [t] is pronounced very differently in different 
phonetic environments. Phonology is the area of linguistics that describes 
the systematic way that sounds are differently realized in different environ­
ments, and how this system of sounds is related to the rest of the grammar. 
The next section of the chapter will describe the way we write phonological 
rules to describe these different realizations. 

co~~g~-g~g~~L We next introduce an area known as computational phonology. One 
important part of computational phonology is the study of computational 
mechanisms for modeling phonological rules. We will show how the spel­
ling-rule transducers of Chapter 3 can be used to model phonology. We then 

116



Section 4.1. Speech Sounds and Phonetic Transcription 

discuss computational models of phonological learning: how phonological 
rules can be automatically induced by machine learning algorithms. 

Finally, we apply the transducer-based model of phonology to an im­
portant problem in text-to-speech systems: mapping from strings of letters 
to strings of phones. We first survey the issues involved in building a large 
pronunciation dictionary, and then show how the transducer-based lexicons 
and spelling rules of Chapter 3 can be augmented with pronunciations to 
map from orthography to pronunciation. 

This chapter focuses on the non-probabilistic areas of computational 
linguistics and pronunciations modeling. Chapter 5 will turn to the role of 
probabilistic models, including such areas as probabilistic models of pronun­
ciation variation and probabilistic methods for learning phonological rules. 

4.1 SPEECH SOUNDS AND PHONETIC TRANSCRIPTION 

93 

The study of the pronunciation of words is part of the field of phonetics, the PHONETics 

study of the speech sounds used in the languages of the world. We will be 
modeling the pronunciation of a word as a string of symbols which represent 
phones or segments. A phone is a speech sound; we will represent phones PHONEs 

with phonetic symbols that bears some resemblance to a Jetter in an alpha-
betic language like English. So for example there is a phone represented by l 
that usually corresponds to the letter l and a phone represented by p that usu-
ally corresponds to the letter p. Actually, as we will see later, phones have 
much more variation than letters do. This chapter will only briefly touch 
on other aspects of phonetics such as prosody, which includes things like 
changes in pitch and duration. 

This section surveys the different phones of English, particularly Amer­
ican English, showing how they are produced and how they are represented 
symbolically. We will be using two different alphabets for describing phones. 
The first is the International Phonetic Alphabet (IPA). The IPA is an evolv- "' 
ing standard originally developed by the International Phonetic Association 
in 1888 with the goal of transcribing the sounds of all human languages. The 
IPA is not just an alphabet but also a set of principles for transcription, which 
differ according to the needs of the transcription, so the same utterance can 
be transcribed in different ways all according to the principles of the IPA. 
In the interests of brevity in this book we will focus on the symbols that are 
most relevant for English; thus Figure 4.1 shows a subset of the IPA sym­
bols for transcribing consonants, while Figure 4.2 shows a subset of the IPA 

117



94 

IPA 
Symbol 
[p] 

[t] 
[k] 
[b] 
[d] 
[g] 

[m] 
[n] 

[ IJ] 
[f] 
[v] 
[8] 

[ol 
[s] 
[z] 

Ul 
[3] 

ltD 
[d3] 
[1] 
[w] 
[r] 
[j] 
[b] 
[?] 
[r] 

[rJ 
m 

Chapter 4. Computational Phonology and Text-to-Speech 

ARPAbet 
Symbol 
[p] 

[t] 
[k] 
[b] 

[d] 
[g] 

[m] 
[n] 
[ng] 
[f] 
[v] 
[th] 
[dh] 
[s] 
[z] 
[sh] 
[zh] 
[ch] 
[jh] 
[l] 

[w] 
[r] 
[y] 

[h] 
[q] 
[dx] 
[nx] 
[el] 

Word 

parsley 
!arragon 
fatnip 
hay 
<!ill 
garlic 
mint 
rrutmeg 
ginseng 
fennel 
clove 
thistle 
heather 
§.age 
h~elnut 

squash 
ambro§.ia 
chicory 
sage 
licorice 
kiy.'i 
pa[sley 
yew 
);lprseradish 
uh-oh 
bu!!er 
wintergreen 
thistle 

IPA 
Transcription 
['parsli] 
['trerggan] · 
['kretnip] 
[ber] 
[drl] 
['garlik] 
[mrnt] 
['nAtmrg] 
['d3msil]] 
[ fmj] 
[klouv] 
['8ISj] 
['hroac] 
[serd3] 
['herzjnAt] 
[skwaf] 
[rem'hrou3g] 
['tJrkaci] 
[serd3] 
['lrkacif] 
['kiwi] 
['parsli] 
[yu] 
['h3rsrredrf] 
[?A?ou] 
['bArac] 
[ wrracgrin l 
['8rsj] 

ARPA bet 
Transcription 
[paarsliy] 
[taeraxgaan] 
[kaetnixp] 
[bey] 
[d ih 1] 
[g aa r 1 ix k] 
[m ih n t] 
[nahtmehg 
[jh ih n s ix ng] 
[f eh n el] 
[klowv] 
[th ih s el] 
[h eh dh axr] 

[s ey jh] 
[hey z el n ah t] 
[skwash] 
[aembrowzhax] 
[chihkaxriy] 
[s ey jh] 
[1 ih k axr ix sh] 
[k iy w iy] 
[paarsliy] 
[yuw] 
[h ao r s rae d ih sh] 
[qahqow] 
[bah dx axr] 
[w ih nx axr grin] 
[th ih s el] 

Figure 4.1 IPA and ARPAbet symbols for transcription of English 
consonants. 

symbols for transcribing vowels.1 These tables also give the ARPAbet sym­
bols; ARPAbet (Shoup, 1980) is another phonetic alphabet, but one that is 
specifically designed for American English and which uses ASCII symbols; 

1 For simplicity we use the symbol [r] for the American English "r" sound, rather than the 
more-standard IPA symbol [1]. 

118



Section 4.1. Speech Sounds and Phonetic Transcription 

it can be thought of as a convenient ASCII representation of an American­
English subset of the IPA. ARPAbet symbols are often used in applications 
where non-ASCII fonts are inconvenient, such as in on-liue pronunciation 
dictionaries. 

IPA ARPAbet IPA ARPAbet 
Symbol Symbol Word Transcription Transcription 

[i] [iy] liir ['lrli] [lihliy] 

(I) [ih] lily ['l!li] [lihliy] 

[m] [ey] daisy ['de1zi] [dey z i] 

[t] [eh] poins~ttia [pom'stri~J [p oy n s eh dx iy ax] 

[ze] [ae] ;!Ster ['zest<!'] [ae s t axr] 
[a] [aa] PQPPY ['papi] [p aa pi] 
[J] [ao] Qrchid ['Jrkid] [aorkixd] 
[u] [uh] woodruff ['wudrAf] [wuhdrahf] 
[ou] [ow] lotus ['iour~s] [I ow dx ax s] 
[u] [uw] tl!iip ['tulip] [tuwlixp] 
[A] [uh] bl!tterci!P ['bAr<l',kAp] [buhdxaxrkuhp] 
[ 3'] [er] bird ['b:l'd] [b er d] 
[a!] [ay] iris ['a1ris] [ay r ix s] 
[au] [aw] sunflower ['sAnfiau<l'] [s ah n f I aw axr] 
[m] [oy] poinsettia [pom'stri~J [p oy us eh dx iy ax] 
[ju] [y uw] feverfew [fiv<l'fju] [fiyv axrfyu] 

r~J [ax] woodrgff ['wudr~f] [w uh dr ax f] 
[i] [ix] tl!liP ['tulip] [t uw I ix p] 
[<!'] [axr] heather ['htil<l'] [h eh dh axr] 
[ll] [ux] dude2 [dlld] [dux d] 

Figure4.2 IPA and ARPAbet symbols for transcription of English vowels. 

Many of the IPA and ARPAbet symbols are equivalent to the Roman 
letters used in the orthography of English and many other languages. So for 
example the IPA and ARPAbet symbol [p] represents the consonant sound at 

2 The last phone, [a]/[ux], is quite rare in general American English and indeed is an "ex­
tension" not present in the original ARPAbet. Labov (1994) notes that the realization of a 
fronted [uw] as [ux] has made it more common in (at least) Western and Northern Cities di­
alects of American English starting in the late 1970s. This fronting was first called to public 
by imitations and recordings of 'Valley Girls' speech by Moon Zappa (Zappa and Zappa, 
1982). Nevertheless, for most speakers [uw] is still much more common than [ux] in words 
like dude. 

95 

119



96 

ARTICULATORY 
PHONETICS 

GLOITIS 

VOICED 

UNVOICED 

VOICELESS 

Chapter 4. Computational Phonology and Text-to-Speech 

the beginning of platypus, puma, and pachyderm, the middle of leopard, or 
the end of antelope (note that the final orthographic e of antelope does not 
correspond to any final vowel; the pis the last sound). 

The mapping between the letters of English orthography and IPA sym­
bols is rarely as simple as this, however. This is because the mapping be­
tween English orthography and pronunciation is quite opaque; a single letter 
can represent very different sounds in different contexts. Figure 4.3 shows 
that the English letter cis represented as IPA (k] in the word cougar, but IPA 
[s] in the word civet. Besides appearing as c and k, the sound marked as [k] 
in the IPA can appear as part of x !fox), as ck (jackal), and as cc (raccoon). 
Many other languages, for example Spanish, are much more transparent in 
their sound-orthography mapping than English. 

Word jackal raccoon cougar civet 
IPA [ d3~·kl] [r~.'kun] ['ku.gac] ['sr.vit] 
ARPA bet [jh ae k el] [rae k uw n] [k uw g axr] [s ih v ix t] 

Figure 4.3 The mapping between IPA symbols and letters in English or-
thography is complicated; both IPA [k] and English orthographic [c] have 
many alternative realizations. 

The Vocal Organs 

We tum now to articulatory phonetics, the study of how phones are pro­
duced, as the various organs in the mouth, throat, and nose modify the airflow 
from the lungs. 

Sound is produced by the rapid movement of air. Most sounds in hu­
man spoken languages are produced by expelling air from the lungs through 
the windpipe (technically the trachea) and then out the mouth or nose. As 
it passes through the trachea, the air passes through the larynx, commouly 
known as the Adam's apple or voicebox. The larynx contains two small 
folds of muscle, the vocal folds (often referred to non-technically as the VO• · 

cal cords) which can be moved together or apart. The space between these 
two folds is called the glottis. If the folds are close together (but not tightly 
closed), they will vibrate as air passes through them; if they are far apart, 
they won't vibrate. Sounds made with the vocal folds together and vibrating 
are called voiced; sounds made without this vocal cord vibration are 
unvoiced or voiceless. Voiced sounds include [b], [d), [g), (v], [z], and 
the English vowels, among others. Unvoiced sounds include (p), [t], [k), [f), 
[z], and others. 

120



Section 4.1. Speech Sounds and Phonetic Transcription 

Figure 4.4 The vocal organs. shown in side view. Drawing by Laszlo Ku­
binyi from Sundberg (1977). @Scientific American. 

The area above the trachea is called the vocal tract, and consists of the 
oral tract and the nasal tract. After the air leaves the trachea, it can exit the 
body through the mouth or the nose. Most sounds are made by air passing 
through the mouth. Sounds made by air passing through the nose are called 
nasal sounds; nasal sounds use both the oral and nasal tracts as resonating 

cavities; English nasal sounds include m, and n, and ng. 
Phones are divided into two main classes: consonants and vowels. 

Both kinds of sounds are formed by the motion of air through the mouth, 

97 

NASAL 
SOUNDS 

CONSONANTS 

VOWELS 

121



98 Chapter 4. Computational Phonology and Text-to-Speech 

throat or nose. Consonants are made by restricting or blocking the airflow in 
some way, and may be voiced or unvoiced. Vowels have less obstruction, are 
usually voiced, and are generally louder and longer-lasting than consonants. 
The technical use of these terms is much like the common usage; [p], [b], 
[t], [d], [k], [g], [f], [v], [s], [z], [r], [1], etc., are consonants; [aa], [ae], [aw], 
[ao], [ih], [aw], [ow], [uw], etc., are vowels. Semivowels (such as [y] and 
[ w]) have some of the properties of both; they are voiced like vowels, but 
they are short and less syllabic like consonants. 

Consonants: Place of Articulation 

Because consonants are made by restricting the airflow in some way, con­
sonants can be distinguished by where this restriction is made: the point 

PLACE of maximum restriction is called the place of articulation of a consonant. 
Places of articulation, shown in Figure 4.5, are often used in automatic 
speech recognition as a useful way of grouping phones together into equiva­
lence classes: 

palatal 

glottal 

Figure 4.5 Major English places of articulation. 

LABIAL o labial: Consonants whose main restriction is formed by the two lips 
coming together have a bilabial place of articulation. In English these 
include [p] as in f'Ossum, [b] as in Qear, and [m] as in !!'!armot. The En­
glish labiodental consonants [v] and [f] are made by pressing the bot­
tom lip against the upper row of teeth and letting the air flow through 
the space in the upper teeth. 

DENTAL o dental: Sounds that are made by placing the tongue against the 

122



Section 4.1. Speech Sounds and Phonetic Transcription 

are dentals. The main dentals in English are the [e] of thing or the [o] 
of though, which are made by placing the tongue behind the teeth with 
the tip slightly between the teeth. 

99 

• alveolar: The alveolar ridge is the portion of the roof of the mouth just ALVEOLAR 

behind the upper teeth. Most speakers of American English make the 
phones [s], [z], [t], and [d] by placing the tip of the tongue against the 
alveolar ridge. 

o palatal: The roof of the mouth (the palate) rises sharply from the PALATAL 

back of the alveolar ridge. The palato-alveolar sounds [I] (shrimp), PALATE 

[tJ] (r:hinchilla), [3] (Asian), and [d3]1J_aguar) are made with the blade 
of the tongue against this rising back of the alveolar ridge. The palatal 
sound [y] of "}'_ak is made by placing the front of the tongue up close to 
the palate. 

o velar: The velum or soft palate is a movable muscular flap at the very VELAR 

back of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose), VELUM 

and [ IJ] (kingfisher) are made by pressing the back of the tongue up 
against the velum. 

• glottal: The glottal stop [?] is made by closing the glottis (by bringing GLOTIAL 

the vocal folds together). 

Consonants: Manner of Articulation 

Consonants are also distinguished by how the restriction in airflow is made, 
for example whether there is a complete stoppage of air, or only a partial 
blockage, etc. This feature is called the manner of articulation of a canso- MANNER 

nant. The combination of place and manner of articulation is usually suffi-
cient to uniquely identify a consonant. Here are the major manners of artic-
ulation for English consonants: 

o stop: A stop is a consonant in which airflow is completely blocked sme 

for a short time. This blockage is followed by an explosive sound as 
the air is released. The period of blockage is called the closure and 
the explosion is called the release. English has voiced stops like [b], 
[d], and [g] as well as unvoiced stops like [p], [t], and [k]. Stops are 
also called plosives. It is possible to use a more narrow (detailed) tran­
scription style to distinctly represent the closure and release parts of 
a stop, both in ARPAbet and IPA-style transcriptions. For example 
the closure of a [p], [t], or [k] would be represented as [pel], [tel], or 
[kcl] (respectively) in the ARPAbet, and [p~], [t'], or [k'] (respectively) 

123



100 

NASALS 

FRICATIVE 

SIBILANTS 

APPROXIMANT 

TAP 

FLAP 

Chapter 4. Computational Phonology and Text-to-Speech 

in IPA style. When this form of narrow transcription is used, the un­
marked ARPABET symbols [p], [t], and [k] indicate purely the release 
of the consonant. We will not be using this narrow transcription style 

in this chapter. 
• nasals: The nasal sounds [n], [m], and [lJ] are made by lowering the 

velum and allowing air to pass into the nasal cavity. 

• fricative: In fricatives, airflow is constricted but not cut off completely. 
The turbulent airflow that results from the constriction produces a char­
acteristic "hissing" sound. The English labiodental fricatives [f] and [v] 
are produced by pressing the lower lip against the upper teeth, allow­
ing a restricted airflow between the upper teeth. The dental fricatives 
[9] and [o] allow air to flow around the tongue between the teeth. The 
alveolar fricatives [s] and [z] are produced with the tongue against the 
alveolar ridge, forcing air over the edge of the teeth. In the palata­
alveolar fricatives [Jl and [3] the tongue is at the back of the alveolar 
ridge forcing air through a groove formed in the tongue. The higher­
pitched fricatives (in English [s], [z], [Jl and [3]) are called sibilants. 
Stops that are followed immediately by fricatives are called affricates; 
these include English [tJ] (J;hicken) and [d3] (fiirajfe). 

• approximant: In approximants, the two articulators are close together 
but not close enough to cause turbulent airflow. In English [y] !yellow), 
the tongue moves close to the roof of the mouth but not close enough 
to cause the turbulence that would characterize a fricative. In English 
[ w] 6fonn1J!.ood), the back of the tongue comes close to the velum. 
American [r] can be formed in at least two ways; with just the tip of 
the tongue extended and close to the palate or with the whole longm, : 

bunched up near the palate. [1] is formed with the tip of the tongue 
against the alveolar ridge or the teeth, with one or both sides of 
tongue lowered to allow air to flow over it. [1] is called a lateral 
because of the drop in the sides of the tongue. 

• tap: A tap or flap [r] is a quick motion of the tongue against the 
alar ridge. The consonant in the middle of the word lotus ([lour~s]) 
a tap in most dialects of American English; speakers of many Bri1tisft 
dialects would use a [t] instead of a tap in this word. 

Vowels 

Like consonants, vowels can be characterized by the position of the 
lators as they are made. The two most relevant parameters for vowels 

124



Section 4.1. Speech Sounds and Phonetic Transcription 

what is called vowel height. which correlates roughly with the location of 
the highest part of the tongue. and the shape of the lips (rounded or not). 
Figure 4.6 shows the position of the tongue for different vowels. 

heed [iy] had [ae] who'd [uw] 

Figure 4.6 Positions of the tongue for three English vowels, high front [iy], 
low front [ae] and high back [uw]; tongue positions modeled after Ladefoged 
(1996). 

In the vowel [i], for example, the highest point of the tongue is toward 
the front of the mouth. In the vowel [u], by contrast, the high-point of the 
tongue is located toward the back of the mouth. Vowels in which the tongue 
is raised toward the front are called front vowels; those in which the tongue FRONT 

is raised toward the back are called back vowels. Note that while both [I] BACK 

and [r] are front vowels, the tongue is higher for [I] than for [r]. Vowels in 
which the highest point of the tongue is comparatively high are called high HIGH 

vowels; vowels with mid or low values of maximum tongue height are called 
mid vowels or low vowels, respectively. 

Figure 4. 7 shows a schematic characterization of the vowel height of 
different vowels. It is schematic because the abstract property height only 
correlates roughly with actual tongue positions; it is in fact a more accurate 
reflection of acoustic facts. Note that the chart has two kinds of vowels: 
those in which tongue height is represented as a point and those in which it 

101 

is represented as a vector. A vowels in which the tongue position changes 
markedly during the production of the vowel is diphthong. English is par- DIPHTHONG 

ticnlarly rich in diphthongs; many are written with two symbols in the IPA 
(for example the [ei] of hg_ke or the [ou] of CQbra). 

The second important articulatory dimension for vowels is the shape 
of the lips. Certain vowels are pronounced with the lips rounded (the same 
lip shape used for whistling). These rounded vowels include [u], [3], and the ROUNDED 

diphthong [ou]. 

125



102 Chapter 4. Computational Phonology and Text-to-Speech 

high 

• iy yuw • uw 

front back 

low 

Figure 4.7 Qualities of English vowels (after Ladefoged (1993)). 

Syllables 

SYLLABLE Consonants and vowels combine to make a syllable. There is no completely 
agreed-upon definition of a syllable; roughly spealdng a syllable is a vowel­
like sound together with some of the surrounding consonants that are most 
closely associated with it The IPA period symbol [.] is used to separate 
syllables, so parsley and catnip have two syllables (['par.sli] and ['kret.mp] 
respectively), tarragon has three ['tre.rg.gan], and dill has one ([drl]). A syl­
lable is usually described as having an optional initial consonant or set of 

ONsET consonants called the onset, followed by a vowel or vowels; followed by a 
coDA final consonant or sequence of consonants called the coda. Thus d is the 

onset of [drl], while 1 is the coda. The task of breaking up a word into sylla-
svLLABIFICATION bles is called syllabification. Although automatic syllabification algorithms 

exist, the problem is hard, partly because there is no agreed-upon definition;. 
of syllable boundaries. Furthermore, although it is usually clear how many; 
syllables are in a word, Ladefoged (1993) points out there are some words.'· 
(meal, teal, seal, hire, fire, hour) that can be viewed either as having oneF 
syllable or two. 

In a natural sentence of American English, certain syllables are mortl!i 
AcCENTED prominent than others. These are called accented syllables. Accented syllac:; 

bles may be prominent because they are louder, they are longer, they are asc• 
sociated with a pitch movement, or any combination of the above. Since a.C.C• 
cent plays important roles in meaning, understanding exactly why a speake{c 

126



Section 4.2. The Phoneme and Phonological Rules 

chooses to accent a particular syllable is very complex. But one important 
factor in accent is often represented in pronunciation dictionaties. This fac­
tor is called lexical stress. The syllable that has lexical stress is the one that 
will be louder or longer if the word is accented. For example the word pars­
ley is stressed in its first syllable, not its second. Thus if the word parsley 
is accented in a sentence, it is the first syllable that will be stronger. We 
write the symbol['] before a syllable to indicate that it has lexical stress (e.g. 
['par.sli]l. This difference in lexical stress can affect the meaning of a word. 
For example the word content can be a noun or an adjective. When pro­
nounced in isolation the two senses are pronounced differently since they 
have different stressed syllables (the noun is pronounced ['kan.tmt]l and the 
adjective [bn.'tmt]. Other pairs like this include object (noun ['ab.d3rkt] 
and verb [gb.'d3rkt]); see Cutler (1986) for more examples. Automatic dis­
ambiguation of such homographs is discussed in Chapter 17. The role of 
prosody is taken up again in Section 4. 7. 

4.2 THE PHONEME AND PHONOLOGICAL RULES 

'Sease me, while I kiss the sky 
Jimi Hendrix, Purple Haze 

'Sease me, while I kiss this guy 
Common mis-hearing of same lyrics 

All [t]s are not created equally. That is, phones are often produced 
differently in different contexts. For example, consider the different pro­
nunciations of [t] in the words tunafish and starfish. The [t] of tunafish is 
aspirated. Aspiration is a period of voicelessness after a stop closure and 
before the onset of voicing of the following vowel. Since the vocal cords are 
not vibrating, aspiration sounds like a puff of air after the [t] and before the 

LEXICAL 
STRESS 

103 

HOMOGRAPHS 

vowel. By contrast, a [t] following an initial [s] is unaspirated; thus the [t] UNASPIRATED 

in starfish ([starfif]) has no period of voicelessness after the [t] closure. This 
vatiation in the realization of [t] is predictable: whenever a [t] begins a word 
or unreduced syllable in English, it is aspirated. The same vatiation occurs 
for [k]; the [k] of sky is often mis-heard as [g] in Jimi Hendrix's lyrics because 
[k] and [g] are both unaspirated. In a very detailed transcription system we 
could use the symbol for aspiration [h]after any [t] (or [k] or [p]l which be-
gins a word or unreduced syllable. The word tunafish would be transcribed 
[thumfrf] (the ARPAbet does not have a way of marking aspiration). 

127



104 Chapter 4. Computational Phonology and Text-to-Speech 

There are other contextual variants of [t]. For example, when [t] occurs 
between two vowels, particularly when the first is stressed, it is pronounced 
as a tap. Recall that a tap is a voiced sound in which the top of the tongue 
is curled up and back and struck quickly against the alveolar ridge. Thus the 
word buttercup is usually pronounced [bAtackAp ]l[b uh dx axr k uh p] rather 
than [bAtackAp]l[b uh t axr k uh p]. 

Another variant of [t] occurs before the dental consonant [e]. Here the 
[t] becomes dentalized ([~]).That is, instead oftbe tongue forming a closure 
against the alveolar ridge, the tongue touches the back of the teeth. 

How do we represent this relation between a [t] and its different real­
izations in different contexts? We generally capture this kind of pronunci­

PHONEME ation variation by positing an abstract class called the phoneme, which is 
ALLOPHONEs realized as different allophones in different contexts. We traditionally write 

phonemes inside slashes. So in the above examples, jtj is a phoneme whose 
allophones include [th], [r], and [~]. A phoneme is thus a kind of general­
ization or abstraction over different phonetic realizations. Often we equate 
the phonemic and the lexical levels, thinking of the lexicon as containing 
transcriptions expressed in terms of phonemes. When we are transcribing 
the pronunciations of words we can choose to represent them at this broad 
phonemic level; such a broad transcription leaves out a lot of predictable 

~~f~~61,1PTION phonetic detail. We can also choose to use a narrow transcription that 
includes more detail, including allophonic variation, and uses the various di­
acritics. Figure 4.8 summarizes a number of allophones of It!; Figure 4.9 
shows a few of the most commonly used IPA diacritics. 

toucan 
[t] after [s] or in reduced syllables starfish [starfii] 
[?] word-finally or after vowel before [n] kitten [khr?n] 

[?t] sometimes word-finally cat [kh;e?t] 

[r] between vowels buttercup [bAtackh Ap] 

[t"] before consonants or word-finally fruitcake [frut 'kherk] 

ttl before dental consonants ([e]) eighth [er~e] 
sometimes 

Figure 4.8 Some allophones of It! in General American English. 

128



Section 4.3. Phonological Rules and Transducers 

The relationship between a phoneme and its allophones is often cap­
tured by writing a phonological rule. Here is the phonological rule for den­
talization in the traditional notation of Chomsky and Halle (1968): 

ft/-+ [~l '-e (4.1) 

In this notation, the surface allophone appears to the right of the arrow, 
and the phonetic environment is indicated by the symbols surrounding the 
underbar (_). These rules resemble the rules of two-level morphology of 
Chapter 3 but since they don't use multiple types of rewrite arrows, this rule 
is ambiguous between an obligatory or optional rule. Here is a version of the 
flapping rule: 

/{~}/-+ [r]/V_V (4.2) 

Diacritics II Suprasegmentals 
Voiceless [<;t] ' Primary stress ['pu.m~J , 

h Aspirated [ph] Secondary stress ['four~,gracf] 
' 

Syllabic [)] : Long [a:] 
' 
- Nasalized [fu] Half long [a·] 
" Umeleased [t "] Syllable break ['pu.m;)] 

Dental [~] 
0 

Figure4.9 Some of the IPA diacritics and symbols for suprasegmentals. 

4.3 PHONOLOGICAL RULES AND TRANSDUCERS 

Chapter 3 showed that spelling rules can be implemented by transducers. 
Phonological rules can be implemented as transducers in the same way; 
indeed the original work by Johnson (1972) and Kaplan and Kay (1981) 
on finite-state models was based on phonological rules rather than spelling 
rules. There are a number of different models of computational phonol­
ogy that use finite automata in various ways to realize phonological rules. 
We will describe the two-level morphology of Koskennierni (1983) used in 
Chapter 3, but the interested reader should be aware of other recent models. 3 

While Chapter 3 gave examples of two-level rules, it did not talk about the 

3 One example is Bird and Ellison's (1994) model of the multi-tier representations of au­
tosegmental phonology in which each phonological tier is represented by a finite-state au­
tomaton, and autosegmental association by the synchronization of two automata. 

105 

129



106 Chapter 4. Computational Phonology and Text-to-Speech 

motivation for these rules, and the differences between traditional ordered 
rules and two-level rules. We will begin with this comparison. 

As a first example, Figure 4.10 shows a transducer which models the 
application of the simplified flapping rule in (4.3): 

/t!-+ [r] /V _ V (4.3) 

other 

V:@ 

t 

V:@ 

Figure 4.10 Transducer for English Flapping: ARPAbet "dx" indicates a 
flap, and the "other" symbol means "any feasible pair not used elsewhere in 
the transducer". "@"means "any symbol not used elsewhere on any arc". 

The transducer in Figure 4.10 accepts any string in which flaps occur 
in the correct places (after a stressed vowel, before an unstressed vowel), and 
rejects strings in which flapping doesn't occur, or in which flapping occurs 
in the wrong environment. Of course the factors that flapping are actually a 

. good deal more complicated, as we will see in Section 5. 7. 
In a traditional phonological system, many different phonological rules 

apply between the lexical form and the surface form. Sometimes these rules 
interact; the output from one rule affects the input to another rule. One 
way to implement rule-interaction in a transducer system is to run transduc­
ers in a cascade. Consider, for example, the rules that are needed to deal 
with the phonological behavior of the English noun plural snffix -s. This 
suffix is pronounced [iz] after the phones [s], [J], [z], or [3] (so peaches is pro­
nounced [pitfiz], and faxes is pronounced [freksiz]), [z] after voiced sounds 
(pigs is pronounced [p1gz]), and [s] after unvoiced sounds (cats is pronounced 
[krets]). We model this variation by writing phonological rules for the real­
ization of the morpheme in different contexts. We first need to choose one of 
these three forms (s, z, and iz) as the "lexical" pronunciation of the snffix; we 

130



Section 4.3. Phonological Rules and Transducers 

chose z only because it turns out to simplify rule writing. Next we write two 
phonological rules. One, similar to theE-insertion spelling rule of page 77, 
inserts a [i] after a morpheme-final sibilant and before the plural morpheme 
[z]. The other makes sure that the -s suffix is properly realized as [s] after 
unvoiced consonants. 

E --+ i I [+sibilant] A _ z # 

z --+ s I [-voice] A _ # 

(4.4) 

(4.5) 

These two rules must be ordered; rule (4.4) must apply before (4.5). 
This is because the environment of ( 4.4) includes z, and the rule ( 4.5) changes 
z. Consider running both rules on the lexical form fox concatenated with the 
plural -s: 

Lexical form: faks 'z 
(4.4) applies: faks'iz 
(4.5) doesn't apply: faks'iz 

If the devoicing rule ( 4.5) was ordered first, we would get the wrong 
result (what would this incorrect result be?). This situation, in which one 
rule destroys the environment for another, is called bleedingA 

Lexical form: 
(4.5) applies: 
(4.4) doesn't apply: 

faks'z 
faks's 
faks's 

As was suggested in Chapter 3, each of these rules can be represented 
by a transducer. Since the rules are ordered, the transducers would also need 
to be ordered. For example if they are placed in a cascade, the output of the 
first transducer would feed the input of the second transducer. 

Many rules can be cascaded together this way. As Chapter 3 discussed, 
running a cascade, particularly one with many levels, can be unwieldy, and 
so transducer cascades are usually replaced with a single more complex 
transducer by composing the individual transducers. 

Koskenniemi's method of two-level morphology that was sketchily 
introduced in Chapter 3 is another way to solve the problem of rule ordering. 
Koskenniemi (1983) observed that most phonological rules in a grammar 
are independent of one another; that feeding and bleeding relations between 

4 If we had chosen to represent the lexical pronunciation of -s as [s] rather than [z J, we would 
have written the rule inversely to voice the -s after voiced sounds, but the rules would still 
need to be ordered; the ordering would simply flip. 

107 

131



108 Chapter 4. Computational Phonology and Text-to-Speech 

rules are not the norm5 Since this is the case, Koskenniemi proposed that 
phonological rules be run in parallel rather than in series. The cases where 
there is rule interaction (feeding or bleeding) we deal with by slightly modi­
fying some rules. Koskenniemi's two-level rules can be. thought of as a way 
of expressing declarative constraints on the well-formedness of the lexical­
surface mapping. 

Two-level rules also differ from traditional phonological rules by ex­
plicitly coding when they are obligatory or optional, by using four differing 
rule operators; the 9 rule corresponds to traditional obligatory phonolog­
ical rules, while the =;. rule implements optional rules: 

Rule type Interpretation 
a : b ¢ c _ d a is always realized as b in the context c _ d 
a : b =;. c _ d a may be realized as b only in the context c _ d 
a : b 9 c _ d a must be realized as b in context c _ d and nowhere else 
a : b I¢ c _ d a is never realized as b in the context c _ d 

The most important intuition of the two-level rules, and the mechanism 
that lets them avoiding feeding and bleeding, is their ability to represent 
constraints on two levels. This is based on the use of the colon (":"), which 
was touched in very briefly in Chapter 3. The symbol a:b means a lexical 
a that maps to a surface b. Thus a:b 9 :c _ means a is realized as b 
after a surface c. By contrast a:b 9 c: _ means that a is realized as b 
after a lexical c. As discussed in Chapter 3, the symbol c with no colon is 
equivalent to c:c that means a lexical c which maps to a surface c. 

Figure 4.11 shows an intuition for how the two-level approach avoids 
ordering for the i-insertion and z-devoicing rules. The idea is that the z­
devoicing rule maps a lexical z-insertion to a surface s and the i rule refers 
to the lexical z: 

The two-level rules that model this constraint are shown in 
and (4.7): 

E: i <* [+sibilant]: A_ z: # 

z: s <* [-voice]: A _ # 

As Chapter 3 discussed, there are compilation algorithms for creating 
automata from rules. Kaplan and Kay (1994) give the general derivation of 
these algorithms, and Antworth (1990) gives one that is specific to two-level 
rules. The automata corresponding to the two rules are shown iu Figure 4.12 

5 Feeding is a situation in which one rules creates the environment for another rule and so 
must be run beforehand. 

132



Section 4.3. Phonological Rules and Transducers 

r~r+siiif-~::~=====~-" 
. [:::;~~~;r~-------T . 

ix s 

lexical level 

suiface level 

Figure 4.11 The constraints for the i-insertion and z-devoicing rules both 
refer to a lexical z, not a suiface s. 

and Figure 4.13. Figure 4.12 is based on Figure 3.14 of Chapter 3; see page 
78 for a reminder of how this automaton works. Note in Figure 4.12 that 
the plural morpheme is represented by z:, indicating that the constraint is 
expressed about an lexical rather than surface z. 

other 

#,other 

Figure 4.12 The transducer for the i-insertion rule 4.4. The rule can be 
read whenever a morpheme ends in a sibilant, and the following morpheme is 

z, insert [i]. 

Figure 4.14 shows the two automata run in parallel on the input [faks- z] 
(the figure uses the ARPAbet notation [faa k sA z]). Note that both the au­
tomata assuming the default mapping A:£ to remove the morpheme boundary, 
and that both automata end in an accepting state. 

109 

133



110 Chapter 4. Computational Phonology and Text-to-Speech 

z, #, other 

#,other # 

Figure 4.13 The transducer for the z-devoicing rule 4.5. This rule might be 
summarizedDevoice the morpheme z if it follows a morpheme-final voiceless 

consonant. 

Intermediate 

ix~insertion 

z-devoicing 

Surface f aa k s ix 

Figure 4.14 The transducer for the i-insertion rule 4.4 and the z-devoicing 
rule 4.5 run in parallel. 

4.4 ADVANCED ISSUES IN COMPUTATIONAL PHONOLOGY 

Hanp.ony 

Rules like flapping, i-insertion, and z-devoicing are relatively simple as 
nological rules go. In this section we turu to the use of the two-level or 
state model of phonology to model more sophisticated phenomena; this 
tion will be easier to follow if the reader has some knowledge ofph<Jnc•loliY·! 
The Yawelmani dialect of Yokuts is a Native American language spoken 
California with a complex phonological system. In particular, there are 
phonological rules related to the realization of vowels that had to be orderect) 
in traditional phonology and whose interaction thus demonstrates a cmnplii; 
cated use of finite-state phonology. These rules were first drawn up in 

134



Section 4.4. Advanced Issues in Computational Phonology 

traditional Chomsky and Halle (1968) format by Kisseberth (1969) follow­
ing the field work of Newman (1944). 

First, Yokuts (like many other languages including for example Turk­
ish and Hungarian) has a phonological phenomenon called vowel harmony. 
Vowel harmony is a process in which a vowel changes its form to look like 
a neighboring vowel. In Yokuts, a suffix vowel changes its form to agree 
in backness and roundness with the preceding stem vowel. That is, a front 
vowel like Iii will appear as a backvowel [u] if the stem vowel is lui (ex­
amples are taken from Cole and Kisseberth (1995): 6 

Lexical Surface Gloss 
dub+hin -+ dub hun "tangles, non-future" 
xil+hin --+ xilhin "leads by the hand, non-future" 
bok'+al --+ bok'ol "might eat" 
xat'+al --+ xat'al "might find" 

This Harmony rule has another constraint: it only applies if the suffix 
vowel and the stem vowel are of the same height. Thus lui and /il are both 
high, while I o I and I al are both low. 

The second relevant rule, Lowering, causes long high vowels to be­
come low; thus In: I becomes [o:] in the first example below: 

Lexical Surface Gloss 
?u:t'+it --+ ?o:t'ut "steal, passive aorist" 
mi:k'+it --+ me:k'+it "swallow, passive aorist" 

The third rule, Shortening, shortens long vowels if they occur in closed 
syllables: 

Lexical 
s:ap+hin 
sudu:k+hin 

Surface 
--+ saphin 
--+ sudokhun 

The Yokuts rules must be ordered, just as the i-insertion and z-devoicing 
rules had to be ordered. Harmony must be ordered before Lowering because 
the In: I in the lexical form l?u:t'+itl causes the Iii to become [u] before it 
lowers in the surface form [?o:t'ut]. Lowering must be ordered before Short­
ening because the /n:l in lsudu:k+hinl lowers to [o]: if it was ordered after 
shortening it would appear on the surface as [u]. 

Goldsmith (1993) and Lakoff (1993) independently observed that the 
Yokuts data could be modeled by something like a transducer; Karttunen 

6 For purposes of simplifying the explanation, this account ignores some parts of the system 
such as vowel underspecification (Archangeli, 1984). 

111 

VOWEL 
HARMONY 

135



112 Chapter 4. Computational Phonology and Text -to-Speed~ 

(1998) extended the argument, showing that the Goldsmith and Lakoff con­
straints could be represented either as a cascade of three rules in series, or in 
the two-level formalism as three rules in parallel; Figure 4.15 shows the two 
architectures. Just as in the two-level examples presented earlier, the rules 
work by referring sometimes to the lexical context, sometimes to the surface 
context; writing the rules is left as Exercise 4.10 for the reader. 

La<cal {I ?lu:lt I+ lh li I nl j 1 I ? I u: I t I + I h I ; I n I 1 
l 

1-R;u-;di~g-l 
' 0 ' 
t Lowering ~ 
' 0 ' I Shortening 1 
~-----,-----~ 

' Suifacd l?lolt lhlulnl { { l?loltlhlulnl j 
a) Cascade of rules. b) Parallel two-level rules. 

Figure 4.15 Combining the rounding, lowering, and shortening rules for 
Yawelmani Yoknts. 

Templatic Morphology 

Finite-state models of phonology/morphology have also been proposed for 
the templatic (non-concatenative) morphology (discussed on page 60) com­
mon in Semitic languages like Arabic, Hebrew, and Syriac. McCarthy (1981) 
proposed that this kind of morphology could be modeled by using different 

TIERS levels of representation that Goldsmith (1976) had called tiers. Kay (1987) 
proposed a computational model of these tiers via a special transducer which 
reads four tapes instead of two, as in Figure 4.16. 

The tricky part here is designing a machine which aligns the vatious 
strings on the tapes in the correct way; Kay proposed that the binyan tape 
could act as a sort of guide for alignment. Kay's intuition has led to a number 
of more fully worked out finite-state models of Semitic morphology such as 
Beesley's (1996) model for Arabic and Kiraz's (1997) model for Syriac. 

The more recent work of Komai (1991) and Bird and Ellison (1994) 
showed how one-tape automata (i.e. finite-state automata rather than four­
tape or even two-tape traosducers) could be used to model templatic mor­
phology and other kinds of phenomena that are handleed with the tleic-o:;seu 

AUTOSEGMENTAL autosegmental representations of Goldsmith (1976). 

136



Section 4.4. Advanced Issues in Computational Phonology 

lexical tape a k I I I a t~\:j 
./' , .. -·····' 

consonantal root tape {,_-"-_k_LI_t--"[cc.~c-·"··-'·i~;~·····c:c·· L---'---'1--'1 
····· 

binyan tape {z____LI _v_,_l_c___LI _c--"-=v'""."'j)""c_,J_v__LI c__,{ 

vocalic morph. tape {"_IL__a-+f'-;_""_J_I_""_""_j' _ __L _ _L__l
1
__51 

Figure 4.16 A finite-state model of templatic ("non-concatenative") mor­
phology. Modified from Kay (1987) and Sproat (1993). 

Optimality Theory 

In a traditional phonological derivation, we are given an underlying lexical 
form and a surface form. The phonological system then consists of one com­
ponent: a sequence of rules which map the underlying form to the surface 
form. Optimality Theory (OT) (Prince and Smolensky, 1993) offers anal­
ternative way of viewing phonological derivation, based on two functions 
(GEN and EVAL) and a set of ranked violable constraints (CON). Given an 
underlying form, the GEN function produces all imaginable surface forms, 
even those which couldn't possibly be a legal surface form for the input. The 
EVAL function then applies each constraint in CON to these surface forms in 
order of constraint rank. The surface form which best meets the constraints 
is chosen. 

A constraint in OT represents a wellformedness constraint on the sur­
face form, such as a phonotactic constraint on what segments can follow each 
other, or a constraint on what syllable structures are allowed. A constraint 
can also check how faithful the surface form is to the underlying form. 

Let's turn to our favorite complicated language, Yawelmani, for an ex­
ample.? In addition to the interesting vowel harmony phenomena discussed 
above, Yawelmani has a phonotactic constraints that rules out sequences of 
consonants. In particular three consonants in a row (CCC) are not allowed 
to occur in a surface word. Sometimes, however, a word contains two con­
secutive morphemes such that the first one ends in two consonants and the 
second one starts with one consonant (or vice versa). What does the Ian-

7 The following explication of OT via the Yawelmani example draws heavily from 
Archangeli (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute. 

113 

OPTIMALITY 
THEORY 

OT 

FAITHFUL 

137



114 

COMPLEX 
ONSET 
COMPLEX 
CODA 

RESYLLABIFIED 

Chapter 4. Computational Phonology and Text-to-Speech 

guage do to solve this problem? It turns out that Yawelmani either deletes 
one of the consonants or inserts a vowel in between. 

For example, if a stem ends in a C, and its suffix starts wit!) CC, the 
first C of the suffix is deleted("+" here means a morpheme boundary): 

C-deletion C --+ E I C + _ C (4.8) 

Here is an example where the CCVC "passive consequent adjunctive" mor­
pheme hne:l (actually the underlying form is /hnil/) drops the initial C if 
the previous morpheme ends in two consonants (and an example where it 
doesn't, for comparison): 

underlying 
morphemes 
diyel-ne:l-aw 
cawa-hne:l-aw 

gloss 
"guard - passive consequent adjunctive - locative" 
"shout - passive consequent adjunctive - locative" 

If a stem ends in CC and the suffix starts with C, the language instead 
inserts a vowel to break up the first two consonants: 

V-insertion E --+ VIC_ C + C 

Here are some examples in which an i is inserted into the roots ?ilk- "sing" 
and the roots logw- "pulverize" only when they are followed by a C-initial 
suffix like -hin, "past", not a V-initial suffix like -en, "future": 

surface form gloss 
1ilik-hin "sang" 
1ilken "will sing" 
logiwhin 
log wen 

"pulverized" 
"will pulverize" 

Kisseberth (1970) suggested that it was not a coincidence that Yawel- ··• 
mani had these particular two rules (and for that matter other related deletion • 
rules that we haven't presented). He noticed that these rules were function- •• 
ally related; in particular, they all are ways of avoiding three consonants in a · 
row. Another way of stating this generalization is to talk about syllable 
ture. Yawelmani syllables are only allowed to be of the form CVC or 
(where C means a consonant and V means a vowel). We say that languages 
like Yawelmani don't allow complex onsets or complex codas. From 
point of view of syllabification, then, these insertions and deletions all 
pen so as to allow Yawelmani words to be properly syllabified. Since~,,~,.., .. 
syllables aren't allowed on the surface, CVCC roots must be re!;ylllab·ifitlcl: 
when they appear on the surface. For example, here are the syllabificati1Jns; 

138



Section 4.4. Advanced Issues in Computational Phonology 

of the Yawelmani words we have discussed and some others; note, for ex­
ample, that the surface syllabification of the CVCC syllables moves the final 
consonant to the beginning of the next syllable: 

underlying surface gloss 
morphemes syllabification 
?ilk-en ?il.ken "will sing" 
logw-en log.wen "will pulverize" 
logw-hin lo.giw.hin "will pulverize" 
xat-en xa. ten "will eat" 
diyel-hnil-aw di.yel.ne:.law "ask- pass. cons. adjunct. -locative" 

Here's where Optimality Theory comes in. The basic idea in Optimal-
ity Theory is that the language has various constraints on things like sylla­
ble structure. These constraints generally apply to the surface form. One 
such constraint, *COMPLEX, says "No complex onsets or codas". Another 
class of constraints requires the surface form to be identical to (faithful to) 
the underlying form. Thus FAITHV says "Don't delete or insert vowels" and 
FAITHC says "Don't delete or insert consonants". Given an underlying form, 
the GEN function produces all possible surface forms (i.e., every possible in­
sertion and deletion of segments with every possible syllabification) and they 
are ranked by the EVAL function using these constraints. Figure 4.17 shows 
the architecture. 

l?ilk-hin/ 

I 
GEN 

?ilk.hin ?il.khin ?il.hin ?ak.pid ?i.lik.hin 

EVAL (*COMPLEX, FAITHC, FAITHV) 

j 
[?i.lik.hin] 

Figure 4.17 The architecture of a derivation in Optimality Theory (after 
Archangeli (1997)). 

The EVAL function works by applying each constraint in ranked order; 
the optimal candidate is one which either violates no constraints, or violates 

115 

139



116 Chapter 4. Computational Phonology and Text-to-Speech 

less of them than all the other candidates. This evaluation is usually shown 
TABLEAU on a tableau (plural tableaux). The top left-hand cell shows the input, the 

constraints are listed in order of rank across the top row, and the possible 
outputs along the left-most column. Although there are an infinite number 
of candidates, it is traditional to show only the ones which are 'close'; in 
the tableau below we have shown the output ?ak.pid just to make it clear 
that even very different surface forms are to be included. If a form violates 
a constraint, the relevant cell contains *; a !* indicates the fatal violation 

,. which causes a candidate to be eliminated. Cells for constraints which are 
irrelevant (since a higher-level constraint is already violated) are shaded. 

II /?ilk-hin/ II *COMPLEX I FAITHC I FAITHV II 
?ilk.hin *! 
?il.khin *! 
?il.hin *! .,.,. ?i.lik.hin * 
?ak.pid *! 

One appeal of Optimality Theoretic derivations is that the constraints 
are presumed to be cross-linguistic generalizations. That is all languages are 
presumed to have some version of faithfulness, some preference for simple 
syllables, and so on. Languages differ in how they rank the constraints; thus 
English, presumably, ranks FAITHC higher than *COMPLEX. (How do we 
know this?) 

Can a derivation in Optimality Theory be implemented by finite-state 
transducers? Frank and Satta (1999), following the foundational work of 
Ellison (1994), showed that (1) if GEN is a regular relation (for example 
assuming the input doesn't contain context-free trees of some sort), and 
if the number of allowed violations of any constraint has some finite bound, 
then an OT derivation can be computed by finite-state means. This second 
constraint is relevant because of a property of OT that we haven't mentioned: 
if two candidates violate exactly the same number of constraints, the wi' nrrmg 

· candidate is the one which has the smallest number of violations of the 
vant constraint. 

One way to implement OT as a finite-state system was worked out 
Karttunen (1998), following the above-mentioned work and that of 
mond (1997). In Karttunen's model, GENis implemented as a uruite-stal:e 
transducer which is given an underlying form and produces a set of 
date forms. For example for the syllabification example above, GEN 

140



Section 4.4. Advanced Issues in Computational Phonology 

generate all strings that are variants of the input with consonant deletions or 
vowel insertions, and their syllabifications. 

Each constraint is implemented as a filter transducer that lets pass only 
strings which meet the constraint. For legal strings, the transducer thus acts 
as the identity mapping. For example, *COMPLEX would be implemented 
via a transducer that mapped any input string to itself, unless the input string 
had two consonants in the onset or coda, in which case it would be mapped 
to null. 

The constraints can then be placed in a cascade, in which higher-ranked 
constraints are simply run first, as suggested in Figure 4. 18. 

l 

GEN 
0 

*COMPLEX 
0 

FAITHC 
0 

FAITHV 

I 
Figure 4.18 Version #1 ("merciless cascade") of Karttunen's finite-state 
cascade implementation of OT. 

There is one crucial flaw with the cascade model in Figure 4.18. Recall 
that the constraints-transducers filter out any candidate which violates a con­
straint. But in many derivations, include the proper derivation of ?i.lik.hin, 
even the optimal form still violates a constraint. The cascade in Figure 4.17 
would incorrectly filter it out, leaving no surface form at all! Frank and Satta 
(1999) and Hammond (1997) both point out that it is essential to only en­
force a constraint if it does not reduce the candidate set to zero. Karttunen 
(1998) formalizes this intuition with the lenient composition operator. Le­
nient composition is a combination of regular composition and an operation 
called priority nnion. The basic idea is that if any candidates meet the con­
straint these candidates will be passed through the filter as usual. If no output 
meets the constraint, lenient composition retains all of the candidates. Fig­
ure 4.19 shows the general idea; the interested reader should see Karttunen 
(1998) for the details. Also see Tesar (1995, 1996), Fosler (1996), and Eisner 
(1997) for discussions of other computational issues in OT. 

117 

LENIENT 
COMPOSITION 

141



118 

4.5 

MACHINE 
LEARNING 

SUPERVISED 

UNSUPERVISED 

LEARNING 
BIAS 

Chapter 4. Computational Phonology and Text-to-Speech 

I /?ilk-bini 

GEN GEN 
Oc ?ilk. bin ?il.khin ?il.hin ?ak.pid ?i.lik.hin 

*COMPLEX *COMPLEX o, 
?il.hin ?ak.pid ?i.lik.hin 

FAITHC FAITHC o, 
FAITHV ?i.lik.hin 

FAITHV 
I L ?i.lik.hin] 

Figure 4.19 Version #2 ("lenient cascade") of Karttunen's finite-state cas-
cade implementation of OT, showing a visualization of the candidate popu1a-
lions that would be passed through each FST constraint. 

MACHINE LEARNING OF PHONOLOGICAL RULES 

The task of a machine learning system is to automatically induce a model 
for some domain. given some data from the domain and. sometimes, other .. 
information as well. Thus a system to learn phonological rules would be 
given at least a set of (surface forms of) words to induce from. A supervised 
algorithm is one which is given the correct answers for some of this data, 
using these answers to induce a model which can generalize to new data 
it hasn't seen before. An unsupervised algorithm does this purely from 
the data. While unsupervised algorithms don't get to see the correct labels 
for the classifications, they can be given hints about the nature of the rules or 
models they should be forming. For example, the knowledge that the models 
will be in the form of automata is itself a kind of hint Such hints are 
a learning bias. 

This section gives a very brief overview of some models of unsujper­
vised machine learning of phonological rules; more details about mltcbdm~.·. 
learndng algorithms will be presented throughout the book. 

Ellison (1992) showed that concepts like the consonant and vowel 
tinction. the syllable structure of a language, and harmony relati<Jns:hiilS. 
could be learned by a system based on choosing the model from the 
of potential models which is the simplest. SinJplicity can be measured 
choosing the model with the minimum coiling length, or the highest 
bility (we will define these terms in detail in Chapter 6). Daelemans et 
(1994) used the fustance-Based Generalization algorithm (Aha eta!., 
to learn stress rule for Dutch; the algorithm is a supervised one which 

142



Section 4.5. Machine Learning of Phonological Rules 

given a number of words together with their stress patterns, and which in­
duces generalizations about the mapping from the sequences of light and 
heavy syllable type in the word (light syllables have no coda consonant; 
heavy syllables have one) to the stress pattern. Tesar and Smolensky (1993) 
show that a system which is given Optimality Theory constraints but not 
their ranking can Jearn the ranking from data via a simple greedy algorithm. 

Johnson ( 1984) gives one of the first computational algorithms for 
phonological rule induction. His algorithm works for rules of the form 

(4.10) a -7 b/C 

where Cis the feature matrix of the segments around a. Johnson's algorithm 
sets up a system of constraint equations which C must satisfy, by consider­
ing both the positive contexts, i.e., all the contexts Ci in which a b occurs on 
the surface, as well as all the negative contexts Cj in which an a occurs on 
the surface. Touretzky et al. (1990) extended Johnson's insight by using the 
version spaces algorithm of Mitchell (1981) to induce phonological rules in 
their Many Maps architecture, which is similar to two-level phonology. Like 
Johnson's, their system looks at the underlying and surface realizations of 
single segments. For each segment, the system uses the version space algo­
rithm to search for the proper statement of the context. The model also has a 
separate algorithm which handles harmonic effects by looking for multiple 
segmental changes in the same word, and is more general than Johnson's in 
dealing with epenthesis and deletion rules. 

The algorithm of Gildea and Jurafsky (1996) was designed to induce 
transducers representing two-level rules of the type we have discussed ear­
lier. Like the algorithm of Touretzky et al. (1990), Gildea and Jurafsky's 
algorithm was given sets of pairings of underlying and surface forms. The 
algorithm was based on the OSTIA (Oncina et al., 1993) algorithm, which is 
a general learning algorithm for a subtype of finite-state transducers called 
subsequential transducers. By itself, the OSTIA algorithm was too general 
to learn phonological transducers, even given a large corpus of underlying­
fonn/surface-form pairs. Gildea and Jurafsky then augmented the domain­
independent OSTIA system with three kinds of learning biases which are 
specific to natural language phonology; the main two are Faithfulness (un­
derlying segments tend to be realized similarly on the surface), and Com­
munity (similar segments behave similarly). The resulting system was able 
to learn transducers for flapping in American English, or German consonant 
devoicing. 

Finally, many learning algorithms for phonology are probabilistic. For 

119 

143



120 Chapter 4. Computational Phonology and Text-to-Speech 

example Riley (1991) and Withgott and Chen (1993) proposed a decision' 
tree approach to segmental mapping. A decision tree is induced for each 
segment, classifying possible realizations of the segment in terms of contex­
tual factors such as stress and the surrounding segments. Decision trees and 
probabilistic algorithms in general will be defined in Chapters 5 and 6. 

4.6 MAPPING TEXT TO PHONES FOR TTS 

Dearest creature in Creation 
Studying English pronunciation 

I will teach you in my verse 
Sounds like corpse, corps, horse and worse. 

It will keep you, Susy, busy, 
Make your head with heat grow dizzy 

River, rival; tomb, bomb, comb; 
Doll and roll, and some and home. 

Stranger does not rime with anger 
Neither does devour with clangour. 

G.N. Trenite (1870-1946) The Chaos, 

reprinted in Witten (1982). 

Now that we have learned the basic inventory of phones in English and 
seen how to model phonological rules, we are ready to study the problem of 
mapping from an orthographic or text word to its pronunciation. 

Pronunciation Dictionaries 

An important component of this mapping is a pronunciation di•:ticma,ry. 
These dictionaries are actually used in both ASR and TTS systems, a.mmu1gn• 
because of the different needs of these two areas the contents of the dJC:t!Ot·' 

naries are somewhat different. 
The simplest pronunciation dictionaries just have a list of words 

their pronunciations: 

144



Section 4.6. Mapping Text to Phones for TTS 

Word Pronunciation Word Pronunciation 
cat [k<et] goose [gus] 
cats [krets] geese [gis] 
pig [prg] hedgehog ['hrd3.h~g] 

pigs [prgz] hedgehogs ['hrd3.h:Jgz] 
fox [fox] 
foxes ['fnk.srz] 

Three large, commonly-used, on-line pronunciation dictionaries in this 
format are PRONLEX, CMUdict, and CELEX. These are used for speech 
recognition and can also be adapted for use in speech synthesis. The PRON­
LEX dictionary (LDC, 1995) was designed for speech recognition applica­
tions and contains pronunciations for 90,694 wordforms. It covers all the 
words used in many years of the Wall Street Journal, as well as the Switch­
board Corpus. The CMU Pronouncing Dictionary was also developed for 
ASR purposes and has pronunciations for about 100,000 wordforms. The 
CELEX dictionary (Celex, 1993) includes all the words in the Oxford Ad­
vanced Leamer's Dictionary (1974) (41,000 lemmata) and the Longman 
Dictionary of Contemporary English (1978) (53,000 lemmata), in total it has 
pronunciations for 160,595 wordforms. Its pronunciations are British while 
the other two are American. Each dictionary uses a different phone set; the 
CMU and PRONLEX phonesets are derived from the ARPAbet, while the 
CELEX dictionary is derived from the IPA. All three represent three levels 
of stress: primary stress, secondary stress, and no stress. Figure 4.20 shows 
the pronunciation of the word armadillo in all three dictionaries. 

I Dictionary II Pronunciation IPA Version 

Pronlex +arm.xd'Il.o [,arm~' drlo u] 
CMU AA2RMAHODIH1 LOWO [,urm,;'drlou] 
CELEX "#-m@-'dl-15 [,u:.m~.'d:I.Qu] 

Figure 4.20 The pronunciation of the word annadillo in three dictionaries. 
Rather than explain special symbols, we have given an IPA equivalent for each 
pronunciation. The CMU dictionary represents unstressed vowels ([g], [i], etc.) 
by giving a 0 stress level to the vowel. We represented this by underlining in 
the IPA form. Note the r-dropping and use of the [ou] rather than [ou] vowel in 
the British CELEX pronunciation. 

Often two distinct words are spelled the same (they are homographs) 
but pronounced differently. For example the verb wind ("You need to wind 
this up more neatly") is pronounced [wamd] while the noun wind ("blow, 

121 

145



122 Chapter 4. Computational Phonology and Text-to-Speech 

blow, thou winter wind") is pronounced [ wmd]. This is essential for TTS 
applications (since in a given context the system needs to say one or the 
other) but for some reason is usually ignored in current speech recognition 
systems. Printed pronunciation dictionaries give distinct pronunciations for 
each part-of-speech; CELEX does as well. Since they were designed for 
ASR, Pronlex and CMU, although they give two pronunciations for the form 
wind, don't specify which one is used for which part-of-speech. 

Dictionaries often don't include many proper names. This is a seri­
ous problem for many applications; Liberman and Church (1992) report that 
21% of the word tokens in their 33-rnillion-word 1988 AP newswire cor­
pus were names. Furthermore, they report that a list obtained in 1987 from 
the Donnelly marketing organization contains 1.5 million names (covering 
72 million households in the United States). But only about 1000 of the 
52477 lemmas in CELEX (which is based on traditional dictionaries) are 
proper names. By contrast Pronlex includes 20,000 names; this is still only 
a small fraction of the 1.5 million. Very few dictionaries give pronunciations 
for entries like Dr., which as Liberman and Church (1992) point out can be 
"doctor" or "drive", or 2/3, which can be "two thirds" or "February third" or 
"two slash three". 

No dictionaries currently have good models for the pronunciation of 
function words (and, I, a, the, of, etc.). This is because the variation in these 
words due to phonetic context is so great. Usually the dictionaries include 
some simple baseform (such as [oi] for the) and use other algorithms to de­
rive the variation due to context; Chapter 5 will treat the issue of modeling 
contextual pronunciation variation for words of this sort. 

One significant difference between TTS and ASR dictionaries is that 
TTS dictionaries do not have to represent dialectal variation; thus where 
a very accurate ASR dictionary needs to represent both pronunciations of 
either and tomato, a TTS dictionary can choose one. 

Beyond Dictionary Lookup: Text Analysis 

Mapping from text to phones relies on the kind of pronunciation dic:tio,narie:s : 
we talked about in the last section. As we suggested before, one way to 
text-to-phones would be to look up each word in a pronunciation dictionary 
and read the string of phones out of the dictionary. This method would 
fine for any word that we can put in the dictionary in advance. But as 
saw in Chapter 3, it's not possible to represent every word in English (or 
other language) in advance. Both speech synthesis and speech recogrriti<ml: 

146



Section 4.6. Mapping Text to Phones for TTS 

systems need to be able to guess at the pronunciation of words that are not 
in their dictionary. This section will first examine the kinds of words that 
are likely to be missing in a pronunciation dictionary, and then show how 
the finite-state transducers of Chapter 3 can be used to model the basic task 
of text-to-phones. Chapter 5 will introduce variation in pronunciation and 
introduce probabilistic techniques for modeling it. 

Three of the most important cases where we cannot rely on a word 
dictionary involve names, morphological productivity, and numbers. As 
a brief example, we arbitrarily selected a brief (561 word) movie review that 
appeared in the July 17, 1998 issue of the New York Times. The review, 
of Vincent Gallo's "Buffalo '66", was written by Janet Maslin. Here's the 
beginning of the article: 

In Vincent Gallo's "Buffalo '66," Billy Brown (Gallo) steals a 
blond kewpie doll named Layla (Christina Ricci) out of her tap 
dancing class and browbeats her into masquerading as his wife at 
a dinner with his parents. Billy hectors, cajoles and tries to bribe 
Layla. ("You can eat all the food you want. Just make me look 
good.") He threatens both that he will kill her and that he won't 
be her best friend. He bullies her outrageously but with such 
crazy brio and jittery persistence that Layla falls for him. Gallo's 
film, a deadpan original mixing pathos with bravado, works on 
its audience in much the same way. 

We then took two large commonly-used on-line pronunciation dictionaries; 
the PRONLEX dictionary, that contains pronunciations for 90,694 word­
forms and includes coverage of many years of the Wall Street Journal, as well 
as the Switchboard Corpus, and the larger CELEX dictionary, which has 
pronunciations for 160,595 wordforms. The combined dictionaries have ap­
proximately 194,000 pronunciations. Of the 561 words in the movie 
review, 16 (3%) did not have pronunciations in these two dictionaries (not 
counting two hyphenated words, baby-blue and hollow-eyed). Here they are: 

Names Inflected Names Numbers Other 
Aki Gazzara Gallo's '66 c'mere 
Anjelica Kaurismaki indie 
Arquette Kusturica kewpie 
Buscemi Layla sexpot 
Gallo Rosanna 

Some of these missing words can be found by increasing the dictionary 
size (for example Wells's (1990) definitive (but not on-line) pronunciation 

123 

147



124 Chapter 4. Computational Phonology and Text-to-Speech 

dictionary of English does have sexpot and kewpie). But the rest need to 
generated on-line. 

Names are a large problem for pronunciation dictionaries. It isdiffi­
cult or impossible to list in advance all proper names in English; furthermore 
they may come from any language, and may have variable spellings. Most 
potential applications for TTS or ASR involve names; for example names 
are essentially in telephony applications (directory assistance, call routing). 
Corporate names are important in many applications and are created con­
stantly (CoComp, Intel, Cisco). Medical speech applications (such as tran­
scriptions of doctor-patient interviews) require pronunciations of names of 
pharmaceuticals; there are some off-line medical pronunciation dictionaries 
but they are known to be extremely inaccurate (Markey and Ward, 1997). 
Recall the figure of 1.5 million names mentioned above, and Liberman and 
Church's (1992) finding that 21% of the word tokens in their 33 million word 
1988 AP newswire corpus were names. 

Morphology is a particular problem for many languages other than En­
glish. For languages with very productive morphology it is computationally 
infeasible to represent every possible word; recall this Turkish example: 

(4.11) uygarla~liramadJk:lanrruzdanmJ~smizcasma 

uygar +Ia§ +ttr +ama +dtk +lar +tmtz 
civilized +BEC +CAUS +NEGABLE +PPART +PL +PlPL 

+dan +ml~ +szntz +caszna 
+ABL +PAST +2PL +Asif 

"(behaving) as if yon are among those whom we could not 
civilize/cause to become civilized" 

Even a language as similar to English as German has greater ability to 
create words; Sproat eta!. (1998) note the spontaneously created German ex­
ample Unerfindlichkeitsunterstellung ("allegation of incomprehensibility"). 

But even in English, morphologically simple though it is, morphologi­
cal knowledge is necessary for pronunciation modeling. For example names 
and acronyms are often inflected (Gallo's, IBM's, DATs, Syntex's) as are new 
words !faxes, indies). Furthermore, we can't just adds to the pronunciation 
of the uninflected forms, because as the last section showed, the possessive 
-'sand plural-s suffix in English are pronounced differently in different con­
texts; Syntex's is pronounced [smtrksiz],faxes is pronounced [f<eksiz], IBM's 
is pronounced [arbijrmz], and DATs is pronounced [dacts]. 

Finally, pronouncing numbers is a particularly difficult problem. 
'66 in Buffalo '66 is pronounced [ sikstisiks J not [ sikssJks J. The most natural 

148



Section 4.6. Mapping Text to Phones for TTS 

way to pronounce the phone number "947-2020" is probably "nine"-"four"­
"seven"-"twenty"-"twenty" rather than "nine"-"four"-"seven"-"two" -"zero"­
"two"-"zero". Liberman and Church (1992) note that there are five main 
ways to pronounce a string of digits (although others are possible): 

• Serial: Each digit is pronounced separately-8765 is "eight seven six 
five". 

• Combined: The digit string is pronounced as a single integer, with all 
position labels read out-"eight thousand seven hundred sixty five". 

• Paired: Each pair of digits is pronounced as an integer; if there is an 
odd number of digits the first one is pronounced by itself-"eighty­
seven sixty-five". 

• Hundreds: Strings of four digits can be pronounced as counts of 
hundreds-"eighty-seven hundred (and) sixty-five". 

• Trailing Unit: Strings that end in zeros are pronounced serially until 
the last nonzero digit, which is pronounced followed by the appropriate 
unit-8765000 is "eight seven six five thousand". 

Pronunciation of numbers and these five methods are discussed further 
in Exercises 4.5 and 4.6. 

An FST-based Pronunciation Lexicon 

Early work in pronunciation modeling for text-to-speech systems (such as 
the seminal MITalk system Allen eta!. (1987)) relied heavily on letter-to­
sound rules. Each rule specified how a letter or combination of letters was 
mapped to phones; here is a fragment of such a rule-base from Witten (1982): 

Fragment Pronunciation 
-p­
·ph­
-phe-
-phes-
-place-
·placi­
-plement-

[p] 
[f] 
[fi] 
[fiz] 
[piers] 
[plersi] 
[plrmrnt] 

Such systems consisted of a long list of such rules and a very small dic­
tionary of exceptions (often function words such as a, are, as, both, do, does, 
etc.). More recent systems have completely inverted the algorithm, relying 
on very large dictionaries, with letter-to-sound rules only used for the small 

125 

149



126 Chapter 4. Computational Phonology and Text-to-Speech 

number of words that are neither in the dictionary nor are morphological 
valiants of words in the dictionary. How can these large dictionaties be rep­
resented in a way that allows for morphological productivity? Luckily, these 
morphological issues in pronunciation (adding· inflectional suffixes, slight 
pronunciation changes at the juncture of two morphemes, etc.) are identical 
to the morphological issues in spelling that we saw in Chapter 3. Indeed, 
(Sproat, 1998b) and colleagues have worked out the use of transducers for 
text-to-speech. We might break down their transducer approach into five 
components: 

1. an FST to represent the pronunciation of individual words and mor­
phemes in the lexicon 

2. FSAs to represent the possible sequencing of morphemes 

3. individual FSTs for each pronunciation rule (for example expressing 
the pronunciation of -s in different contexts) 

4. heuristics and letter-to-sound (LTS) rules/transducers used to model 
the pronunciations of names and acronyms 

5. default letter-to-sound rules/transducers for any other unknown words 

We will limit our discussion here to the first four components; those 
interested in letter-to-sound rules should see (Allen et al., 1987). These first 
components will turn out to be simple extensions of the FST components 
we saw in Chapter 3 and on page 110. The first is the representation of the 
lexical base form of each word; recall that base form means the uninflected 
form of the word. The previous base forms were stored in orthographic 
representation; we will need to augment each of them with the correct lexical 
phonological representation. Figure 4.21 shows the original and the upd~ted 
lexical entries: 

The second part of our FST system is the finite-state machinery to 
model morphology. We will give only one example: the nominal plural 
suffix -s. Figure 4.22 in Chapter 3 shows the automaton for English plurals, 
updated to handle pronunciation as well. The only change was the 
lion of the [s] pronunciation for the suffix, and £ pronunciations for all 
morphological features. 

We can compose the inflection FSA in Figure 4.22 with a transcluc,er 
implementing the baseform lexicon in Figure 4.21 to produce an mrJecnon­
ally-enriched lexicon that has singular and plural nouns. The resulting 
lexicon is shown in Figure 4.23. 

The lexicon shown in Figure 4.23 has two levels, an underlying or 
ical" level and an intermediate level. The only thing that remains is to 

150



Section 4.6. Mapping Text to Phones for TTS 

I Orthographic Lexicon I Lexicon 

Regular Nouns 

cat elk aloe tit 
fox flf ola xlks 
dog dldolaglg 

Irregular Singular Nouns 
goose gig oolu sis el£ 

Irregular Plural Nouns 

g o:e o:e s e I gig oolu:eeli sis eiE 

Figure 4.21 PST-based lexicon, extending the lexicon in the table on page 
74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols sep-
arated by "I"", one representing the "orthographic" lexical entry and one the 
"phonologicaf' lexical entry. The irregular plural geese also pre-specifies the 
contents ofthe intermediate tape ":eeji". 

reg-noun-stem 

irreg-sg-noun-form 

irreg-pl-noun-form 

Figure 4.22 PST for the nominal singular and plural inilection. The au­
tomaton adds the morphological features [+N], [+PL], and [+SG] at the lexi­
callevel where relevant and also adds the plural suffix sjz (at the intermediate 
level). We will discuss below why we represent the pronunciation of -s as z 
rather than s. 

transducers which apply spelling rules and pronunciation rules to map the 
intermediate level into the surface level. These include the various spelling 
rules discussed on page 77 and the pronunciation rules starting on page 105. 

The lexicon and these phonological rules and the orthographic rules 
from Chapter 3 can now be used to map between a lexical representation 
(containing both orthographic and phonological strings) and a surface rep­
resentation (containing both orthographic and phonological strings). As we 
saw in Chapter 3, this mapping can be run from surface to lexical form, or 
from lexical to surface form; Figure 4.24 shows the architecture. Recall that 

127 

151



128 Chapter 4. Computational Phonology and Text-to-Speech 

Figure 4.23 Mini-lexicon composing a transducer from the baseform lexi­
con of Figure 4.21 with the inflectional transducer of Figure 4.22. 

the lexicon FST maps between the "lexical"' level, with its stems and mor­
phological features, and an "intermediate" level which represents a simple 
concatenation of morphemes. Then a host of FSTs, each representing ei­
ther a single spelling rule constraint or a single phonological constraint, all 
run in parallel so as to map between this intermediate level and the surface 
level. Each level has both orthographic and phonological representations. 
For text-to-speech applications in which the input is a lexical form (e.g., for 
text generation, where the system knows the lexical identity of the word, its 
part-of-speech, its inflection, etc.), the cascade of FSTs can map from lexical 
form to surface pronunciation. For text-to-speech applications in which the 
input is a surface spelling (e.g., for "reading text out loud" applications), the 
cascade of FSTs can map from surface orthographic form to surface pronun­
ciation via the underlying lexical form. 

Finally let us say a few words about names and acronyms. Acronyms 
can be spelled with or without periods (I.R.S. or IRS). Acronyms with pe­
riods are usually pronounced by spelling them out ([mares]). Acronyms 
that usually appear without periods (AIDS, ANSI, ASCAP) may either be 
spelled out or pronounced as a word; so AIDS is usually pronounced the 
same as the thrrd-person form of the verb aid. Liberman and Church (1992) 
suggest keeping a small dictionary of the acronyms that are pronounced as 
words, and spelling out the rest. Their method for dealing with names begins 
with a dictionary of the pronunciations of 50,000 names, and then applies a 
small number of affix-stripping rules (akin to the Porter Stemmer of Chap­
ter 3), rhyming heuristics, and letter-to-sound rules to increase the coverage. 

152



Section 4.6. Mapping Text to Phones for TTS 

Lexical{~ ~::;:f :::;=o=/:=x~l =+N::;I;=+P=L:;::I =:::;:/ =*=/ ~{ 
{ f a I k I s I +N I+PLI / 1 

• r--------L---------. 
: LEXICON-FST: 
L--------T--------~ 

I 
{ flolx As { 

Intermediate .5 
1L~f~j_aa~l_k~ls~-A~z~~~i 

• r-----l----L---1------, 
;---.1---~ orthographic and ;---.L---1 
1 FST1 : phonological rules 1 FST : 
I 1 n ---,---· . . . -------· , _____ j ____ T ___ j ______ ] 

y 

Surface {;::~f~J=o~/ :::x=::/ =e~l=s~/=::::::=::::::1 ~{ 
{ t I a a I k I s I ix I z I { 

Figure 4.24 Mapping between the lexicon and snrface form for orthogra­
phy and phonology simultaneously. The system can be used to map from a 
lexical entry to its surface pronunciation or from surface orthography to sur­
face pronunciation via the lexical entry. 

Liberman and Church (1992) took the most frequent quarter million words 
in the Donnelly list. They found that the 50,000 word dictionary covered 
59% of these 250,000 name tokens. Adding stress-neutral suffixes like -s, 
-ville, and -son (Walters = Walter + s, Abelson = Abel + son, Lucasville 
=Lucas + ville) increased the coverage to 84%. Adding name-name com­
pounds (Abdulhussein, Baumgaertner) and rhyming heuristics increased the 
coverage to 89%. The rhyming heuristics used letter-to-sound rules for the 
beginning of the word and then found a rhyming word to help pronounce the 
end; so Plotsky was pronounced by using the LTS rule for PI- and guessing­
otsky from Trotsky. They then added a number of more complicated morpho­
logical rules (prefixes like 0 'Brien), stress-changing suffixes (Adamovich), 
suffix-exchanges (Bierstadt = Bierbaum - baum + stadt) and used a system 
of letter-to-sound rules for the remainder. This system wa~ not implemented 
as an FST; Exercise 4.11 will address some of the issues in turning such a 
set of rules into an FST. Readers interested in further details about names, 

129 

153



130 Chapter 4. Computational Phonology and Text-to-Speech 

acronyms and other unknown words should consult sources such as Liber­
man and Church (1992), Vitale (1991), and Allen et al. (1987). 

4.7 PROSODY IN TTS 

The orthography to phone transduction process just described produces the 
main component for the input to the part of a TTS system which actually 
generates the speech. Another important part of the input is a specification 

PRosoov of the prosody. The term prosody is generally used to refer to aspects of a 
sentence's pronunciation which aren't described by the sequence of phones 
derived from the lexicon. Prosody operates on longer linguistic units than 

suPRASEGMENTAL phones, and hence is sometimes called the study of suprasegmental phe­
nomena. 

Phonological Aspects of Prosody 

PROMINENCE There are three main phonological aspects to prosody: prominence, struc-
STRUCTURE ture and tune. 
TUNE As page 102 discussed, prominence is a broad term used to cover stress 
srnESs and accent. Prominence is a property of syllables, and is often described in 
ACCENT a relative manner, by saying one syllable is more prominent than another. 

Pronunciation lexicons mark lexical stress; for example table has its stress 
on the first syllable, while machine has its stress on the second. Function 
words lil<e there, the or a are usually unaccented altogether. When words are 
joined together, their accentual patterns combine and form a larger accent 
pattern for the whole utterance. There are some regularities in how accents 
combine. For example adjective-noun combinations like new truck are likely 
to have accent on the right word (new *truck), while noun-noun compounds 
like *tree surgeon are likely to have accent on the left. In generally, how­
ever, there are many exceptions to these rules, and so accent prediction is 
quite complex. For example the noun-noun compound *apple cake has 
accent on the first word while the noun-nonn compound apple *pie or 
*hall both have the accent on the second word (Liberman and Sproat, 1992; · 
Sproat, 1994, 1998a). Furthermore, rhythm plays a role in keeping the ac­
cented syllables spread apart a bit; thus city *hall and *parking lot cornbine; 
as *city hall *parking lot (Liberman and Prince, 1977). Finally, the location 
of accent is very strongly affected by the discourse factors we will describe 
in Chapters 18 and 19; in particular new or focused words or phrases 
receive accent. 

154



Section 4.7. Prosody in TTS 

Sentences have prosodic structure in the sense that some words seem to 
group naturally together and some words seem to have a noticeable break or 
disjuncture between them. Often prosodic structure is described in terms of 
prosodic phrasing, meaning that an utterance has a prosodic phrase struc­
ture in a similar way to it having a syntactic phrase structure. For example, in 
the sentence I wanted to go to London, but could only get tickets for France 
there seems to be two main prosodic phrases, their boundary occurring at the 
comma. Commonly used terms for these larger prosodic units include into­
national phrase oriP (Beclanan and Pierrehumbert, 1986), intonation unit 
(DuBois et al., 1983), and tone unit (Crystal, 1969). Furthermore, in the 
first phrase, there seems to be another set of lesser prosodic phrase bound­
aries (often called intermediate phrases) that split up the words as follows 
I wanted I to go I to London. The exact definitions of prosodic phrases 
and subphrases and their relation to syntactic phrases like clauses and noun 
phrases and semantic units have been and still are the topic of much debate 
(Chomsky and Halle, 1968; Langendoen, 1975; Streeter, 1978; Hirschberg 
and Pierrehumbert, 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft, 
1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996). Despite 
these complications, algorithms have been proposed which attempt to au­
tomatically break an input text sentence into intonational phrases. For ex­
ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994), Tay­
lor and Black (1998), and others have built statistical models (incorporating 
probabilistic predictors such as the CART-style decision trees to be defined 
in Chapter 5) for predicting intonational phrase boundaries based on such 
features as the parts of speech of the surrounding words, the length of the 
utterance in words and seconds, the distance of the potential boundary from 
the beginning or ending of the utterance, and whether the surrounding words 
are accented. 

Two utterances with the same prominence and phrasing patterns can 
still differ prosodically by having different tunes. Tune refers to the into­
national melody of an utterance. Consider the utterance oh, really. Without 
varying the phrasing or stress, it is still possible to have many variants of 
this by varying the intonational tune. For example, we might have an excited 
version oh, really! (in the context of a reply to a statement that you've just 
won the lottery); a sceptical version oh, really?-in the context of not being 
sure that the speaker is being honest; to an angry oh, really! indicating dis­
pleasure. Intonational tunes can be broken into component parts, the most 
important of which is the pitch accent. Pitch accents occur on stressed sylla­
bles and form a characteristic pattern in the FO contour (as explained below). 

131 

PROSODIC 
·PHRASING 

INTONATIONAL 
PHRASE 

1P 

INTERMEDIATE 
PHRASE 

PITCH 
ACCENT 

155



132 Chapter 4. Computational Phonology and Text-to-Speech 

Depending on the type of pattern, different effects (such as those just out­
lined above) can be produced. A popular model of pitch accent classification 
is the Pierrehumbert or ToBI model (Pierrehumbert, 1980; Silverman eta!., 
1992), which says there are five pitch accents in.English, which are made 
from combining two simple tones (high H, and low L) in various ways. A 
H+L pattern forms a fall, while a L+H pattern forms a rise. An asterisk(*) 
is also used to indicate which tone falls on the stressed syllable. This gives 
an inventory of H*, L*, L+H*, L*+H, H+L* (a sixth pitch accent H*+L 
which was present in early versions of the model was later abandoned). Our 
three examples of oh, really might be marked with the accents L+H*, L*+H 
and L* respectively. In addition to pitch accents, this model also has two 
phrase accents L-and H-and two boundary tones L% and H%, which are 
used at the ends of phrases to control whether the intonational trme rises 
or falls. 

Other intonational modals differ from ToBI by not using discrete phone­
mic classes for intonation accents. For example the Tilt (Taylor, 2000) and 
Fujisaki models (Fujisaki and Ohno, 1997) use continuous parameters rather 
than discrete categories to model pitch accents. These researchers argue that 
while the discrete models are often easier to visualize and work with, con­
tinuous models may be more robust and more accurate for computational 
purposes. 

Phonetic or Acoustic Aspects of Prosody 

The three phonological factors interact and are realized by a number of dif­
ferent phonetic or acoustic phenomena. Prominent syllables are getler:allJil 
louder and longer that non-prominent syllables. Prosodic phrase bmmclan.es ., 
are often accompanied by pauses, by lengthening of the syllable just before 
the boundary, and sometimes lowering of pitch at the boundary. Inton:aticmal < 
tune is manifested in the fundamental frequency (FO) contour. 

Prosody in Speech Synthesis 

A major task for a TTS system is to generate appropriate linguistic 
sentations of prosody, and from them generate appropriate acoustic patte1rns. 
which will be manifested in the output speech waveform. The output 
a TTS system with such a prosodic component is a sequence of phomJs: 
each of which has a duration and an FO (pitch) value. The duration of 
phone is dependent on the phonetic context (see Chapter 7). The FO 

156



Section 4.7. Prosody in TTS 

is influenced by the factors discussed above, including the lexical stress, the 
accented or focused element in the sentence, and the intonational tune of the 
utterance (for example a final rise for questions). Figure 4.25 shows some 
sample TTS output from the FESTIVAL (Black eta!., 1999) speech synthe­
sis system for the sentence Do you really want to see all of it?. This output, 
together with the FO values shown in Figure 4.26 would be the input to the 
waveform synthesis component described in Chapter 7. The durations here 
are computed by a CART-style decision tree (Riley, 1992). 

133 

H* L* L-H% 
do you really want to see all of it 

dl uw 
110 110 

yl uw 
50 50 

rl ihl II iy 
75 64 57 82 

wl aal nl t 
57 50 72 41 

tl ax 
43 47 

sl iy 
54 130 at 76 90 

ahl v 
44 62 

ihl t 
46 220 

Figure 4.25 Output of the FESTIVAL (Black et al., 1999) generator for the sentence 
Do you really want to see all of it? The exact intonation contour is shown in Figure 4.26. 
Thanks to Paul Taylor for this figure. 

H% 

-
L* 

L-

do you really want to see all of it 

Figure 4.26 The FO contour for the sample sentence generated by the 
FESTIVAL synthesis system in Figure 4.25, thanks to Paul Taylor. 

As was suggested above, determining the proper prosodic pattern for 
a sentence is difficult, as real-world knowledge and semantic information is 
needed to know which syllables to accent, and which tune to apply. This sort 
of information is difficult to extract from the text and hence prosody modules 
often aim to produce a "neutral declarative" version of the inpnt text, which 
assume the sentence should be spoken in a default way with no reference to 
discourse history or real-world events. This is one of the main reasons why 
intonation in TTS often sounds "wooden". 

157



134 

4.8 

SUBREGU­
LARITY 

CONNEC­
TIONIST 
PARALLEL 
DISTRIBUTED 
PROCESSING 

Chapter 4. Computational Phonology and Text-to-Speech 

HUMAN PROCESSING OF PHONOLOGY AND MORPHOLOGY 

Chapter 3 suggested that productive morphology plays a psychologically real 
role in the human lexicon. But we stopped short of a detailed model of how 
the morphology might be represented. Now that we have studied phono­
logical structure and phonological learning, we return to the psychological 
question of the representation of morphological/phonological knowledge. 

One view of human morphological or phonological processing might 
be that it distinguishes productive, regular morphology from irregular or ex­
ceptional morphology. Under this view, the regular past tense morpheme 
-ed, for example, could be mentally represented as a rule which would be 
applied to verbs like walk to produce walked. Irregular past tense verbs like 
broke, sang, and brought, on the other hand, would simply be stored as part 
of a lexical representation, and the rule wouldn't apply to these. Thus this 
proposal strongly distinguishes representation via rules from representation 
via lexical listing. 

This proposal seems sensible, and is indeed identical to the transducer­
based models we have presented in these last two chapters. Unfortnnately, 
this simple model seems to be wrong, One problem is that the irregular verbs 
themselves show a good deal of phonological subregularity. For example, 
the r/ac alternation relating ring and rang also relates sing and sang and swim 
and swam (Bybee and Slobin, 1982). Children learning the language of­
ten extend this pattern to incorrectly produce bring-brang, and adults often 
make speech errors showing effects of this suhregular pattern. A second 
problem is that there is psychological evidence that high-frequency regular 
inflected forms (needed, covered) are stored in the lexicon just like the stems 
cover and need (Losiewicz, 1992). Finally, word and morpheme frequency 
in general seems to play an important role in human processing. 

Arguments like these led to "data-driven" models of morphological 
learning and representation, which essentially store all the inflected forms 
they have seen. These models generalize to new forms by a kind of analogy; 
regular morphology is just like subregular morphology but acquires rule-like 
trappings simply because it occurs more often. Such models include the 
computational connectionist or Parallel Distributed Processing model of 
Rumelhart and McClelland (1986) and subsequent improvements (Plunkett 
and Marchman, 1991; Mac Whinney and Leinbach, 1991) and the similar 
network model of Bybee (1985, 1995). In these models, the behavior of 
regular morphemes like -ed emerges from its frequent interaction with other 

158



..................... __________ ~ 
Section 4.9. Summary 

forms. Proponents of the rule-based view of morphology such as Pinker 
and Prince (1988), Marcus et al. (1995), and others, have criticized the con­
nectionist models and proposed a compromise dual processing model, in 
which regular forms like -ed are represent as symbolic rules, but subregular 
examples (broke, brought) are represented by connectionist-style pattern as­
sociators. This debate between the connectionist and dual processing models 
has deep implications for mental representation of all kinds of regular rule­
based behavior and is one of the most interesting open questions in human 
language processing. Chapter 7 will briefly discuss connectionist models of 
human speech processing; readers who are further interested in connection­
ist models should consult the references above and textbooks like Anderson 
(1995). 

4.9 SUMMARY 

This chapter has introduced many of the important notions we need to un­
derstand spoken language processing. The main points are as follows; 

o We can represent the pronunciation of words in terms of units called 
phones. The standard system for representing phones is the Interna­
tional Phonetic Alphabet or IPA. An alternative English-only tran­
scription system that uses ASCII letters is the ARPAbet. 

o Phones can be described by how they are produced articulatorily by 
the vocal organs; consonants are defined in terms of their place and 
manner of articulation and voicing, vowels by their height and back­
ness. 

o A phoneme is a generalization or abstraction over different phonetic 
realizations. Allophonic rules express how a phoneme is realized in a 
given context. 

o Transducers can be used to model phonological rules just as they were 
used in Chapter 3 to model spelling rules. Two-level morphology is 
a theory of morphology/phonology which models phonological rules 
as finite-state well-formedness constraints on the mapping between 
lexical and surface form. 

o Pronunciation dictionaries are used for both text-to-speech and au­
tomatic speech recognition. They give the pronunciation of words as 
strings of phones, sometimes including syllabification and stress. Most 
on-line pronunciation dictionaries have on the order of 100,000 words 
but still lack many names, acronyms, and inflected forms. 

135 

159



136 Chapter 4. Computational Phonology and Text -to-Speech 

• The text-analysis component of a text-to-speech system maps from 
orthography to strings of phones. This is usually done with a large 
dictionary augmented with a system (such as a transducer) for haridling 
productive morphology, pronunciation changes, names, numbers, and 
acronyms. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The major insights of articulatory phonetics date to the linguists of 800-150 
B.C. India. They invented the concepts of place and manner of articulation, 
worked out the glottal mechanism of voicing, and understood the concept 
of assimilation. European science did not catch up with the Indian phoneti­
cians until over 2000 years later, in the late 19th century. The Greeks did 
have some rudimentary phonetic koowledge; by the time of Plato's Theaete­
tus and Cratylus, for example, they distinguished vowels from consonants, 
and stop consonants from continuants. The Stoics developed the idea of the 
syllable and were aware of phonotactic constraints on possible words. An 
nnkoown Icelandic scholar of the twelfth century exploited the concept of 
the phoneme, proposed a phonemic writing system for Icelandic, including 
diacritics for length and nasality. But his text remained unpublished un­
til 1818 and even then was largely unkoown outside Scandinavia (Robins, 
1967). The modem era of phonetics is usually said to have begun with 
Sweet, who proposed what is essentially the phoneme in his Handbook of 
Phonetics (1877). He also devised an alphabet for transcription and distin­
guished between broad and narrow transcription, proposing many ideas that 
were eventually incorporated into the IPA. Sweet was considered the best 
practicing phonetician of his time; he made the first scientific recordings of 
languages for phonetic purposes, and advanced the start of the art of articu­
latory description. He was also infamously difficult to get along with, a trait 
that is well captured in the stage character that George Bernard Shaw mod­
eled after him: Henry Higgins. The phoneme was first named by the Polish 
scholar Baudouin de Courtenay, who published his theories in 1894. 

The idea that phonological rules could be modeled as regular rela­
tions dates to Johnson (1972), who showed that any phonological system 
that didn't allow rules to apply to their own output (i.e., systems that did not 
have recursive rules) could be modeled with regular relations (or finite-state 
transducers). Virtually all phonological rules that had been formulated 

160



Section 4.9. Summary 

the time had this property (except some rules with integral-valued features, 
like early stress and tone rules). Johnson's insight unfortunately did not at­
tract the attention of the community, and was independently discovered by 
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of the history of 
two-level morphology. Karttunen (1993) gives a tutorial introduction to two­
level morphology that includes more of the advanced details than we were 

able to present here. 
Readers interested in phonology should consult (Goldsmith, 1995) as a 

reference on phonological theory in general and Archangeli and Langendoen 

(1997) on Optimality Theory. 
Two classic text-to-speech synthesis systems are described in Allen 

et al. (1987) (the MITalk system) and Sproat (1998b) (the Bell Labs sys­
tem). The pronunciation problem in text-to-speech synthesis is an ongoing 
research area; much of the current research focuses on prosody. Interested 
readers should consult the proceedings of the main speech engineering con­
ferences: ICSLP (the International Conference on Spoken Language Pro­
cessing), IEEE ICASSP (the International Conference on Acoustics, Speech, 
and Signal Processing), and EUROSPEECH. 

Students with further interest in transcription and articulatory phonet­
ics should consult an introductory phonetics textbook such as Ladefoged 
(1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the 
symbols and diacritics of the IPA. Many phonetics papers of computational 
interest are to be found in the Journal of the Acoustical Society of America 
(JASA), Computer Speech and Language, and Speech Communication. 

EXERCISES 

4.1 Find the mistakes in the IPA transcriptions of the following words: 

a. "three" [ori] 
b. "sing" [smg] 

c. "eyes" [ ars] 

d. "study" [studi] 

e. "though" [Oou] 

137 

161



138 Chapter 4. Computational Phonology and Text-to-Speech 

f. "planning" [plnnrlJ] 

g. "slight" [slit] 

4.2 Translate the pronunciations of the following color words from the IPA 
into the ARPAbet (and make a note if you think you pronounce them differ­
ently than this!): 

a. [red] 

b. [blu] 

c. [grin] 

d. ['jdou] 
e. [blrek] 

f. [wart] 

g. ['Jrmd3] 

h. ['p3'p)] 
i. [pjus] 
j. [toup] 

4.3 Ira Gershwin's lyric for Let's Call the Whole Thing Off talks about two 
pronunciations of the word "either" (in addition to the tomato and potato 
example given at the beginning of the chapter. Transcribe Ira Gershwin's 
two pronunciations of "either" in IPA and in the ARPAbet. 

4.4 Transcribe the following words in both the ARPAbet and the IPA: 

a. dark 

b. suit 

c. greasy 

d. wash 

e. water 

4.5 Write an FST which correctly pronounces strings of dollar amounts 
like $45, $320, and $4100. If there are multiple ways to pronounce a number 
you may pick your favorite way. 

4.6 Write an FST which correctly pronounces seven-digit phone numbers 
like 555-1212, 555-1300, and so on. You should use a combination of the 
paired and trailing unit methods of pronunciation for the last four dig­
its. 

4.7 Build an automaton for rule (4.5). 

162



Section 4.9. Summary 

4.8 One difference between one dialect of Canadian English and most di­
alects of American English is called Canadian raising. Bromberger and 
Halle (1989) note that some Canadian dialects of English raise jar/ to [Ar] 
and /au/ to [Au] in stressed position before a voiceless consonant. A simpli­
fied version of the rule dealing only with/ ar/ can be stated as: 

jar/-+ [Ar] /_ [C . ] (4.12) 
-vmce 

This rule has an interesting interaction with the flapping rule. In some 
Canadian dialects the word rider and writer are pronounced differently: rider 
is pronounced [rarr3'] while writer is pronounced [rArr3']. Write a two-level 
rule and an automaton for both the raising rule and the flapping rule which 
correctly models this distinction. You may make simplifying assumptions as 
needed. 

4.9 Write the lexical entry for the pronunciation of the English past tense 
(preterite) suffix -d, and the two level-rules that express the difference in its 
pronunciation depending on the previous context. Don't worry about the 
spelling rules. (Hint: make sure you correctly handle the pronunciation of 
the past tenses of the words add, pat, bake, and bag.) 

4.10 Write two-level rules for the Yawelmani Yokuts phenomena of Har­
mony, Shortening, and Lowering introduced on page Ill. Make sure your 
rules are capable of running in parallel. 

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and sketch 
an FST which would model the pronunciation of names with or without suf­
fixes. 

139 

CANADIAN 
RAISING 

163



5 
PROBABILISTIC MODELS 
OF PRONUNCIATION 
AND SPELLING 

ALGERNON: But my own sweet Cecily, I have never written 
you any letters. 
CECILY.· You need hardly remind me of that, Ernest. Ire­
member only too well that I was forced to write your letters 
for you. I wrote always three times a week, and sometimes 
oftener. 
ALGERNON: Oh, do let me read them, Cecily? 
CECILY: Oh, I couldn't possibly. They would make you far 
too conceited. The three you wrote me after I had broken off 
the engagement are so beautifUl, and so badly spelled, that 
even now I can hardly read them without crying a little. 

Oscar Wilde, The Importance of being Ernest 

Like Oscar Wilde's fabulous Cecily, a lot of people were thinking about 
spelling during the last turn of the century. Gilbert and Sullivan provide 
many examples. The Gondoliers' Giuseppe, for example, worries that his 
private secretary is "shaky in his spelling" while Iolanthe's Phyllis can "spell 
every word that she uses". Thorstein Veblen's explanation (in his 1899 clas­
sic The Theory of the Leisure Class) was that a main purpose of the "ar­
chaic, cumbrous, and ineffective" English spelling system was to be difficult 
enough to provide a test of membership in the leisure class. Whatever the 
social role of spelling, we can certainly agree that many more of us are like 
Cecily than like Phyllis. Estimates for the frequency of spelling errors in hu­
man typed text vary from 0.05% of the words in carefully edited newswire 
text to 38% in difficult applications like telephone directory lookup (Kukich, 
1992). 

In this chapter we discuss the problem of detecting and correcting 

164



142 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

spelling errors and the very related problem of modeling pronunciation vari­
ation for automatic speech recognition and text-to-speech systems. On the 
surface, the problems of finding spelling errors in text and modeling the' vari­
able pronunciation of words in spoken language don't seem to have much 
in common. But the problems tum out to be isomorphic in an important 
way: they can both be viewed as problems of probabilistic transduction. For 
speech recognition, given a string of symbols representing the pronunciation 
of a word in context, we need to figure out the string of symbols represent­
ing the lexical or dictionary pronunciation, so we can look the word up in the 
dictionary. But any given surface pronunciation is ambiguous; it might corre­
spond to different possible words. For example the ARPAbet pronunciation 
[er] could correspond to reduced forms of the words her, were, are, their, 
or your. This ambiguity problem is heightened by pronunciation varia­
tion; for example the word the is sometimes pronounced THEE and some­
times THUH; the word because sometimes appears as because, sometimes 
as 'cause. Some aspects of this variation are systematic; Section 5.7 will sur­
vey the important kinds of variation in pronunciation that are important for 
speech recognition and text-to-speech, and present some preliminary rules 
describing this variation. High-quality speech synthesis algorithms need to 
know when to use particular pronunciation variants. Solving both speech 
tasks requires extending the transduction between surface phones and lexi­
cal phones discussed in Chapter 4 with probabilistic variation. 

Similarly, given the sequence of letters corresponding to a mis-spelled 
word, we need to produce an ordered list of possible correct words. For 
example the sequence acress might be a mis-spelling of actress, or of cress, 
or of acres. We transduce from the "surface" form acress to the various 
possible "lexical" forms, assigning each with a probability; we then select 
the most probable correct word. 

In this chapter we first introduce the problems of detecting and correct­
ing spelling errors, and also summarize typical human spelling error patterns. 
We then introduce the essential probabilistic architecture that we will use to 
solve both spelling and pronunciation problems: the Bayes Rule and the 
noisy channel model. The Bayes rule and its application to the noisy chan­
nel model will play a role in many problems throughout the book, particu­
larly in speech recognition (Chapter 7), part-of-speech tagging (Chapter 8), 
and probabilistic parsing (Chapter 12). 

The Bayes Rule and the noisy channel model provide the probabilistic 
framework for these problems. But actually solving them requires an algo­
rithm. This chapter introduces an essential algorithm called the dynamic 

165



Section 5.1. Dealing with Spelling Errors 

programming algorithm, and various instantiations including the Viterbi 
algorithm, the minimum edit distance algorithm, and the forward algo­
rithm. We will also see the use of a probabilistic version of the finite-state 
automaton called the weighted automaton. 

5.1 DEALING WITH SPELLING ERRORS 

The detection and correction of spelling errors is an integral part of modem 
word-processors. The very same algorithms are also important in applica­
tions in which even the individual letters aren't guaranteed to be accurately 
identified: optical character recognition (OCR) and on-line handwriting ocR 

recognition. Optical character recognition is the term used for automatic 
recognition of machine or hand-printed characters. An optical scanner con­
verts a machine or hand-printed page into a bitmap which is then passed to 
an OCR algorithm. 

On-line handwriting recognition is the recognition of human printed 
or cursive handwriting as the user is writing. Unlike OCR analysis of hand­
writing, algorithms for on-line handwriting recognition can talce advantage 
of dynamic information about the input such as the number and order of 
the strokes, and the speed and direction of each stroke. On-line handwrit­
ing recognition is important where keyboards are inappropriate, such as in 
small computing environments (palm-pilot applications, etc.) or in scripts 
like Chinese that have large numbers of written symbols, making keyboards 
cumbersome. 

In this chapter we will focus on detection and correction of spelling 
errors, mainly in typed text, but the algorithms will apply also to OCR and 
handwriting applications. OCR systems have even higher error rates than 
human typists, although they tend to make different errors than typists. For 
example OCR systems often misread "D" as "0" or "ri" as "n", producing 
'mis-spelled' words like dension for derision, or POQ Bach for PDQ Bach. 
The reader with further interest in handwriting recognition should consult 
sources such as Tappert et al. (1990), Hu et al. (1996), and Casey and Leco­
linet (1996). 

Kukich (1992), in her survey article on spelling correction, breaks the 
field down into three increasingly broader problems: 

l. non-word error detection: detecting spelling errors that result in non­
words (like graffe for giraffe) 

143 

166



144 

REAL-WORD 
ERRORS 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

2. isolated-word error correction: correcting spelling errors that result 
in non-words, for example correcting graffe to giraffe, but looking only 
at the word in isolation 

3. context-dependent error detection and correction: using the con­
text to help detect and correct spelling errors even if they acciden­
tally result in an actual word of English (real-word errors). This 
can happen from typographical errors (insertion, deletion, transposi­
tion) which accidently produce a real word (e.g., there for three), or 
because the writer substituted the wrong spelling of a homophone or 
near-homophone (e.g., dessert for desert, or piece for peace). 

The next section will discuss the kinds of spelling-error patterns that 
occur in typed text and OCR and handwriting-recognition input. 

5.2 SPELLING ERROR PATTERNS 

The number and nature of spelling errors in human typed text differs from 
those caused by pattern-recognition devices like OCR and handwriting rec­
ognizers. Grudin (1983) found spelling error rates of between 1 and 3% in 
human typewritten text (this includes both non-word errors and real-word 
errors). This error rate goes down significantly for copy-edited text. The 
rate of spelling errors in handwritten text itself is similar; word error rates of 
between 1.5 and 2.5% have been reported (Kukich, 1992). 

The errors of OCR and on-line hand-writing systems vary. Yaeger et al. 
(1998) propose, based on studies that they warn are inconclusive, that the 
on-line printed character recognition on Apple Computer's NEWTON MES­

SAGEPAD had a word accuracy rate of 97-98%, that is, an error rate of 2-
3%, but with a high variance (depending on the training of the writer, etc.). 
It is not clear whether the failure of the NEWTON was because this error rate 
was optimistic or because a 2-3% error rate is unacceptable. More recent 
devices, like 3Com's Palm Pilot, often use a special input script (like the 
Palm Pilot's "Graffiti") instead of allowing arbitrary handwriting. OCR er­
ror rates also vary widely depending on the quality of the input; (Lopresti 
and Zhou, 1997) suggest that OCR letter-error rates typically range from 
0.2% for clean, first-generation copy to 20% or worse for multigeneration 
photocopies and faxes. 

167



Section 5 .2. Spelling Error Patterns 

1n an early study, Damerau (1964) found that 80% of all misspelled 
words (non-word errors) in a sample of human keypunched text were caused 
by single-error misspellings: a single one of the following errors: 1 

• insertion: mistyping the as ther 
• deletion: mistyping the as th 
• substitution: mistyping the as thw 
• transposition: mistyping the as hte 

Because of this study, much following research has focused on the 
correction of single-error misspellings. Indeed, the first algorithm we will 
present later in this chapter relies on the large proportion of single-error mis­
spellings. 

Kukich (1992) breaks down human typing errors into two classes. Ty­
pographic errors (for example misspelling spell as speel), are generally 
related to the keyboard. Cognitive errors (for example misspelling sepa­
rate as seperate) are caused by writers who don't know how to spell the 
word. Grudin (1983) found that the keyboard was the strongest influence on 
the errors produced; typographic errors constituted the majority of all error 
types. For example consider substitution errors, which were the most com­
mon error type for novice typists, and the second most common error type 
for expert typists. Grudin found that immediately adjacent keys in the same 
row accounted for 59% of the novice substitutions and 31% of the error sub­
stitutions (e.g., smsll for smal[). Adding in errors in the same column and 
homologous errors (hitting the corresponding key on the opposite side of 
the keyboard with the other hand), a total of 83% of the novice substitutions 
and 51% of the expert substitutions could be considered keyboard-based er­
rors. Cognitive errors included phonetic errors (substituting a phonetically 
equivalent sequence of letters (seperate for separate) and homonym errors 
(substituting piece for peace). Homonym errors will be discussed in Chap­
ter 7 when we discuss real-word error correction. 

While typing errors are usually characterized as substitutions, inser­
tions, deletions, or transpositions, OCR errors are usually grouped into five 
classes: substitutions, multisubstitutions, space deletions or insertions, and 

1 In another corpus, Peterson (1986) found that single-error misspellings accounted for an 
even higher percentage of all misspelled words (93-95% ). The difference between the 80% 
and the higher figure may be due to the fact that Damerau's text included errors caused in 
transcription to punched card forms, errors in keypunching, and errors caused by paper tape 
equipment (l) in addition to purely human misspellings. 

145 

INSERTION 

DELETION 

SUBSTITUTION 

TRANSPOSITION 

168



146 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

failures. Lopresti and Zhou (1997) give the following example of common 
OCR errors: 

Correct: 
The quick brown fox jumps over the lazy dog. 
Recognized: 
'lhe q" ick brown foxjurnps over tb 1 azy dog. 

Substitutions (e-+ c) are generally caused by visual similarity (rather 
than keyboard distance), as are multisubstitutions (T -+ 'I, m -+ m, he -+ 
b). Multisubstitutions are also often called framing errors. Failures (repre­
sented by the tilde character ,. ': u -+ ·) are cases where the OCR algorithm 
does not select any letter with sufficient accuracy. 

5.3 DETECTING NON-WORD ERRORS 

Detecting non-word errors in text, whether typed by humans or scanned, is 
most commonly done by the use of a dictionary. For example, the word 
foxjurnps in the OCR example above would not occur in a dictionary. Some 
early research (Peterson, 1986) had suggested that such spelling dictionar­
ies would need to be kept small, because large dictionaries contain very rare 
words that resemble misspellings of other words. For example wont is a 
legitimate but rare word but is a common misspelling of won't. Similarly, 
veery (a kind of thrush) might also be a misspelling of very. Based on a sim­
ple model of single-error misspellings, Peterson showed that it was possible 
that 10% of such misspellings might be "hidden" by real words in a 50,000 
word dictionary, but that 15% of single-error misspellings might be "hidden" 
in a 350,000-word dictionary. In practice, Damerau and Mays (1989) found 
that this was not the case; while some misspellings were hidden by real 
words in a larger dictionary, in practice the larger dictionary proved more 
help than harm. 

Because of the need to represent productive inflection (the -s and ed 
suffixes) and derivation, dictionaries for spelling error detection usually in­
clude models of morphology, just as the dictionaries for text-to-speech we 
saw in Chapters 3 and 4. Early spelling error detectors simply allowed any 
word to have any suffix - thus Unix SPELL accepts bizarre prefixed words 
like misclam and antiundoggingly and suffixed words based on the like the­
hood and theness. Modern spelling error detectors use more linguistically­
motivated morphological representations (see Chapter 3). 

169



Section 5.4. Probabilistic Models 

5.4 PROBABILISTIC MODELS 

This section introduces probabilistic models of pronunciation and spelling 
variation. These models, particularly the Bayesian inference or noisy chan­
nel model, will be applied throughout this book to many different problems. 

We claimed earlier that the problem of ASR pronunciation modeling, 
and the problem of spelling correction for typing or for OCR, can be modeled 
as problems of mapping tram one string of symbols to another. For speech 
recognition, given a string of symbols representing the pronunciation of a 
word in context, we need to figure out the string of symbols representing 
the lexical or dictionary pronunciation, so we can look the word up in the 
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled 
word, we need to figure out the correct sequence of letters in the correctly 
spelled word. 

$ ~noisy~gnessat 
-/ ..-""'"" DECODER • • word=~~" / .. - "---/ word Original 

'- .... / word 
NOISY CHANNEL 

Figure 5.1 The noisy channel model. 

The intuition of the noisy channel model (see Figure 5.1) is to treat 
the surface form (the "reduced"" pronunciation or misspelled word) as an 
instance of the lexical form (the "lexical" pronunciation or correctly-spelled 
word) which has been passed through a noisy communication channel. This 
channel introduces "noise" which malces it hard to recognize the "true" word. 
Our goal is then to build a model of the channel so that we can figure out how 
it modified this "true" word and hence recover it. For the complete speech 
recognition tasks, there are many sources of "noise"; variation in pronun­
ciation, variation in the realization of phones, acoustic variation due to the 
channel (microphones, telephone networks, etc.). Since this chapter focuses 
on pronunciation, what we mean by "noise" here is the variation in pronun­
ciation that masks the lexical or "canonical" pronunciation; the other sources 
of noise in a speech recognition system will be discussed in Chapter 7. For 
spelling error detection, what we mean by noise is the spelling errors which 
mask the correct spelling of the word. The metaphor of the noisy channel 
comes from the application of the model to speech recognition in the IBM 
labs in the 1970s (Jelinek, 1976). But the algorithm itself is a special case 

147 

NOISY 
CHANNEL 

170



148 

BAYESIAN 

v 
w 
0 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

of Bayesian inference and as such has been known since the work of Bayes 
(1763). Bayesiau inference or Bayesian classification was applied success­
fully to lauguage problems as early as the late 1950s, including the OCR 
work of Bledsoe in 1959, and the seminal work of Mosteller aud Wallace 
(1964) on applying Bayesian inference to determine the authorship of the 
Federalist papers. 

In Bayesiau classification, as in auy classification task, we are given 
some observation and our job is to determine which of a set of classes it 
belongs to. For speech recognition, imagine for the moment that the ob­
servation is the string of phones which make up a word as we hear it. For 
spelling error detection, the observation might be the string of letters that 
constitute a possibly-misspelled word. In both cases, we want to classify 
the observations into words; tbus in the speech case, no matter which of the 
many possible ways the word about is pronounced (see Chapter 4) we want 
to classify it as about. In the spelling case, no matter how the word separate 
is misspelled, we'd like to recognize it as separate. 

Let's begin with the pronunciation example. We are given a stting of 
phones (say [ni]l. We want to know which word corresponds to this stting of 
phones. The Bayesian interpretation of this task starts by considering all pos­
sible classes-in this case, all possible words. Out of this universe of words, 
we want to chose the word which is most probable given the observation we 
have ([ni]). In other words, we want, out of all words in the vocabulary V 
the single word such that P(word]observation) is highest. We use w to meau 
"our estimate of the correct w", and we'll use 0 to mean "the observation 
sequence [ni]" (we call it a sequence because we think of each letter as an 
individual observation). Then the equation for picking the best word given 
IS: 

w = argmaxP(w]O) (5.1) 
wEV 

The function argmaxxf(x) means "the x such that f(x) is maximized". 
While (5.1) is guaranteed to give us the optimal word w, it is not clear how 
to make the equation operational; that is, for a given word w and observation 
sequence 0 we don't know how to directly compute P( w] 0). The intuition of 
Bayesian classification is to use Bayes' rule to transform (5.1) into a product 
of two probabilities, each of which turns out to be easier to compute than 
P(w]O). Bayes' rule is presented in (5.2); it gives us a way to break down 
P(x] 0) into three other probabilities: 

P( I ) = P(y]x)P(x) (5.2) 
X y P(y) 

171



Section 5.5. Applying the Bayesian Method to Spelling 

We can see this by substituting (5.2) into (5.1) to get (5.3): 

. P(Oiw)P(w) 
w = argmax ( ) 

wEV p 0 
(5.3) 

The probabilities on the right-hand side of (5.3) are for the most part 
easier to compute than the probability P(wiO) that we were originally trying 
to maximize in (5.1). For example, P( w), the probability of the word itself, 
we can estimate by the frequency of the word. And we will see below that 
P( Olw) turns out to be easy to estimate as well. But P( 0), the probability 
of the observation sequence, turns out to be harder to estimate. Luckily, we 
can ignore P( 0). Why? Since we are maximizing over all words, we will 

be computing P(OJ(i:)(w) for each word. But P( 0) doesn't change for each 
word; we are always asking about the most likely word string for the same 
observation 0, which must have the same probability P( 0). Thus: 

w=argmaxP(OI7)~(w) =argmaxP(Oiw)P(w) (5.4) 
wEV p Q wEV 

To summarize, the most probable word w given some observation 0 
can be computing by taking the product of two probabilities for each word, 
and choosing the word for which this product is greatest. These two terms 
have names; P(w) is called the Prior probability, and P(Oiw) is called the PRIOR 

149 

likelihOOd. LIKELIHOOD 

likelihood prior 

~­KeyConcept #3. w=argmax P(Oiw) P(w) 
wEV 

(5.5) 

In the next sections we will show how to compute these two probabili­
ties for the probabilities of pronunciation and spelling. 

5.5 APPLYING THE BAYESIAN METHOD TO SPELLING 

There are many algorithms for spelling correction; we will focus on the 
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6 
will show how this algorithm can be extended to model real-word spelling 
errors; this section will focus on non-word spelling errors. The noisy chan­
nel approach to spelling correction was first suggested by Kernighan et al. 
(1990); their program, correct, takes words rejected by the Unix spell 
program, generates a list of potential correct words, rank them according to 
Equation (5.5), and picks the highest-ranked one. 

172



150 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

Let's walk through fhe algorifhrn as it applies to Kernighan et al.'s 
(1990) example misspelling acress. The algorithm has two stages: proposing 
candidate corrections and scoring the candidates. 

In order to propose candidate corrections Kernighan et al. make fhe 
simplifying assumption fhat fhe correct word will differ from the misspelling 
by a single insertion, deletion, substitution, or transposition. As Damerau's 
(1964) results show, even fhough fhis assumption causes fhe algorifhm to 
miss some corrections, it should handle most spelling errors in human typed 
text. The list of candidate words is generated from the typo by applying any 
single transformation which results in a word in a large on-line dictionary. 
Applying all possible transformations to acress yields the list of candidate 
words in Figure 5.2. 

Transformation 
Correct Error Position 

Error Correction Letter Letter (Letter#) Type 
a cress actress t - 2 deletion 
acress cress - a 0 insertion 
acress caress ca ac 0 transposition 
acress access c r 2 substitution 
acress across 0 e 3 substitution 
acress acres - 2 5 insertion 
acress acres I - I 2 4 insertion 

Figure 5.2 Candidate corrections for the misspelling acress, together with 
the transformations that would have produced the error (after Kernighan eta!. 
(1990)). "-"represents a null letter. 

The second stage of fhe algorithm scores each correction by Equa­
tion 5.4. Lett represent the typo (the misspelled word), and let c range over 
the set C of candidate corrections. The most likely correction is then: 

likelihood prior 

,.-"-.. -e = argmax P(tic) P(c) 
cEC 

As in Equation (5.4) we have omitted the denominator in Equation (5.6) 
since fhe typo t, and hence its probability P(t), is constant for all c. The prior 
probability of each correction P( c) can be estimated by counting how often 

NORMALIZING fhe word c occurs in some corpus, and then normalizing fhese counts by fhe 

173



Section 5.5. Applying the Bayesian Method to Spelling 

total count of all words 2 So the probability of a particular correction word 
c is computed by dividing the count of c by the number N of words in the 
corpus. Zero counts can cause problems, and so we will add .5 to all the 
counts. This is called "smoothing", and will be discussed in Chapter 6; note · 
that in Equation (5.7) we can't just divide by the total number of words N 
since we added .5 to the counts of all the words, so we add .5 for each of the 
V words in the vocabulary). 

P(c) = C(c) +0.5 
N+QW 0~ 

Chapter 6 will talk more about the role of corpora in computing prior 
probabilities; for now let's use the corpus of Kernighan et al. (1990), which 
is the 1988 AP newswire corpus of 44 million words. Thus N is 44 million. 
Since in this corpus the word actress occurs 1343 times, the word acres 2879 
times, and so on, the resulting prior probabilities are as follows: 

c freq(c) p(c) 
actress 1343 .0000315 
cress 0 .000000014 
caress 4 .0000001 
access 2280 .000058 
across 8436 .00019 
acres 2879 .000065 

Computing the likelihood term p(tlc) exactly is an unsolved (unsolve­
able?) research problem; the exact probability that a word will be mistyped 
depends on who the typist was, how familiar they were with the keyboard 
they were using, whether one hand happened to be more tired than the other, 
etc. Luckily, while p(tlc) cannot be computed exactly, it can be estimated 
pretty well, because the most important factors predicting an insertion, dele­
tion, transposition are simple local factors like the identity of the correct 
letter itself, how the letter was misspelled, and the surrounding context. For 
example, the letters m and n are often substituted for each other; this is partly 
a fact about their identity (these two letters are pronounced similarly and 
they are next to each other on the keyboard), and partly a fact about context 
(because they are pronounced similarly, they occur in similar contexts). 

One simple way to estimate these probabilities is the one that Kerni­
ghan et al. (1990) used. They ignored most of the possible influences on 
the probability of an error and just estimated e.g. p(acresslacross) using 

2 Normalizing means dividing by some total count so that the resulting probabilities fall 
legally between 0 and 1. 

151 

174



152 

CONFUSION 
MATRIX 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

the number of times that e was substituted for o in some large corpus of er­
rors. This is represented by a confusion matrix, a square 26 x 26 table which 
represents the number of times one letter was incorrectly used instead of an­
other. For example, the cell labeled [o, e] in a substitution confusion matrix 
would give the count of times that e was substituted for o. The cell labeled 
[t,s] in an insertion confusion matrix would give the count of times that t 
was inserted after s. A confusion matrix can be computed by hand-coding 
a collection of spelling errors with the correct spelling and then counting 
the number of times different errors occurred (this has been done by Grudin 
(1983)). Kernighan eta!. (1990) used four confusion matrices, one for each 
type of single-error: 

• del[x,y] contains the number of times in the training set that the char­
acters xy in the correct word were typed as x. 

• ins[x,y] contains the number of times in the training set that the char­
acter x in the correct word was typed as xy. 

• sub[x,y] the number of times that x was typed as y. 

• trans [x, y] the number of times that xy was typed as yx. 

Note that they chose to condition their insertion and deletion proba­
bilities on the previous character; they could also have chosen to condition 
on the following character. Using these matrices, they estimated p(t[c) as 
follows (where Cp is the pth character of the word c): 

P(t[c) = 

del[cr_,,cvJ 'fd I u· 
count[cr_1cp] ' 1 e e on 
ins[c,_,,,,] 'f. . 
count[cr-d 'I msertwn 

sub[t,,cp] . f b . . . 
count[c,] , 1 su shtutwn 

trans[cv,cr+ll if transposition 
count[crcp+I] ' 

(5.8) 

Figure 5.3 shows the final probabilities for each of the potential correc­
tions; the prior (from Equation (5.7)) is multiplied by the likelihood (com­
puted using Equation (5.8) and the confusion matrices). The final column 
shows the "normalized percentage". 

This implementation of the Bayesian algorithm predicts acres as the 
correct word (at a total normalized percentage of 45% ), and actress as the 
second most likely word. Unfortunately, the algorithm was wrong here: The 
writer's intention becomes clear from the context: ... was called a "stellar 
and versatile acress whose combination of sass and glamour has defined 
her . .. ". The surrounding words make it clear that actress and not acres was 

175



Section 5.6. Minimum Edit Distance 

lc II freq(c) I p(c) I p(t!c) p(t!c)p(c) % 

actress 1343 .0000315 .000117 3.69 X 10-Y 37% 
cress 0 .000000014 .00000144 2.02 x w-14 0% 
caress 4 .0000001 .00000164 1.64 x w- 13 0% 
access 2280 .000058 .000000209 1.21 x 10- 11 0% 
across 8436 .00019 .0000093 1.77 x w-9 18% 
acres 2879 .000065 .0000321 2.09 x w-9 21% 
acres 2879 .000065 .0000342 2.22 x w-9 23% 

Figure5.3 Computation of the ranking for each candidate correction. Note 
that the highest ranked word is not actress but acres (the two lines at the bottom 
of the table), since acres can be generated in two ways. The del[], ins[], sub[], 
and trans[] confusion matrices are given in full in Kernighan et a!. (1990). 

the intended word; Chapter 6 will show how to augment the computation of 
the prior probability to use the surrounding words. 

The algorithm as we have described it requires hand-annotated data to 
train the confusion matrices. An alternative approach used by Kernighan 
eta!. (1990) is to compute the matrices by iteratively using this very spelling 
error correction algorithm itself. The iterative algorithm first initializes the 
matrices with equal values; thus any character is equally likely to be deleted, 
equally likely to be substituted for any other character, etc. Next the spelling 
error correction algorithm is run on a set of spelling errors. Given the set 
of typos paired with their corrections, the confusion matrices can now be 
recomputed, the spelling algorithm run again, and so on. This clever method 
turns out to be an instance of the important EM algorithm (Dempster eta!., 
1977) that we will discuss in Chapter 7 and Appendix D. Kernighan et a!. 
(1990)'s algorithm was evaluated by taking some spelling errors that had 
two potential corrections, and asking three human judges to pick the best 
correction. Their program agreed with the majority vote of the human judges 
87% of the time. 

5.6 MINIMUM EDIT DISTANCE 

The previous section showed that the Bayesian algorithm, as implemented 
with confusion matrices, was able to rank candidate corrections. But Kerni­
ghan eta!. (1990) relied on the simplifying assumption that each word had 
only a single spelling error. Suppose we wanted a more powerful algorithm 

153 

176



154 

DISTANCE 

MINIMUM EDIT 
DISTANCE 

ALIGNMENT 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

which could handle the case of multiple errors? We could think of such 
an algorithm as a general solution to the problem of string distance. The 
"string distance" is some metric of how alike two strings are to each other. 
The Bayesian method can be viewed as a way of applying such an algorithm 
to the spelling error correction problem; we pick the candidate word which 
is "closest" to the error in the sense of having the highest probability given 
the error. 

One of the most popular classes of algorithms for finding string dis­
tance are those that use some version of the minimum edit distance algo­
rithm, named by Wagner and Fischer (1974) but independently discovered 
by many people; see the History section. The minimum edit distance be­
tween two strings is the minimum number of editing operations (insertion, 
deletion, substitution) needed to transform one string into another. For ex­
ample the gap between intention and execution is five operations, which can 
be represented in three ways; as a trace, an alignment, or a operation list 
as show in Figure 5 .4. 

Trace 

Alignment 

Operation 

List 

i n t e n t i o n 
////I I I I 

e x e c u t i o n 

i n t e n c t i o n 

c e x e c u t i o n 

i n t e 
delete i--

substitute n by e --
n t en 

substitute t by x --
e t en 

insert u--- e X e n 

substitute n by c -
e X e n 

ex e c 

n t i 0 n 

t i 0 n 

t i 0 n 

t i 0 n 

u t i 0 n 

u t i 0 n 

Figure 5.4 Three methods for representing differences between sequences 
(after Kruskal (1983)) 

We can also assign a particular cost or weight to each of these oper­
ations. The Levenshtein distance between two sequences is the simplest 
weighting factor in which each of the three operations has a cost of 1 (Lev­
enshtein, 1966). Thus the Levenshtein distance between intention and ex­
ecution is 5. Levenshtein also proposed an alternate version of his metric 

177



Section 5.6. Minimum Edit Distance 

in which each insertion or deletion has a cost of one, and substitutions are 
not allowed (equivalent to allowing substitution, but giving each substitution 
a cost of 2, since any substitution can be represented by one insertion and 
one deletion). Using this version, the Levenshtein distance between inten­
tion and execution is 8. We can also weight operations by more complex 
functions, for example by using the confusion matrices discussed above to 
assign a probability to each operation. In this case instead of talking about 
the "minimum edit distance" between two strings, we are talking about the 
"maximum probability alignment" of one string with another. If we do this, 
an augmented minimum edit distance algorithm which multiplies the prob­
abilities of each transformation can be used to estimate the Bayesian likeli­
hood of a multiple-error typo given a candidate correction. 

The minimum edit distance is computed by dynamic programming. 
Dynamic programming is the name for a class of algorithms, first introduced 
by Bellman (1957), that apply a table-driven method to solve problems by 
combining solutions to subproblems. This class of algorithms includes the 
most commonly-used algorithms in speech and language processing, among 
them the minimum edit distance algorithm for spelling error correction the 
Viterbi algorithm and the forward algorithm which are used both in speech 
recognition and in machine translation, and the CYK and Earley algorithm 
used in parsing. We will introduce the minimum-edit-distance, Viterbi, and 
forward algorithms in this chapter and Chapter 7, the Earley algorithm in 
Chapter 10, and the CYK algorithm in Chapter 12. 

The intuition of a dynamic programming problem is that a large prob­
lem can be solved by properly combining the solutions to various subprob­
lems. For example, consider the sequence or "path" of transformed words 
that comprise the minimum edit distance between the strings intention and 
execution. Imagine some string (perhaps it is exention) that is in this opti­
mal path (whatever it is). The intuition of dynamic programming is that if 
exention is in the optimal operation-list, then the optimal sequence must also 
include the optimal path from intention to exention. Why? If there were a 
shorter path from intention to exention then we could use it instead, resulting 
in a shorter overall path, and the optimal sequence wouldn't be optimal, thus 
leading to a contradiction. 

Dynamic programming algorithms for sequence comparison work by 
creating a distance matrix with one column for each symbol in the target se­
quence and one row for each symbol in the source sequence (i.e., target along 
the bottom, source along the side). For minimum edit distance, this matrix 
is the edit-distance matrix. Each cell edit-distance[ij] contains the distance 

155 

DYNAMIC 
PROGRAMMING 

178



156 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

between the first i characters of the target and the first j characters of the 
source. Each cell can be computed as a simple function of the surrounding 
cells; thus starting from the beginning of the matrix it is possible to fill in 
every entry. The value in each cell is computing by taking the minimum of 
the three possible paths through the matrix which arrive there: 

{ 

distance [i - 1, J] + ins-cost( target1) 

P(tlc) =min distance[i- 1, j- 1] + subst-cost(source 1, target1) 

distance[i,j -1] +del-cost(source1)) 

(5.9) 

The algorithm itself is summarized in Figure 5.5, while Figure 5.6 
shows the results of applying the algorithm to the distance between inten­

tion and execution assuming the version of Levenshtein distance in which 
insertions and deletions each have a cost of 1 and substitutions have a cost 
of2. 

function MIN-EDIT-DISTANCE(target, source) retnms min-distance 

n +- LENGTH(target) 
m+- LENGTH(source) 
Create a distance matrix distance[n+ l,m+l] 
distance[O,O] +-0 
for each column i from 0 to n do 

for each row j from 0 to m do 
distance[i,j] +-MIN( distance[i-l,j] + ins-cost(targett), 

distance[i-l,j-1] + subst-cost(source i• target;), 
distance[i,j-1] + del-cost(sourcej)) 

Figure 5.5 The minimum edit distance algorithm, an example of the class 
of dynamic programming algorithms. 

5.7 ENGLISH PRONUNCIATION VARIATION 

When any of the fugitives of Ephraim said: 'Let me go over,' the men 
of Gilead said unto him: 'Art thou an Ephraimite?' If he said: 'Nay'; 
then said they unto him: 'Say now Shibboleth'; and he said 'Sibbo-
1eth'; for he could not frame to pronounce it right; then they laid hold 
on him, and slew him at the fords of the Jordan. 

Judges 12:5-6 

179



Section 5.7. English Pronunciation Variation 

n 9 10 11 10 11 12 11 10 9 8 
0 8 9 10 9 10 11 10 9 8 9 
i 7 8 9 8 9 10 9 8 9 10 
t 6 7 8 7 8 9 8 9 10 11 
n 5 6 7 6 7 8 9 10 11 12 
e 4 5 6 5 6 7 8 9 10 11 
t 3 4 5 6 7 8 9 10 11 12 
n 2 3 4 5 6 7 8 8 10 11 
i 1 2 3 4 5 6 7 8 9 10 

# 0 1 2 3 4 5 6 7 8 9 

# e X e c u t i 0 n 

Figure 5.6 Computation of minimum edit distance between intention and 
execution via algorithm of Figure 5.5, using Levenshtein distance with cost of 
1 for insertions or deletions, 2 for substitutions. Substitution of a character for 
itself has a cost of 0. 

This passage from Judges is a rather gory reminder of the political 
importance of pronunciation variation. Even in our (hopefully less politi­
cal) computational applications of pronunciation, it is important to correctly 
model how pronunciations can vary. We have already seen that a phoneme 
can be realized as different allophones in different phonetic environments. 
We have also shown how to write rules and transducers to model these 
changes for speech synthesis. Unfortunately, these models significantly sim­
plified the nature of pronunciation variation. In particular, pronunciation 
variation is caused by many factors in addition to the phonetic environment. 
This section summarizes some of these kinds of variation; the following sec­
tion will introduce the probabilistic tools for modeling it. 

Pronunciation variation is extremely widespread. Figure 5.7 shows 
the most common pronunciations of the words because and about from the 
hand-transcribed Switchboard corpus of American English telephone con­
versations. Note the wide variation in pronunciation for these two words 
when spoken as part of a continuous stream of speech. 

What causes this variation? There are two broad classes of pronunci­
ation variation: lexical variation and allophonic variation. We can think 
of lexical variation as a difference in what segments are used to represent 
the word in the lexicon, while allophonic variation is a difference in how the 
individual segments change their value in different contexts. In Figure 5.7, 
most of the variation in pronunciation is allophonic; that is, due to the influ-

157 

LEXICAL 
VARIATION 
ALLOPHONIC 
VARIATION 

180



158 

SOCIOLINGUISTIC 

DIALECT 
VARIATION 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

because about 
IPA ARPA bet % IPA ARPA bet % 

[bikAz] [biykahz] 27% [~bau] [ax b aw] 32% 
[bikAz] [b ix k ah z] 14% [~baut] [ax b aw t] 16% 
[kAz] [k ah z] 7% [bau] [b aw] 9% 
[bz] [k ax z] 5% [Abau] [ix b aw] 8% 
[bikoz] [bixkaxz] 4% [ibaut] [ix b aw t] 5% 
[brkAz] [bihkahz] 3% [ibm] [ix bae] 4% 
[b~kAz] [b ax k ah z] 3% [~bcer] [ax b ae dx] 3% 
[kuz] [k uh z] 2% [baur] [b aw dx] 3% 
[ks] [k s] 2% [bce] [b ae] 3% 
[kiz] [k ix z] 2% [baut] [b aw t] 3% 
[kiZ] [k ih z] 2% [~baur] [ax b aw dx] 3% 
[bikA3] [b iyk ah zh] 2% [~bce] [ax b ae] 3% 
[bikAs] [biykahs] 2% [ba] [baa] 3% 
[bikA] [b iy k ah] 2% [bcer] [b ae dx] 3% 
[bikaz] [biykaaz] 2% [ibaur] [ix b av.: dx] 2% 
[oz] [ax z] 2% [ibat] [ix baa t] 2% 

Figure 5.7 The 16 most common pronunciations of because and about 
from the hand-transcribed Switchboard corpus of Americau English conver-
sational telephone speech (Godfrey eta!., 1992; Greenberget a!., 1996). 

ence of the surrounding sounds, syllable structure, and so forth. But the fact 
that the word because can be pronounced either as monosyllabic 'cause or 
bisyl!abic because is probably a lexical fact, having to do perhaps with the 
level of informality of speech. 

An important source oflexical variation (although it can also affect al­
lophonic variation) is sociolinguistic variation. Sociolinguistic variation is 
due to extralinguistic factors such as the social identity or background of the 
speaker. One kind of sociolinguistic variation is dialect variation. Speak­
ers of some deep-southern dialects of American English use a monophthong 
or near-monophthong [a] or [ar] instead of a diphthong in some words with 
the vowel [ar]. In these dialects rice is pronounced [ra:s]. African-American 
Vernacular English (AAVE) has many of the same vowel differences from 
General American as does Southern American English, and also has indi­
vidual words with specific pronunciations such as [brdrns] for business and 
[ceks] for ask. For older speakers or those not from the American West or 
Midwest, the words caught and cot have different vowels ([bt] and [kat] 

181



Section 5. 7. English Pronunciation Variation 

respectively). Young American speakers or those from fhe West pronounce 
the two words cot and caught the same; the vowels [3] and [a] are usually 
not distinguished in fhese dialects. For some speakers from New York City 
like the first aufhor's parents, the words Mary ([merri]), marry ([mreri]), and 
merry ([mrri]) are all pronounced differently, while other New York City 
speakers like the second aufhor pronounce Mary, and merry identically, but 
differently fhan marry. Most American speakers pronounce all fhree of these 
words identically as ([mrri]). Students who are interested in dialects of En­
glish should consult Wells (1982), the most comprehensive study of dialects 
of English around fhe world. 

159 

Other sociolinguistic differences are due to register or style rafher than REGISTER 

dialect. In a pronunciation difference that is due to style, the same speaker smE 

might pronounce fhe same word differently depending on who fhey were 
talking to or what the social situation is; fhis is probably the case when 
choosing between because and 'cause above. One of the most well-studied 
examples of style-variation is fhe suffix-ing (as in something), which can be 
pronounced [IIJ] or /m/ (this is often written somethin'). Most speakers use 
both forms; as Labov (1966) shows, they use [nJ] when fhey are being more 
formal, and [m] when more casual. In fact whether a speaker will use [rlJ] or 
[m] in a given situation varies markedly according to the social context, fhe 
gender of the speaker, the gender of fhe other speaker, and so on. Wald and 
Shopen (1981) found that men are more likely to use the non-standard form 
[m] than women, fhat both men and women are more likely to use more of 
fhe standard form [rlJ] when fhe addressee is a women, and fhat men (but not 
women) tend to switch to [m] when fhey are taiking wifh friends. 

Where lexical variation happens at the lexical level, allophonic varia­
tion happens at the surface form and reflects phonetic and articulatory fac­
tors3 For example, most of fhe variation in the word about in Figure 5.7 
was caused by changes in one of the two vowels or by changes to fhe final 
[t]. Some of fhis variation is due to fhe allophonic rules we have already 
discussed for the realization of the phoneme /t/. For example the pronun­
ciation of about as [gbaur]/[ax b aw dx]) has a flap at fhe end because the 
next word was the word it, which begins with a vowel; fhe sequence about 
it was pronounced [gbauri]/[ax b aw dx ix]). Similarly, note fhat final [t] is 
often deleted; (about as [bau]/[b awl). Considering these cases as "deleted" 
is actually a simplification; many of these "deleted" cases of [t] are actually 

3 For some ptrrposes we distinguish between allophonic variation and what are called "op­
tional phonological ru1es"; for the purposes of this textbook we will lump these both together 
as "allophonic variation". 

182



160 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

realized as a slight change to the vowel quality called glottalization which 
are not represented in these transcriptions. 

When we discussed these rules earlier, we implied that they were .de­
terministic; given an environment, a rule always applies .. This is by no means 
the case. Each of these allophonic rules is dependent on a complicated set of 
factors that must be interpreted probabilistically. In the rest of this section 
we summarize more of these rules and talk about the influencing factors. 

coARTICULATION Many of these rules model coarticulation, which is a change in a segment 
due to the movement of the articulators in neighboring segments. Most al­
lophonic rules relating English phoneme to their allophones can be grouped 
into a small number of types: assimilation, clissimilation, deletion, flapping, 
vowel reduction, and epenthesis. 

ASSIMILATION Assimilation is the change in a segment to make it more like a neigh-
boring segment. The dentalization of [ t] to ([~]) before the dental consonant 
[9] is an example of assimilation. Another common type of assimilation 

PALATALIZATION in English and cross-linguistically is palatalization. Palatalization occurs 
when the constriction for a segment occurs closer to the palate than it nor­
mally would, because the following segment is palatal or alveolo-palatal. 
In the most common cases, /s/ becomes [I], /z/ becomes [3], /tl becomes [tf 
and /d/ becomes d3]. We saw one case of palatalization in Figure 5.7 in the 
pronunciation of because as [bikA3] (ARPAbet [b iy k ah zh]). Here the 
final segment of because, a lexical /z/, is realized. as [3], because the fol­
lowing word was you've. So the sequence because you've was pronounced 
[bikA3nv ]. A simple version of a palatalization rule might be expressed as 
follows; Figrue 5.8 shows examples from the Switchboard corpus. 

DELETION 

f [;j ) ~ f[fJJ ) I - { Y } 1 [d] 1 [d3] 

(5.10) 

Note in Figrue 5.8 that whether a [t] is palatalized depends on lexical 
factors like word frequency ([t] is more likely to be palatalized in frequent 
words and phrases). 

Deletion is quite common in English speech. We saw examples of 
deletion of final /tl above, in the words about and it. jt/ and /d/ are often 
deleted before consonants, or when they are part of a sequence of two or 
three consonants; Figure 5.9 shows some examples. 

{ ~} ~0/V_C (5.11) 

The many factors that influence the deletion of /t/ and /d/ have been 
extensively stuclied. For example /d/ is more likely to be deleted than jtj. 

183



Section 5.7. English Pronunciation Variation 

IPA IPA ARPA bet 
Phrase Lexical Reduced Reduced 

set your [srtj~r] [srtJac] [s eh ch er] 

not yet [natjrt] [natJrt] [n aa ch eh t] 

last year [lrestjir] [lrestJir] [I ae s ch iy r] 

what you [wAtju] [w~tJu] [wax ch uw] 

this year [orsjir] [orJir] [dh ih sh iy r] 

because you've [bikAzjuv] [bikA3UVj [b iy k ah zh uw v] 

did you [drdju] [(lrd3yA] [dihjhyah] 

Figure 5.8 Examples of palatalization from the Switchboard corpus; the 
lemma you (including your, you've, and you'd:) was by far the most common 
cause of palatalization, followed by year( s) (especially in the phrases this year 
aud last year). 

IPA IPA ARPA bet 
Phrase Lexical Reduced Reduced 

find him [famdhrm] [fanlim] [fay nix m] 

around this [~raundoiS] [iraums] [ix raw nih s] 

mind boggling [mamb~gJ:nJ] [mamb~g)rlJ] [may n b ao gel ih ng] 

most places [moustplersiz] [mousplersiz] [mowspleysixz] 

draft the [drreftOi] [drrefOi] [draefdhiy] 

left me [ldtmi] [lrfmi] [1 eh f m iy] 

Figure 5.9 Examples of It! and /d/ deletion from Switchboard. Some of 
these examples may have glottalization instead of being completely deleted. 

Both are more likely to be deleted before a consonant (Labov, 1972). The 
final it! and /d/ in the words and and just are particularly likely to be deleted 

(Labov, 1975; Neu, 1980). Wolfram (1969) found that deletion is more 

likely in faster or more casual speech, and that younger people and males 
are more likely to delete. Deletion is more likely when the two words sur­

rounding the segment act as a sort of phrasal unit, either occurring together 

frequently (Bybee, 1996), having a high mutual information or trigram 
predictability (Gregory et al., 1999), or being tightly connected for other 

reasons (Zwicky, 1972). Fasold (1972), Labov (1972), and many others have 

shown that deletion is less likely if the word-finalltl or I dl is the past tense 
ending. For example in Switchboard, deletion is more likely in the word 

around (73% I dl-deletion) than in the word turned (30% ldl-deletion) even 

though the two words have similar frequencies. 

161 

184



162 

HYPERARTICULATES 

REDUCED 
VOWELS 

SCHWA 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

The flapping rule is significantly more complicated than we suggested 
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes 
(1992)). The preceding vowel is highly likely to be stressed, although this is 
not necessary (for example there is commonly a flap in the word thermome­
ter [8<!''mamirac]l. The following vowel is highly likely to be unstressed, al­
though again this is not necessary. It I is much more likely to flap than 
I dl. There are complicated interactions with syllable, foot, and word bound­
aries. Flapping is more likely to happen when the speaker is speaking more 
quickly, and is more likely to happen at the end of a word when it forms 
a collocation (high mutual information) with the following word (Gregory 
et a!., 1999). Flapping is less likely to happen when a speaker hyperar­
ticulates, i.e. uses a particularly clear form of speech, which often happens 
when users are talking to computer speech recognition systems (Oviatt eta!., 
1998). There is a nasal flap [rJ whose tongue movements resemble the oral 
flap but in which the velum is lowered. Finally, flapping doesn't always hap­
pen, even when the environment is appropriate; thus the flapping rule, or 
transducer, needs to be probabilistic, as we will see below. 

We have saved for last one of the most important phonological pro­
cesses: vowel reduction, in which many vowels in unstressed syllables are 
realized as reduced vowels, the most common of which is schwa ([Qj). 
Stressed syllables are those in which more air is pushed out of the lungs; 
stressed syllables are longer, louder, and usually higher in pitch than un­
stressed syllables. Vowels in unstressed syllables in English often don't have 
their full form; the articulatory gesture isu't as complete as for a full vowel. 
As a result the shape of the mouth is somewhat neutral; the tongue is nei­
ther particularly high nor particularly low. For example the second vowels 
in parakeet is schwa: [p&IQkit J. 

While schwa is the most common reduced vowel, it is not the only 
one, at least not in some dialects. Bolinger (1981) proposed three reduced 
vowels: a reduced mid vowel [QJ, a reduced front vowel [iJ, and a reduced 
rounded vowel [eJ. But the majority of computational pronunciation lex­
icons or computational models of phonology systems limit themselves to 
one reduced vowel ([Q]l (for example PRONLEX and CELEX) or at most 
two ([Q] =ARPABET [ax] and [i} = ARPAbet [ix]). Miller (1998) was able 
to train a neural net to automatically categorize a vowel as [Qj or [i] 
only on the phonetic context, which suggests that for speech recognition 
text-to-speech purposes, one reduced vowel is probably adequate. 
Wells (1982, p. 167-168) notes that [~J and [i] are falling together in 
dialects of English including General American and Irish, among others, 

185



Section 5.8. The Bayesian Method for Pronunciation 

phenomenon he calls weak vowel merger. 
A final note: not all unstressed vowels are reduced; any vowel, and 

diphthongs in particular can retain their full quality even in unstressed po­
sition. For example the vowel [er] (ARPAbet [ey]) can appear in stressed 
position as in the word eight) ['crt] or unstressed position as in the word al- · 
ways ['3.werz]. Whether a vowel is reduced depends on many factors. For 
example the word the can be pronounced with a full vowel oi or reduced 
vowel o~. It is more likely to be pronounced with the reduced vowel o~ in 
fast speech, in more casual situations, and when the following word begins 
with a consonant. It is more likely to be pronounced with the full vowel oi 
when the following word begins with a vowel or when the speaker is having 
"planning problems"; speakers are more likely to use a full vowel than are­
duced one if they don't know what they are going to say next (Fox Tree and 
Clark, 1997). See Keating eta!. (1994) and Jurafsky et al. (1998) for more 
details on factors effecting vowel reduction in the TIMIT and Switchboard 
corpora. Other factors influencing reduction include the frequency of the 
word, whether this is the final vowel in a phrase, and even the idiosyncracies 
of individual speakers. 

5.8 THE BAYESIAN METHOD FOR PRONUNCIATION 

HEAD KNIGHT OF NI: Ni! 
KNIGHTS OF NI: Ni! Ni! Ni! Ni! Ni! 
ARTHUR: 
HEAD KNIGHT: 
RANDOM: 
ARTHUR: 
HEAD KNIGHT: 
BEDEVERE: 
HEAD KNIGHT: 

Who are you? 
We are the Knights Who Say ... 'Ni'! 
N'l 1. 

No! Not the Knights Who Say 'Ni'! 
The same! 
Who are they? 
We are the keepers of the sacred words: 
'Ni', 'Peng', and 'Neee-wom'! 

Graham Chapman, John Cleese, Eric Idle, Terry Gilliam, Terry Jones, 
and Michael Palin, Monty Python and the Holy Grail1975. 

The Bayesian algorithm that we used to pick the optimal correction for 
a spelling error can be used to solve what is often called the pronunciation 
subproblem in speech recognition. In this task, we are given a series of 
phones and our job is to compute the most probable word which generated 
them. For this chapter, we will simplify the problem in an important way 
by assuming the correct string of phones. A real speech recognizer relies on 

163 

186



164 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

probabilistic estimators for each phone. so it is never sure about the identity 
of any phone. We will relax this assumption in Chapter 7; for now. let"s look 
at the simpler problem. 

We'll also begin with another simplification by assuming that we al­
ready know where the word boundaries are. Later in the chapter, we'll show 
that we can simultaneously find word boundaries ("segment") and model 
pronunciation variation. 

Consider the particular problem of interpreting the sequence of phones 
[ ni], when it occurs after the word I at the beginning of a sentence. Stop and 
see if you can think of any words which are likely to have been pronounced 
[ni] before you read on. The word "Ni" is not allowed. 

You probably thought of the word knee. This word is in fact pro­
nounced [nil. But an investigation of the Switchboard corpus produces a 
total of 7 words which can be pronounced [ni]! The seven words are the, 
neat, need, new, knee, to, and you. 

How can the word the be pronounced [nil? The explanation for this 
pronunciation (and all the others except the one for knee) lies in the contextu­
ally-induced pronunciation variation we discussed in Chapter 4. For exam­
ple, we saw that [tl and [dl were often deleted word finally, especially before 
coronals; thus the pronunciation of neat as [nil happened before the word 
little (neat little -+ [nilgj]). The pronunciation of the as [nil is caused by the 
regressive assimilation process also discussed in Chapter 4. Recall that in 
nasal assimilation, phones before or after nasals take on nasal manner of ar­
ticulation. Thus [8] can be realized as [n]. The many cases of the pronounced 
as [nil in Switchboard occurred after words like in, on, and been (so in the 
-+ [mni]). The pronunciation of new as [nil occurred most frequently in the 
word New York; the vowel [u] has fronted to [i] before a [y]. 

The pronunciation of to as [nil occurred after the work talking (talking 
to you-+ [bkrniyu]l; here the [u] is palatalized by the following [y] and the 
[nl is functioning jointly as the final sound of talking and the initial sound 
of to. Because this phone is part of two separate words we will not try to 
model this particular mapping; for the rest of this section let's consider only 
the following five words as candidate lexical forms for [ni]: knee, the, neat, 
need, new. 

We saw in the previous section that the Bayesian spelling error cor­
rection algorithm had two components: candidate generation, and candidate 
scoring. Speech recognizers often use an alternative architecture, trading 
off speech for storage. In this architecture, each pronunciation is expanded 
in advance with all possible variants, which are then pre-stored with their 

187



Section 5.8. The Bayesian Method for Pronunciation 

scores. Thus there is no need for candidate generation; the word [nil is 
simply stored with the list of words that can generate it. Let"s assume this 
method and see how the prior and likelihood are computed for each word. 

We will be choosing the word whose product of prior and likelihood is 
the highest. according to Equation (5.12), where y represents the sequence 
of phones (in this case [ni] and w represents the candidate word [the, new, 
etc.]). The most likely word is then: 

likelihood prior 

,-A-.. -w = argmax P(ylw) P(w) 
WEW 

(5.12) 

We could choose to generate the likelihoods p(ylw) by using a set of 
confusion matrices as we did for spelling error correction. But it turns out 
that confusion matrices don't do as well for pronunciation as for spelling. 
While misspelling tends to change the form of a word only slightly, the 
changes in pronunciation between a lexical and surface form are much greater. 
Confusion matJ.ices only work well for single-errors, which, as we saw above, 
are common in misspelling. Furthermore, recall from Chapter 4 that pro­
nunciation variation is strongly affected by the surrounding phones, lexical 
frequency, and stress and other prosodic factors. Thus probabilistic models 
of pronunciation variation include a lot more factors than a simple confusion 
matrix can include. 

One simple way to generate pronunciation likelihoods is via proba-

165 

bilistic rules. Probabilistic mles were first proposed for pronunciation by ~n2~tBiuSTIC 

(Labov, 1969) (who called them variable rules). The idea is to take the 
rules of pronunciation variation we saw in Chapter 4 and associate them 
with probabilities. We can then mn these probabilistic rules over the lexicon 
and generate different possible surface forms each with its own probability. 
For example, consider a simple version of a nasal assimilation rule which 
explains why the can be pronounced [ni]; a word-initial [o] becomes [n] if the 
preceding word ended in [n] or sometimes [m]: 

[.15] o =? n / [+nasal] #_ (5.13) 

The [.15] to the left of the mle is the probability; this can be com­
puted from a large-enough labeled corpus such as the transcribed portion of 
Switchboard. Let ncount be the number of times lexical [il] is realized word­
initially by surface [n] when the previous word ends in a nasal (91 in the 
Switchboard corpus). Let envcount be the total number of times lexical [o] 
occurs (whatever its surface realization) when the previous word ends in a 
nasal (617 in the Switchboard corpus). The resulting probability is: 

188



166 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

P(o-+ n I [+nasal]#_) 
ncount 

envcount 
91 

617 
.15 

We can build similar probabilistic versions of the assimilation and dele­
tion rules which account for the [ni] pronunciation of the other words. Fig­
ure 5.10 shows sample rules and the probabilities trained on the Switchboard 
pronunciation database. 

Word RuieName Rule p 

the nasal assimilation o =? n I [+nasal]#_ [.15} 
neat final t deletion t=>-0IV_# [.52] 
need final d deletion d=>-0IV_# [.11] 
new u fronting u=>-il_#[y] [.36] 

Figure 5.10 Simple rules of pronunciation variation due to context in con­
tinuous speech accounting for the pronunciation of each of these words as [ni]. 

We now need to compute the prior probability P(w) for each word. 
For spelling correction we did this by using the relative frequency of the 
word in a large corpus; a word which occurred 44,000 times in 44 million 
words receives the probability estimate 444;0~0g00 or .001. For the pronuncia­
tion problem, let's take our prior probabiiltie~ from a collection of a written 
and a spoken corpus. The Brown Corpus is a I million word collection 
of samples from 500 written texts from different gemes (newspaper, novels, 
non-fiction, academic, etc.) which was assembled at Brown University in 
1963-1964 (Kucera and Francis, 1967; Francis, 1979; Francis and Kucera, 
1982). The Switchboard Treebank corpus is a 1.4 million word collection 
of telephone conversations. Together they let us sample from both the writ­
ten and spoken gemes. The table below shows the probabilities for our five 
words; each probability is computed from the raw frequencies by normaliz­
ing by the number of words in the combined corpus (plus .5 * the number of 
word types; so the total denominator is 2,486,075 + 30,836): 

189



Section 5.8. The Bayesian Method for Pronunciation 

w freq(w) p(w) 
knee 61 .000024 
the 114.834 .046 
neat 338 .00013 
need 1417 .00056 
new 2625 .001 

Now we are almost ready to answer our original question: what is 
the most likely word given the pronunciation [ni] and given that the previous 
word was I at the beginning of a sentence. Let's start by multiplying together 
our estimates for p(w) and p(ylw) to get an estimate; we show them sorted 
from most probable to least probable (the has a probability of 0 since the 
previous phone was not [n], and hence there is no other rule allowing [o] to 
be realized as [n]): 

Word p(ylw) p(w) p(ylw)p(w) 
new .36 .001 .00036 
neat .52 .00013 .000068 
need .11 .00056 .000062 
knee 
the 

1. 00 . 000024 . 000024 
0 .046 0 

Our algorithm suggests that new is the most likely underlying word. 
But this is the wrong answer; the string [ni] following the word I came in 
fact from the word need in the Switchboard corpus. One way that people 
are able to correctly solve this task is word-level knowledge; people know 
that the word string I need . . . is much more likely than the word string 
I new . . . . We don"! need to abandon our Bayesian model to handle this 
fact; we just need to modify it so that our model also knows that I need is 
more likely than I new. In Chapter 6 we will see that we can do this by 
using a slightly more intelligent estimate of p(w) called a bigram estimate; 
essentially we consider the probability of need following I instead of just the 
individual probability of need. 

This Bayesian algorithm is in fact part of all modern speech recog­
nizers. Where the algorithms differ strongly is how they detect individual 
phones in the acoustic signal. and on which search algorithm they use to 
efficiently compute the Bayesian probabilities to find the proper string of 
words in connected speech (as we will see in Chapter 7). 

167 

190



168 

DECISION TREE 

CART 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

Decision Tree Models of Pronunciation Variation 

In the previous section we saw how hand-written rules could be• augmented 
with probabilities to model pronunciation variation. Riley ( 1991) and With­
got! and Chen (1993) suggested an alternative to writing rules by hand, 
which has proved quite useful: automatically inducing lexical-to-surface 
pronunciations mappings from a labeled corpus with a decision tree, partic­
ularly with the kind of decision tree called a Classification and Regression 
Tree (CART) (Breiman eta!., 1984). A decision tree takes a situation de­
scribed by a set of features and classifies it into a category aud an associated 
probability. For pronunciation, a decision tree can be trained to take a lexical 
phone and various contextual features (surrounding phones, stress and sylla­
ble structure information, perhaps lexical identity) and select an appropriate 
surface phone to realize it. We can think of the confusion matrices we used 
in spelling error correction above as degenerate decision trees; thus the sub­
stitution matrix takes a lexical phone and outputs a probability distribution 
over potential surface phones to be substituted. The advantage of decision 
trees is that they can be automatically induced from a labeled corpus, and 
that they are concise: Decision trees pick out only the relevant features and 
thus suffer less from sparseness than a matrix, which has to condition on 
every neighboring phone. 

Next-dictionary_phone 

Vowel 

Previous-dictionary _phone 

kmpixuwaeeh 
ih ayey 

Previous-dictionary_phone 

iy iw axr aa ao 
erawaxefenng 

dfnlr gtvz 

Position in syllable 

Consonant 

Next-dictionary_phone 

gktny dhhhthbdfgkl 
mnpstwy 

tel .41 
mixuwaeeh 
ih ayey kp fnitial Coda 

NULL .64 1 
tcl_t .13 ' 
tel .11 

NULL.32 ! 

tcl_t .11 

tcl_t .55 
dx .16 

t .33 
tel t .27 
k- .26 

td_t .83 
NULL.04 

tcl_t .58 
. NULL .16 
"i dcl_d .07 

Figure 5.11 Hand-pruned decision tree for the phoneme /1/ induced from the Switch­
board corpus (courtesy of Eric Fosler-Lussier). This particular decision tree doesn't model 
flapping since flaps were already listed in the dictionary. The tree automatically induced the 
categories Vowel and Consonant. We have only shown the most likely realizations at each 
leaf node. 

191



Section 5.9. Weighted Automata 

For example, Figure 5.11 shows a decision tree for the pronunciation 
of the phoneme /t/ induced from the Switchboard corpus. While this tree 
doesn't including flapping (there is a separate tree for flapping) it does model 
the fact that /t/ is more likely to be deleted before a consonant than before 
a vowel. Note, in fact, that the tree automatically induced the classes Vowel 
and Consonant. Furthermore note that if /t/ is not deleted before a conso­
nant, it is likely to be unreleased. Finally, notice that /t/ is very unlikely to 
be deleted in syllable onset position. 

Readers with interest in decision tree modeling of pronunciation should 
consult Riley (1991), Withgott and Chen (1993), and a textbook with an in­
troduction to decision trees such as Russell and Norvig (1995). 

5.9 WEIGHTED AUTOMATA 

We said earlier that for purposes of efficiency a lexicon is often stored with 

169 

the most likely kinds of pronunciation vatiation pre-compiled. The two most 
common representation for such a lexicon are the trie and the weighted WEIGHTED 

finite-state automaton/transducer (or probabilistic FSAIFST) (Pereira eta!., 
1994). We will leave the discussion of the ttie to Chapter 7, and concentrate 
here on the weighted automaton. 

The weighted automaton is a simple augmentation of the finite automa­
ton in which each arc is associated with a probability, indicating how likely 
that path is to be taken. The probability on all the arcs leaving a node must 
sum to 1. Figure 5.12 shows two weighted automata for the word tomato, 
adapted from Russell and Norvig (1995). The top automaton shows two pos­
sible pronunciations, representing the dialect difference in the second vowel. 
The bottom one shows more pronunciations (how many?) representing op­
tional reduction or deletion of the first vowel and optional flapping of the 
final [t]. 

A Markov chain is a special case of a weighted automaton in which MARKov cHAIN 

the input sequence uniquely determines which states the automaton will go 
through. Because they can't represent inherently ambiguous problems, a 
Markov chain is only useful for assigning probabilities to unambiguous se-
quences; thus theN-gram models to be discussed in Chapter 6 are Markov 
chains since each word is treated as if it was unambiguous. In fact the 
weighted automata used in speech and language processing can be shown 
to be equivalent to Hidden Markov Models (HMMs). Why do we in-
troduce weighted automata in this chapter and HMMs in Chapter 7? The 

192



170 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

Word model with dlalect variation: 

Figure 5.12 You say [tow m ey tow] and I say [tow m aa tow]. Two 
pronunciation networks for the word tomato, adapted from Russell and Norvig 
(1995). The top one models sociolinguistic variation (some British or eastern 
American dialects); the bottom one adds in coarticulatory effects. Note the 
correlation between allophonic and sociolinguistic variation; the dialect with 
the vowel [ ey] is more likely to flap than the other dialect. 

two models offer a different metaphor; it is sometimes easier to think about 
certain problems as weighted-automata than as HMMs. The weighted au­
tomaton metaphor is often applied when the input alphabet maps relatively 
neatly to the underlying alphabet. For example, in the problem of correct­
ing spelling errors in typewritten input, the input sequence consists of letters 
and the states of the automaton can correspond to letters. Thus it is natural 
to think of the problem as transducing from a set of symbols to the same set 
of symbols with some modifications, and hence weighted automata are nat­
urally used for spelling error correction. In the problem of correcting errors 
in hand-written input, the input sequence is visual, and the input alphabet is 
an alphabet of lines and angles and curves. Here instead of transducing from 
an alphabet to itself, we need to do classification on some input sequence be­
fore considering it as a sequence of states. Hidden Markov Models provide 
a more appropriate metaphor, since they naturally handle separate alphabets 
for input sequences and state sequences. But since any probabilistic automa­
ton in which the input sequence does not uniquely specify the state sequence 
can be modeled as an HMM, the difference is one of metaphor rather than 
explanatory power. 

193



Section 5.9. Weighted Automata 

Weighted automata can be created in many ways. One way, first pro­
posed by Cohen (1989) is to start with on-line pronunciation dictionaries and 
use hand-written rules of the kind we saw above to create different potential 
surface forms. The probabilities can then be assigned either by counting 
the number of times each pronunciation occurs in a corpus, or if the cor-· 
pus is too sparse, by learning probabilities for each rule and multiplying 
out the rule probabilities for each surface form (Tajchman et al., 1995). Fi­
nally these weighted rules, or alternatively the decision trees we discussed 
in the last section, can be automatically compiled into a weighted finite-state 
transducer (Sproat and Riley, 1996). Alternatively, for very common words, 
we can simply find enough examples of the pronunciation in a transcribed 
corpus to build the model by just combining all the pronunciations into a 
network (Wooters and Stolcke, 1994). 

The networks for tomato above were shown merely as illustration and 
are not from any real system; Figure 5.13 shows an automaton for the word 
about which is trained on actual pronunciations from the Switchboard corpus 
(we discussed these pronunciations in Chapter 4). 

Figure 5.13 A pronunciation network for the word about, from the actual 
pronunciations in the Switchboard corpus. 

Computing Likelihoods from Weighted Automata: The Forward 
Algorithm 

One advantage of an automaton-based lexicon is that there are efficient al­
gorithms for generating the probabilities that are needed to implement the 
Bayesian method of correct-word-identification of Section 5.8. These algo­
rithms apply to weighted automata and also to the Hidden Markov Models 
that we will discuss in Chapter 7. Recall that in our example the Bayesian 

171 

194



172 

FORWARD 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

method is given as input a series of phones [n iy], and must choose between 
the words the, neat, need, new, and knee. This was done by computing two 
probabilities: the prior probability of each word, and the likelihood of the 
phone stting [n iy] given each word. When we discussed this example ear­
lier, we said that for example the likelihood of [n iy] given the word need was 
.11, since we computed a probability of .11 for thefinal-d-deletion rule from 
our Switchboard corpus. This probability is transparent for need since there 
were only two possible pronunciations ([n iy] and [n iy d]). But for words 
like about, visualizing the different probabilities is more complex. Using a 
precompiled weighted automata can make it simpler to see all the different 
probabilities of different paths through the automaton. 

There is a very simple algorithm for computing the likelihood of a 
stting of phones given the weighted automaton for a word. This algorithm, 
the forward algorithm, is an essential part of ASR systems, although in this 
chapter we will only be working with a simple usage of the algorithm. This is 
because the forward algorithm is particularly useful when there are multiple 
paths through an automaton which can account for the input; this is not the 
case in the weighted automata in this chapter, but will be true for the HMMS 
of Chapter 7. The forward algorithm is also an important step in defining the 
Viterbi algorithm that we will see later in this chapter. 

Let's begin by giving a formal definition of a weighted automaton and 
of the input and output to the likelihood computation problem. A weighted 
automaton consists of 

1. a sequence of states q = (q0q1qz ... qn), each corresponding to a phone, 
and 

2. a set of transition probabilities between states, a01 ,a12 ,a13 , encoding 
the probability of one phone following another. 

We represent the states as nodes, and the transition probabilities as 
edges between nodes; an edge exists between two nodes if there is a non-zero 
transition probability between the two nodes. 4 The sequences of symbols 

4 We have used two "special" states (often called non-emitting states) as the start and end 
state; it is also possible to avoid the use of these states. In that case, an automaton must 
specify two more things: 

1. 1t, an initial probability distribution over states, such that 1ti is the probability that the 
automaton will start in state i. Of course, some states j may have 1tJ = 0, meaning that 
they cannot be initial states. 

2. a set of legal accepting states. 

195



Section 5.9. Weighted Automata 

that are input to the model (if we are thinking of it as recognizer) or which are 
produced by the model (if we are thinking of it as a generator) are generally 
called the observation sequence, referred to as 0 = ( 01 o2o3 ... o1). (Upper­
case letters are used for a sequence and lower-case letters for an individual 
element of a sequence). We will use this terminology when talking about 
weighted automata and later when talking about HMMs. 

Figure 5.14 shows an automaton for the word need with a sample ob­
servation sequence. 

Word Model 

Observation 
Sequence 
(phone symbols) n 

o, 

iy d 

o, o, 

Figure 5.14 A simple weighted automaton or Markov chain pronunciation 
network for the word need, showing the transition probabilities, and a sample 
observation sequence. The transition probabilities axy between two states x 
andy are 1.0 unless otherwise specified. 

This task of determining which underlying word might have produced 

173 

OBSERVATION 
SEQUENCE 

an observation sequence is called the decoding problem. Recall that in or- DECODING 

der to find which of the candidate words was most probable given the ob­
servation sequence [n iy], we need to compute the product P( Olw)P(w) for 
each candidate word (the, need, neat, knee, new), i.e. the likelihood of the 
observation sequence 0 given the word w times the prior probability of the 
word. 

The forward algorithm can be run to perform this computation for each 
word; we give it an observation sequence and the pronunciation automaton 
for a word and it will return P(Oiw)P(w). Thus one way to solve the de­
coding problem is to run the forward algorithm separately on each word and 
choose the word with the highest value. As we saw earlier, the Bayesian 
method produces the wrong result for pronunciation [n iy] as part of the 
word sequence I need (its first choice is the word new, and the second choice 
is neat; need is only the third choice). Since the forward algorithm is just 
a way of inlplementing the Bayesian approach, it will return the exact same 

196



174 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

rankings. (We will see in Chapter 6 how to augment the algorithm with hi­
gram probabilities which will enable it to make use of the knowledge that 
the previous word was [). · 

The forward algorithm takes as input a pronunciation network for each 
candidate word. Because the word the only has the pronunciation [n iy] after 
nasals, and since we are assuming the actual context of this word was after 
the word I (no nasal), we will skip that word and look only at new, neat, 
need, and knee. Note in Figure 5.15 that we have augmented each network 
with the probability of each word, computed from the frequency that we saw 
on page 167. 

.11 

Word model for "need" Word model for "knee" 

Word model for "neat" 

Word model for "new" 

Figure 5.15 Pronunciation networks for the words need, neat, new, and 
knee. All networks are simplified from the actual pronunciations in the Switch­
board corpus. Each network has been augmented by the unigrarn probability 
of the word (i.e., its normalized frequency from the Switchboard+ Brown cor­
pus). Word probabilities are not usually included as part of the pronunciation 
network for a word; they are added here to simplify the exposition of the for­
ward algorithm. 

The forward algorithm is another dynamic programming algorithm, 
and can be thought of as a slight generalization of the minimum edit dis­
tance algorithm. Like the minimum edit distance algoritlun, it uses a table 
to store intermediate values as it builds up the probability of the observa­
tion sequence. Unlike the minimum edit distance algorithm, the rows are 
labeled not just by states which always occur in linear order, but implicitly 
by a state-graph which has many ways of getting from one state to another. 
In the minimum edit distance algorithm, we filled in the matrix by just com­
puting the value of each cell from the three cells around it. With the forward 

197



Section 5.9. Weighted Automata 

algorithm, on the other hand, a state might be entered by any other state, 
and so the recurrence relation is somewhat more complicated. Furthermore, 
the forward algorithm computes the sum of the probabilities of all possible 
paths that could generate the observation sequence, where the minimum edit 
distance computed the minimum such probability. 5 Each cell of the forward 
algorithm matrix, forward[t, j) represents the probability of being in state j 
after seeing the first t observations, given the automaton A. Since we have 
augmented our graphs with the word probability p(w), our example of the 
forward algorithm here is actually computing this likelihood times p( w). The 
value of each cellforward[t,j] is computed by summing over the probabili­
ties of every path that could lead us to this cell. Formally, each cell expresses 
the following probability: 

forward[t,j] = P(ot,02 ... o,,q, = jl"-l P(w) (5.14) 

Here q, = j means '1he probability that the tth state in the sequence 
of states is state j". We compute this probability by summing over the ex­
tensions of all the paths that lead to the current cell. An extension of a path 
from a state i at time t - 1 is computed by multiplying the following three 
factors: 

1. the previous path probability from the previous cell forward[t- 1, i), 

2. the transition probability a;.i from previous state i to current state j, 
and 

3. the observation likelihood b .it that current state j matches observation 
symbol t. For the weighted automata that we consider here, b;1 is 1 if 
the observation symbol matches the state, and 0 otherwise. Chapter 7 
will consider more complex observation likelihoods. 

The algorithm is described in Figure 5.16. 
Figure 5.17 shows the forward algorithm applied to the word need. The 

algorithm applies similarly to the other words which can produce the string 
[n iy], resulting in the probabilities on page 167. In order to compute the 
most probable underlying word, we run the forward algorithm separately on 
each of the candidate words, and choose the one with the highest probabil­
ity. Chapter 7 will give further details of the mathematics of the forward 
algorithm and introduce the related forward-backward algorithm. 

5 The forward algorithm computes the sum because there may be multiple paths through 
the network which explain a given observation sequence. Chapter 7 will take up this point in 
more detail. 

175 

198



176 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

function FORWARD(observations,state-graph) returnsforward-probabifity 

num-states +-- NUM-OF-STATES(state-graph) 
num-obs +-length( observations) 
Create probability matrixforward[num-states + 2, num-ohs + 2] 
forward[O,O]t--1.0 
for each time step t from 0 to num-obs do 

for each state s from 0 to num-states do 
for each transitions' from s specified by state-graph 

forward[s',t+l]+-- forward[s,t] * a[s, s1
] * b[s', o1] 

return the sum of the probabilities in the final column of forward 

Figure 5.16 The forward algorithm for computing likelihood of observa­
tion sequence given a word model. a[s,s'J is the transition probability from 
current states to next states', and b[s',ot] is the observation likelihood of s' 
given o1. For the weighted automata that we consider here, b[s' ,o1] is 1 if the 
observation symbol matches the state, and 0 otherwise. 

end ; .00056' .11 = .00062 

d 
---------------,-----------~-----------

--------------------------------------
need iy ' .. 00056. 1.0 = .00056 

--------------------------------------
n .00056. 1.0 = .00056 

---------------------------!-----------
start 1.0 

# n iy # 

Figure 5.17 The forward algorithm applied to the word need, computing 
the probability P( Olw )P(w). While this example doesn't require the full power 
of the forward algorithm, we will see its use on more complex examples in 
Chapter 7. 

Decoding: The Viterbi Algorithm 

The forward algorithm as we presented it seems a bit of an overkill. Since 
only one path through the pronunciation networks will match the input stting, 
why use such a big matrix and consider so many possible paths? Further­
more, as a decoding method, it seems rather inefficient to run the forward 
algorithm once for each word (imagine how inefficient this would be if we 
were computing likelihoods for all possible sentences rather than all possible 

199



Section 5.9. Weighted Automata 

words!) Part of the reason that the forward algorithm seems like overkill is 
that we have immensely simplified the pronunciation problem by assuming 
that our input consists of sequences of unambiguous symbols. We will see in 
Chapter 7 that when the observation sequence is a set of noisy acoustic val­
ues, there are many possibly paths through the automaton, and the forward 
algorithm will play an important role in summing these paths. 

But it is true that having to run it separately on each word makes the 
forward algorithm a very inefficient decoding method. Luckily, there is a 
simple variation on the forward algorithm called the Viterbi algorithm which 
allows us to consider all the words simultaneously and still compute the most 
likely path. The term Viterbi is common in speech and language process­
ing, but like the forward algorithm this is really a standard application of 
the classic dynamic programming algorithm, and again looks a lot like the 
minimum edit distance algorithm. The Viterbi algorithm was first applied 
to speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls 
a 'remarkable history of multiple independent discovery and publication'; 
see the History section at the end of the chapter for more details. The name 
Viterbi is the one which is most commonly used in speech recognition, al­
though the terms DP alignment (for Dynamic Programming alignment), 
dynamic time warping and one-pass decoding are also commonly used. 
The term is applied to the decoding algorithm for weighted automata and 
Hidden Markov Models on a single word and also to its more complex ap­
plication to continuous speech, as we will see in Chapter 7. In this chapter 
we will show how the algorithm is used to find the best path through a net­
work composed of single words, as a result choosing the word which is most 
probable given the observation sequence string of words. 

The version of the Viterbi algorithm that we will present takes as input 
a single weighted automaton and a set of observed phones o = ( o1 o2o3 ... o,) 
and returns the most probable state sequence q = ( q1 q2q3 ... q,), together 
with its probability. We can create a single weighted automaton by combin­
ing the pronunciation networks for the four words in parallel with a single 
start and a single end state. Figure 5.18 shows the combined network. 

Figure 5.19 shows pseudocode for the Viterbi algorithm. Like the min­
imum edit distance and forward algorithm, the Viterbi algorithm sets up a 
probability matrix, with one column for each time index t and one row for 
each state in the state graph. Also like the forward algorithm, each column 
has a cell for each state q; in the single combined automaton for the four 
words. In fact, the code for the Viterbi algorithm should look exactly like 
the code for the forward algorithm with two modifications. First, where 

177 

VITERBI 

DYNAMIC 
TIME 
WARPING 

200



178 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

.000024 

.11 

Figure 5.18 The pronunciation networks for the words need, neat, new, and 
knee combined into a single weighted automaton. Again, word probabilities 
are not usually considered part of the pronunciation network for a word; they 
are added here to simplify the exposition of the Viterbi algorithm. 

the forward algorithm places the sum of all previous paths into the current 
cell, the Viterbi algorithm puts the max of the previous paths into the current 
cell. 

The algorithm first creates N + 2 or four state columns. The first col­
umn is an initial pseudo-observation, the second corresponds to the first 
observation phone [n], the third to [iy] and the fourth to a final pseudo­
observation. We begin in the first column by setting the probability of the 
start state to ].0, and the other probabilities to 0; the reader should find this 
in Figure 5.20. Cells with probability 0 are simply left blank for readability. 

Then we move to the next state; as with the forward algorithm, for 
every state in column 0, we compute the probability of moving into each 
state in column I. The value viterbi[t, j] is computed by taking the maximum 
over the extensions of all the paths that lead to the current cell. An extension 
of a path from a state i at time t - I is computed by multiplying the same 
three factors we used for the forward algorithm: 

I. the previous path probability from the previous cellforward[t -1, i], 
2. the transition probability Oij from previous state i to current state j, 

and 

3. the observation likelihood b;1 that current state j matches observation 
symbol t. For the weighted automata that we consider here, hJt is 1 

201



Section 5.9. Weighted Automata 

function VlTERBl(observations of len T,state-graph) returns best-path 

num-states +- NUM -OF-STATES(state-graph) 

Create a path probability matrix viterbi[num-states+2, T +2} 
viterbi[0,0]+-!.0 
for each time step t from 0 to T do 

for each state s from 0 to num-states do 
for each transition s' from s specified by state-graph 

new-score+-viterbi[s. t] * a[s.s'] * b,(otl 
if((viterbi[s',t+l] = 0) II (new-score> viterbi[s'.t+lj)) 

then 
viterbi[s1

, t+l]+-new-score 
back-pointer[s'. t+l] +- s 

Backtrace from highest probability state in the final column of viterbi[} and 
return path 

Figure 5.19 Viterbi algorithm for finding optimal sequence of states in con­
tinuous speech recognition, simplified by using phones as inputs. Given an 
observation sequence of phones and a weighted automaton (state graph). the 
algorithm returns the path through the automaton which has maximum proba­
bility and accepts the observation sequence. a[s, .i] is the transition probability 
from current states to next state s', and b[s', or] is the observation likelihood 
of s • given o1• For the weighted automata that we consider here, b[s', o,] is I if 
the observation symbol matches the state, and 0 otherwise. 

the observation symbol matches the state, and 0 otherwise. Chapter 7 
will consider more complex observation likelihoods. 

In Figure 5.20, in the column for the input n, each word starts with [n], 
and so each has a non-zero probability in the cell for the state n. Other cells 
in that column have zero entries, since their states don't match n. When we 
proceed to the next column, each cell that matches iy gets updated with the 
contents of the previous cell times the transition probability to that cell. Thus 
the value of viterbi[2,iYnewl for the iy state of the word new is the product of 
the "word" probability of new times the probability of new being pronounced 
with the vowel iy. Notice that if we look only at this iy column, that the word 
need is currently the "most-probable" word. But when we move to the final 
column, the word new will win out, since need has a smaller transition prob­
ability to end (.11) than new does (1.0). We can now follow the backpointers 
and backtrace to find the path that gave us this final probability of .00036. 

179 

202



180 

SEGMENTA· 
TION 

Chapter 5. Probabilistic Models of Pronunciation and Spelling 

end 
; 

I .. ooo36 * 1.o 
:.00036 

t -~-~------ ------ -~~-------
neat iy .00013 * 1.0 

f-----------fL--=.:!>qtl~--- ---------
n 1.0*.00013 ! 

lr = .00013 ' 

d ~---~---------~00~,~- ----------

need 
iy 
1--+-~-----~-=~~~-- -,---------

n 1 

I 1.o *.ooos6 ·: 
=.00056 

uw Lf------~------+-c----------

new iy ' .001 * .36 · F =.00036 • 
- t-:1:o~(mc- '~---------~--------

n 
L = .001 

iy / .000024 * 1.0 

knee - f-:-------f=.-=-·29()()~4-___ L ________ 
! 1.0 * .000024 n / = .000024 , I 

start 1.0'' ' 
' 

I 

# n • # IY 
Figure 5.20 The entries in the individual state columns for the Viterbi al-
gorithm. Each cell keeps the probability of the best path so far and a pointer 
to the previous cell along that path. Backtracing from the end state, we can 
reconstruct the state sequence nnew iYnew, arriving at the best word new. 

Weighted Automata and Segmentation 

Weighted automata and the Viterbi algorithm play an important in various 
algorithm for segmentation. Segmentation is the process of taking an undif­
ferentiated sequence of symbols and "segmenting" it into chunks. For exam­
ple sentence segmentation is the problem of automatically finding the sen­
tence boundaries in a corpus. Similarly word segmentation is the problem 
of finding word-boundaries in a corpus. In written English there is no dif­
ficulty in segmenting words from each other because there are orthographic 
spaces between words. This is not the case in languages like Chinese and 
Japanese that use a Chinese-derived writing system. Written Chinese does 
not mark word boundaries. Instead, each Chinese character is written one af­
ter the other without spaces. Since each character approximately represents 

203



Section 5.9. Weighted Automata 

a single morpheme, and since words can be composed of one or more char­
acters, it is often difficult to know where words should be segmented. Proper 
word-segmentation is necessary for many applications, particularly includ­
ing parsing and text-to-speech. (How a sentence is broken up into words 
influences its pronunciation in a number of ways.) 

Consider the following example sentence from Sproat eta!. (1996): 

(5.15) B:fc:ll<ii!~J!H~? 

"How do you say 'octopus' in Japanese?" 

This sentence has two potential segmentations, only one of which is 
correct. In the plausible segmentation, the first two characters are combined 
to make the word for 'Japanese language' ( B )C ri-wen) (the accents indicate 
the tone of each syllable), and the next two are combined to make the word 
for 'octopus' (:ll<il! zhang-yo). 

(5.16) B:fc $:ffi. ;i;j!f tJ! ? 

ri-wen zhang-yo zen-me shn6 
Japanese octopus how say 

"How do you say octopus in Japanese?" 

(5.17) B )C]j< i!! ;i;J!f t)! ? 

ri wen-zhang yu zen-me shu6 
Japan essay fish how say 

"How do you say Japan essay fish?" 

Sproat et a!. (1996) give a very simple algorithm which selects the 
correct segmentation by choosing the one which contains the most-frequent 
words. In other words, the algorithm multiplies together the probabilities of 
each word in a potential segmentation and chooses whichever segmentation 
results in a higher product probability. 

The implementation of their algorithm combines a weighted-finite­
state transducer representation of a Chinese lexicon with the Viterbi algo­
rithm. This lexicon is a slight augmentation of the FST lexicons we saw 
in Chapter 4; each word is represented as a series of arcs representing each 
character in the word, followed by a weighted arc representing the proba­
bility of the word. As is commouly true with probabilistic algorithms, they 
actually use the negative log probability of the word (-log(P(w)). The log 
probability is mainly useful because the product of many probabilities gets 
very small, and so using the log probability can help avoid underflow. Using 
log probabilities also means that we are adding costs rather than multiplying 

181 

204



182 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

probabilities, and that we are looking for the minimum cost solution rather 
tban the maximum probability solution. 

Consider the example in Figure 5.21. This sample lexicon Figure 5.2l(a) 
consists of only five potential words: 

Word Pronunciation Meaning Cost ( -logp(w)) 

sx rl-wen 'Japanese' 10.63 
El rl 'Japan' 6.51 
:li'ti!l zhang- yti 'octopus' 13.18 

X:li't wen-zhang 'essay' 9.51 
:(![ yu 'fish' 10.28 

The system represents the input sentence as the unweighted FSA in 
Figure 5.21(b). In order to compose this input with the lexicon, it needs to 
be converted into an FST. The algorithm uses a function Id which takes an 
FSA A and returns the FST which maps all and only the strings accepted by 
A to themselves. Let D* represent the transitive closure of D, that is, the 
automaton created by adding a loop from the end of the lexicon back to the 
beginning. The set of all possible segmentations is Id(I) aD*, that is, the 
input transducer Id(I) composed with the transitive closure of the dictionary 
D, shown in Figure 5.2l(c). Then the best segmentation is the lowest-cost 
segmentation in Id(I) aD*, shown in Figure 5.21(d). 

Finding the best path shown in Figure 5.21(d) can be done easily with 
the Viterbi algorithm and is left as an exercise for the reader. Furthermore, 
this segmentation algorithm, like the spelling error correction algorithm we 
saw earlier, can also be extended to incorporate the cross-word probabilities 
(N-gram probabilities) that will be introduced in Chapter 6. 

Segmentation for Lexicon-Induction 

The weighted automata segmentation algorithm that was presented above re­
lies on the weights stored in the lexicon. But how is this lexicon to be learned 
in the first place? A number of segmentation algorithms address this "prior" 
problem of segmentation in the absence of a lexicon. For example de Mar­
cken (1996) and Brent and Cartwright (1996) both propose algorithms that 
take an unsegmented sequence of input phones and use information,theoretic 
principles to iteratively induce the lexicon by trying different possible seg­
mentations. Both rely on stochastic versions of the Minimum Descrip· 

MDL tion Length (MDL) principle and on phonotactic transition probabilities 
to choose between alternative models. The description length of a lexicon 

205



Section 5.9. Weighted Automata 

(a) Dictionary D 

y :wen/0.000 

:m :zhang/0.000 

'®, :yu/0.000 

(b) Input I 

(c) ld(D) o D* 

Y :wen/0.000 7 )---of 8 )---..f 9 1---~-' 
t: E/10.63 :$::zhaog/O.OOO _l'!t:yu/0.000 

(d) BestPath(ld(D) o 0*) 

Figure 5.21 The Sproat et al. (1996) algorithm applied to four input words 
(after Sproat et al. (1996)) 

or grammar (measured, for example, in the number of symbols in it) is a 
heuristic measure of the information complexity in the lexicon. By prefer­
ring a lexicon with less symbols, MDL is implicitly choosing a simpler and 

183 

206



184 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

more general lexicon. Brent and Cartwright (1996) hypothesize that children 
use MDL algorithms to learn a lexicon by segmenting words from speec~. In 
fact. Saffran eta!. (1996) shows that eight-month-old infants can use phone 
sequence probabilities as evidence for word segmentation. 

5 .1 0 PRONUNCIATION IN HUMANS 

Section 5. 7 discussed many factors which influence pronunciation variation 
in humans. In this section we very briefly summarize a computational model 
of the retrieval of words from the mental lexicon as part of human lexical 
production. The model is due to Gary Dell and his colleagues; for brevity 
we combine and simplify features of multiple models (Dell, 1986, 1988; 
Dell et al., 1997) in this single overview. First consider some data. As 
we suggested in Chapter 3, production errors such as slips of the tongue 
(darn bore instead barn door) often provide important insights into lexical 
production. Dell (1986) summarizes a number of previous results about such 
slips. The lexical bias effect is that slips are more likely to create words than 
non-words; thus slips like dean bad-+ bean dad are three times more likely 
than slips like deal back-+ heal dack. The repeated-phoneme bias is that 
two phones in two words are likely to participate in an error if there is an 
identical phone in both words. Thus deal beack is more likely to slip to heal 
than deal back is. 

The model that Dell (1986, 1988) proposes is a network with three 
levels: semantics, word (lemma), and phonemes.6 The semantics level has 
nodes for concepts, the lemma level has one node for each words, and the 
phoneme level has separate nodes for each phone, separated into onsets, 
vowels, and codas. Each lemma node is connected to the phoneme units 
which comprise the word, and the semantic units which represent the con­
cept. Connections are used to pass activation from node to node, and are 
bidirectional and excitatory. Lexical production happens in two stages. In 
the first stage, activation passes from the semantic concepts to words. Acti­
vation will cascade down into the phonological units and then back up into 
other word units. At some point the most highly activated word is selected. 
In the second stage, this selected is given a large jolt of activation. Again 
this activation passes to the phonological level. Now the most highly active 
phoneme nodes are selected and accessed in order. 

6 Dell (1988) also has a fourth level for syllable structure that we will ignore here. 

207



Section 5.10. Pronunciation in Humans 

Figure 5.22 shows Dell's model. Errors occur because too much acti­
vation reaches the wrong phonological node. Lexical bias. for example. is 
modeled by activation spreading up from the phones of the intended word to 
neighboring words, which then activated their own phones. Thus incorrect 
phones get "extra" activation if they are present in actual words. 

Semantics 

OOOOQQO 
Words 
(Lemmas) 

Onsets Vowels 

I 

Codas 

Figure 5.22 The network model of Dell ( 1986, 1988), showing the mecha­
nism for lexical bias (modified from Dell (1988, p. 134)). The boldfaced nodes 
indicate nodes with lots of activation. The intended word dean has a greater 
chance of slipping to bean because of the existence of the bean node. The 
boldfaced lines show the connections which account for the possible slip. 

185 

The two-step network model also explains other facts about lexical 
production. Aphasic speakers have various troubles in language production APHASic 
and comprehension, often caused by strokes or accidents. Dell et al. (1997) 
show that weakening various connections in a network model like the one 
above can also account for the speech errors in aphasics. This supports the 
continuity hypothesis, which suggests that some part of aphasia is merely an 
extension of normal difficulties in word retrieval, and also provides further 
evidence for the network model. Readers interested in details of the model 
should see the above references and related computational models such as 
Roelofs (1997), which extends the network model to deal with syllabifica-
tion, phonetic encoding, and more complex sequential structure, and Levell 
et al. (1999). 

208



186 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

5.11 SUMMARY 

This chapter has introduced some essential metaphors and algorithills that 
will be useful throughout speech and language processing. The main points 
are as follows: 

• We can represent many language problems as if a clean string of sym­
bols had been corrupted by passing through a noisy channel and it is 
our job to recover the original symbol string. One powerful way to 
recover the original symbol string is to consider all possible original 
strings, and rank them by their conditional probability, 

• The conditional probability is usually easiest to compute using the 
Bayes Rule, which breaks down the probability into a prior and a 
likelihood. For spelling error correction or pronunciation-modeling, 
the prior is computed by taking word frequencies or word bigram fre­
quencies. The likelihood is computed by training a simple probabilistic 
model (like a confusion matrix, a decision tree, or a hand-written rule) 
on a database. 

• The task of computing the distance between two strings comes up 
in spelling error correction and other problems. The minimum edit 
distance algorithm is an application of the dynamic programming 
paradigm to solving this problem, and can be used to produce the dis­
tance between two strings or an alignment of the two strings. 

• The pronunciation of words is very variable. Pronunciation variation 
is caused by two classes of factors: lexical variation and allophonic 
variation. Lexical variation includes sociolingnistic factors like di­
alect and register or style. 

• The single most important factor affecting allophonic variation is the 
identity of the surrounding phones. Other important factors include 
syllable structure, stress patterns, and the identity and frequency of the 
word. 

• The decoding task is the problem of finding determining the correct 
"underlying" sequence of symbols that generated the "noisy" sequence 
of observation symbols. 

• The forward algorithm is an efficient way of computing the likeli­
hood of an observation sequence given a weighted automata. Like the 
minimum edit distance algorithm, it is a variant of dynamic program­
ming. It will prove particularly in Chapter 7 when we consider Hidden 

209



Section 5.11. Summary 

Markov Models, since it will allow us to sum multiple paths that each 
account for the same observation sequence. 

• The Viterbi algorithm, another variant of dynamic programming, is 
an efficient way of solving the decoding problem by considering all 
possible strings and using the Bayes Rule to compute their probabilities 
of generating the observed "noisy" sequence. 

• Word segmentation in languages without word-boundary markers, 
like Chinese and Japanese, is another kind of optimization task which 
can be solved by the Viterbi algorithm. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Algorithms for spelling error detection and correction have existing since 
at least Blair (1960). Most early algorithm were based on similarity keys 
like the Soundex algorithm discussed in the exercises on page 89 (Odell and 
Russell, 1922; Knuth, 1973). Damerau (1964) gave a dictionary-based al­
gorithm for error detection; most error-detection algorithms since then have 
been based on dictionaries. Damerau also gave a correction algorithm that 
worked for single errors. Most algorithms since then have relied on dynamic 
programming, beginning with Wagner and Fischer (1974) (see below). Ku­
kich (1992) is the definitive survey article on spelling error detection and 
correction. Only much later did probabilistic algorithms come into vogue 
for non-OCR spelling-error correction (for example Kashyap and Oommen 
(1983) and Kernighan et al. (1990)). 

By contrast, the field of optical character recognition developed prob­
abilistic algorithms quite early; Bledsoe and Browning (1959) developed a 
probabilistic approach to OCR spelling error correction that used a large dic­
tionary and computed the likelihood of each observed letter sequence given 
each word in the dictionary by multiplying the likelihoods for each letter. In 
this sense Bledsoe and Browning also prefigured the modern Bayesian ap­
proaches to speech recognition. Shinghal and Toussaint (1979) and Hull and 
Srihari (1982) applied bigram letter-transition probabilities and the 
Viterbi algorithm to choose the most likely correct form for a misspelled 
OCR input 

The application of dynamic programming to the problem of sequence 
comparison has what Kruskal (1983) calls a "remarkable history of multiple 

187 

210



188 Chapter 5. Probabilistic Models of Pronunciation and Spelling 

independent discovery and publication"" 7 Kruskal and others give at least 
the following independently-discovered variants of the algorithm published 
in four separate fields: 

Citation 
Viterbi (1967) 
Vintsyuk (1968) 
Needleman and Wunsch (1970) 
Sakoe and Chiba (1971) 
Sankoff (1972) 
Reichert eta!. (1973) 
Wagner and Fischer (1974) 

Field 
information theory 
speech processing 
molecular biology 
speech processing 
molecular biology 
molecular biology 
computer science 

To the extent that there is any standard to terminology in speech and 
language processing, it is the use of the term Viterbi for the application of 
dynamic programming to any kind of probabilistic maximization problem. 
For non-probabilistic problems, the plain term dynamic programming is 
often used. The history of the forward algorithm, which derives from Hid­
den Markov Models, will be summarized in Chapter 7. Sankoff and Kruskal 
(1983) is a collection exploring the theory and use of sequence comparison 
in different fields. Forney (1973) is an early survey paper which explores the 
origin of the Viterbi algorithm in the context of information and communi­
cations theory. 

The weighted finite-state automata was first described by Pereira et a!. 
(1994), drawing from a combination of work in finite-state transducers and 
work in probabilistic languages (Booth and Thompson, 1973). 

EXERCISES 

5.1 Computing minimum edit distances by hand, figure out whether drive 
is closer to bri~f or to divers, and what the edit distance is. You may use any 
version of distance that you like. 

5.2 Now implement a minimum edit distance algorithm and use your hand­
computed results to check your code. 

7 Seven is pretty remarkable, but see page 15 for a discussion of the prevalence of multiple 
discovery. 

211



Section 5 .11. Summary 

5.3 The Viterbi algorithm can be used to extend a simplified version of 
the Kernighan et al. (1990) spelling error correction algorithm. Recall that 
the Kernighan et al. (1990) algorithm only allowed a single spelling error 
for each potential correction. Let's simplify by assuming that we only have 
three confusion matrices instead of four (del, ins and sub; no trans). Now 
show how the Viterbi algorithm can be used to extend the Kernighan et al. 
(1990) algorithm to handle multiple spelling errors per word. 

5.4 To attune your ears to pronunciation reduction, listen for the pronun­
ciation of the word the, a, or to in the spoken language around you. Try to 
notice when it is reduced, and mark down whatever facts about the speaker 
or speech situation that you can. What are your observations? 

5.5 Find a speaker of a different dialect of English than your own (even 
someone from a slightly different region of your native dialect) and tran­
scribe (using the ARPAbet or IPA) 10 words that they pronounce differently 
than you. Can you spot any generalizations? 

5.6 Implement the Forward algorithm. 

5.7 Write a modified version of the Viterbi algorithm which solves the seg­
mentation problem from Sproat et al. (1996). 

5.8 Now imagine a version of English that was written without spaces. 
Apply your segmentation program to this "compressed English". You will 
need other programs to compute word bigrams or trigrams. 

189 

5.9 Two words are confusable if they have phonetically similar pronunci- coNFUSABLE 

ations. Use one of your dynamic programming implementations to take two 
words and output a simple measure of how confusable they are. You will 
need to use an on-line pronunciation dictionary. You will also need a metric 
for how close together two phones are. Use your favorite set of phonetic 
featrne vectors for this. You may assume some small constant probability of 
phone insertion and deletion. 

212



6 N-GRAMS 

But it must be recognized that the notion "probability of a sen­
tence" is an entirely useless one, under any known interpretation 
of this term. 

Noam Chomsky (1969, p. 57) 

Anytime a linguist leaves the group the recognition rate goes up. 
Fred Jelinek (then of the IBM speech group) (1988)1 

Radar O'Reilly, the mild-mannered clerk of the 4077th M* A *S*H uuit in 
the book, movie, and television show M* A *S*H, had an uncanny ability to 
guess what his interlocutor was about to say. Most of us don't have this skill, 
except perhaps when it comes to guessing the next words of songs written 
by very unimaginative lyricists. Or perhaps we do. For example what word 
is likely to follow this sentence fragment? 

I'd like to make a collect. .. 

Probably most of you concluded that a very likely word is call, al­
though it's possible the next word could be telephone, or person-to-person 
or international. (Think of some others). The moral here is that guessing 
words is not as amazing as it seems, at least if we don't require perfect accu­
racy. Why is this important? Guessing the next word (or word prediction) 
is an essential subtask of speech recognition, hand-writing recognition, aug­
mentative communication for the disabled, and spelling error detection. In 

1 In an address to the first Workshop on the Evaluation of Natural Language Processing 
Systems, December 7, 1988. While this workshop is described in Palmer and Finin (1990), 
the quote was not written down; some participants remember a more snappy version: Every 
time I fire a linguist the peiformance of the recognizer improves. 

WORD 
PREDICTION 

213



192 

AUGMENTATIVE 
COMMUNICATION 

Chapter 6. N-grams 

such tasks, word-identification is difficult because the input is very noisy 
and ambiguous. Thus looking at previous words can give us an imp9rtant 
cue about what the next ones are going to be. Russell and N orvig (1995) 
give an example from Take the Money and Run, in which a bank teller inter­
prets Woody Allen's sloppily written hold-up note as saying "I have a gub". 
A speech recognition system (and a person) can avoid this problem by their 
knowledge of word sequences ("a gub" isn't an English word sequence) and 
of their probabilities (especially in the context of a hold-up, "I have a gun" 
will have a much higher probability than "I have a gub" or even "I have a 
gull"). 

This ability to predict the next word is important for augmentative 
communication systems (Newell et a!., 1998). These are computer sys­
tems that help the disabled in communication. For example, people who 
are unable to use speech or sign-language to communicate, like the physicist 
Steven Hawking, use systems that speak for them, letting them choose words 
with simple hand movements, either by spelling them out, or by selecting 
from a menu of possible words. But spelling is very slow, and a menu of 
words obviously can't have all possible English words on one screen. Thus 
it is important to be able to know which words the speaker is likely to want 
to use next, so as to put those on the menu. 

Finally, consider the problem of detecting real-word spelling errors. 
These are spelling errors that result in real English words (although not the 
ones the writer intended) and so detecting them is difficult (we can't find 
them by just looking for words that aren't in the dictionary). Figure 6.1 
gives some examples. 

They are leaving in about fifteen minuets to go to her house. 
The study was conducted mainly be John Black. 
The design an construction of the system will take more than a year. 
Hopefully, all with continue smoothly in my absence. 
Can they lave him my messages? 
I need to notified the bank of [this problem.] 
He is trying to fine out. 

Figure 6.1 Some attested real-word spelling errors from Kukich (1992). 

These errors can be detected by algorithms which examine, among 
other features, the words surrounding the errors. For example, while the 
phrase in about fifteen minuets is perfectly granunatical English, it is a very 

214



Section 6.1. Counting Words in Corpora 

unlikely combination of words. Spellcheckers can look for low probability 
combinations like this. In the examples above the probability of three word 
combinations (they lave him, to fine out, to notified the) is very low. Of 
course sentences with no spelling errors may also have low probability word 
sequences, which makes the task challenging. We will see in Section 6.6 that 
there are a number of different machine learning algorithms which make use 
of the surrounding words and other features to do context-sensitive spelling 
error correction. 

Guessing the next word turns out to be closely related to another prob­
lem: computing the probability of a sequence of words. For example the 
following sequence of words has a non-zero probability of being encoun­
tered in a text written in English: 

... all of a sudden I notice three guys standing on the sidewalk 
taking a very good long gander at me. 

while this same set of words in a different order probably has a very low 
probability: 

good all I of notice a taking sidewalk the me long three at sudden 
guys gander on standing a a the very 

Algorithms that assign a probability to a sentence can also be used to 
assign a probability to the next word in an incomplete sentence, and vice 
versa. We will see in later chapters that knowing the probability of whole 
sentences or strings of words is useful in part-of-speech-tagging (Chapter 8), 
word-sense disambiguation, and probabilistic parsing Chapter 12. 

This model of word prediction that we will introduce in this chapter 
is theN-gram. An N-grarn model uses the previous N- 1 words to predict 
the next one. In speech recognition, it is traditional to use the term lan­
guage model or LM for such statistical models of word sequences. In the 
rest of this chapter we will be using both language model and grammar, 
depending on the context. 

6.1 COUNTING WORDS IN CORPORA 

[upon being asked if there weren't enough words in the English language for him]: 

"Yes, there are enough, but they aren't the right ones." 
James Joyce, reported in Bates (1997) 

193 

LANGUAGE 
MODEL 

LM 

215



194 

CORPORA 

CORPUS 

UTTERANCE 

FRAGMENTS 

FILLED 
PAUSES 

Chapter 6. N-gr<)Ills 

Probabilities are based on counting things. Before we talk about prob­
abilities, we need to decide what we are going to count and where we are 
going to find the things to count. 

As we saw in Chapter 5, statistical processing of natural language is 
based on corpora (singular corpus), on-line collections of text and speech. 
For computing word probabilities, we will be counting words in a training 
corpus. Let's look at part of the Brown Corpus, a I million word collection 
of samples from 500 written texts from different genres (newspaper, nov­
els, non-fiction, academic, etc.), which was assembled at Brown University 
in 1963-64 (Kucera and Francis, 1967; Francis, 1979; Francis and Kucera, 
1982). It contains sentence (6.1); how many words are in this sentence? 

(6.1) He stepped out into the hall, was delighted to encounter a water 
brother. 

Example (6.1) has 13 words if we don't count punctuation-marks as 
words, 15 if we count punctuation. Whether we treat period (". "), comma 
(", "), and so on as words depends on the task. There are tasks such as 
grammar-checking, spelling error detection, or author-identification, for 
which the location of the punctuation is important (for checking for proper 
capitalization at the beginning of sentences, or looking for interesting pat­
terns of punctuation usage that uniquely identify an author). In natural 
language processing applications, question-marks are an important cue that 
someone has asked a question. Punctuation is a useful cue for part-of-speech 
tagging. These applications, then, often count punctuation as words. 

Unlike text corpora, corpora of spoken language usually don't have 
punctuation, hut speech corpora do have other phenomena that we might 
or might not want to treat as words. One speech corpus, the Switchboard 
corpus of telephone conversations between strangers, was collected in the 
early 1990s and contains 2430 conversations averaging 6 minutes each, for 
a total of 240 hours of speech and 3 million words (Godfrey et al., 1992). 
Here's a sample utterance of Switchboard (since the units of spoken language 
are different than written language, we will use the word utterance rather 
than "sentence" when we are referring to spoken language): 

(6.2) I do uh main- mainly business data processing 

This utterance, like many or most utterances in spoken language, has 
fragments, words that are broken off in the middle, like the first instance 
of the word mainly, represented here as main-. It also has filled pauses like 
uh, which don't occur in written English. Should we consider these to he 
words? Again, it depends on the application. If we are building an automatic 

216



Section 6.1. Counting Words in Corpora 

dictation system based on automatic speech recognition, we might want to 
strip out the fragments. But the uhs and urns are in fact much more like 
words. For example, Smith and Clark (1993) and Clark (1994) have shown 
that urn has a slightly different meaning than uh (generally speaking urn is 
used when speakers are having major planning problems in producing an 
utterance, while uh is used when they know what they want to say, but are 
searching for the exact words to express it). Stolcke and Shriberg (1996b) 
also found that uh can be a useful cue in predicting the next word (why might 
this be?), and so most speech recognition systems treat uh as a word. 

Are capitalized tokens lilce They and uncapitalized tokens like they the 
same word? For most statistical applications these are lumped together, 
although sometimes (for example for spelling error correction or part-of­
speech-tagging) the capitalization is retained as a separate feature. For the 
rest of this chapter we will assume our models are not case-sensitive. 

How should we deal with inflected forms like cats versus cat? Again, 
this depends on the application. Most current N -gram based systems are 

195 

ba~ed on the wordfonn, which is the inflected form as it appears in the woRDFORM 

corpus. Thus these are treated as two separate words. This is not a good 
simplification for many domains, which might want to treat cats and cat as 
instances of a single abstract word, or lemma. A lemma is a set of lexical LEMMA 

forms having the same stem, the same major part-of-speech, and the same 
word-sense. We will return to the distinction between wordforms (which 
distinguish cat and cats) and lemmas (which lump cat and cats together) in 
Chapter 16. 

How many words are there in English? One way to answer this ques-
tion is to count in a corpus. We use types to mean the number of distinct TYPEs 

words in a corpus, that is, the size of the vocabulary, and tokens to mean the TOKENs 

total number of running words. Thus the following sentence from the Brown 
corpus has 16 word tokens and 14 word types (not counting punctuation): 

(6.3) They picnicked by the pool, then lay back on the grass and looked at 
the stars. 

The Switchboard corpus has 2.4 million wordform tokens and approx­
imately 20,000 wordform types. This includes proper nouns. Spoken lan­
guage is less rich in its vocabulary than written language: Kucera (1992) 
gives a count for Shakespeare's complete works at 884,647 wordform tokens 
from 29,066 wordform types. Thus each of the 884,647 wordform tokens is 
a repetition of one of the 29,066 wordform types. The 1 million wordform 
tokens of the Brown corpus contain 61,805 wordform types that belong to 

l 
I' 

I. 
' 

217



196 Chapter 6. N-grams 

37,851lemma types. All these corpora are quite small. Brown eta!. (1992) 
amassed a corpns of 583 million wordform tokens of English that included 
293,181 different wordform types. 

Dictionaries are another way to get an estimate of the number of words, 
although since dictionaries generally do not include inflected forms they are 
better at measuring lemmas than wordforms. The American Heritage third 
edition dictionary has 200,000 "boldface forms"; this is somewhat higher 
than the true number of lemmas, since there can be one or more boldface 
form per lemma (and since the boldface forms includes multiword phrases). 

The rest of this chapter will continue to distinguish between types and 
tokens. "Types" will mean wordform types and not lemma types, and punc­
tuation marks will generally be counted as words. 

6.2 SIMPLE (UNSMOOTHED) N-GRAMS 

The models of word sequences we will consider in this chapter are proba­
bilistic models; ways to assign probabilities to strings of words, whether for 
computing the probability of an entire sentence or for giving a probabilistic 
prediction of what the next word will be in a sequence. As we did in Chap­
ter 5, we will assume that the reader has a basic knowledge of probability 
theory. 

The simplest possible model of word sequences would simply let any 
word of the language follow any other word. In the probabilistic version of 
this theory, then, every word would have an equal probability of following 
every other word. If English had 100,000 words, the probability of any word 
following any other word would be 100

1
000 or .00001. 

In a slightly more complex modei of word sequences, any word could 
follow any other word, but the following word would appear with its nor­
mal frequency of occurrence. For example, the word the has a high relative 
frequency, it occurs 69,971 times in the Brown corpus of 1,000,000 words 
(i.e., 7% of the words in this particular corpus are the). By contrast the word 
rabbit occurs only 11 times in the Brown corpus. 

We can use these relative frequencies to assign a probability distribu­
tion across following words. So if we've just seen the string Anyhow, we can 
use the probability .07 for the and .00001 for rabbit to guess the next word. 
But suppose we've just seen the following string: 

Just then, the white 

218



Section 6.2. Simple (Unsmoothed) N -grams 

In this context rabbit seems like a more reasonable word to follow 
white than the does. This suggests that instead of just looking at the in­
dividual relative frequencies of words, we should look at the conditional 
probability of a word given the previous words. That is, the probability 
of seeing rabbit given that we just saw white (which we will represent as 
P(rabbitlwhite)) is higher than the probability of rabbit otherwise. 

Given this intuition, let's look at how to compute the probability of a 
complete string of words (which we can represent either as w1 ... Wn or w'!). 
If we consider each word occurring in its correct location as an independent 
event, we might represent this probability as follows: 

(6.4) 

We can use the chain rule of probability to decompose this probability: 

P(w'l) P(w1)P(wzlw1)P(wJiwiJ ... P(wnlw'!-1) 
n 

IT P(wklw1-1) (6.5) 
k=l 

But how can we compute probabilities like P(wnlw'!-1 )? We don't 
know any easy way to compute the probability of a word given a long se­
quence of preceding words. (For example, we can't just count the number of 
times every word occurs following every long string; we would need far too 
large a corpus). 

We solve this problem by making a useful simplification: we approxi-
mate the probability of a word given all the previous words. The approxima-
tion we will use is very simple: the probability of the word given the single 
previous word! The bigram model approximates the probability of a word BIGRAM 

given all the previous words P(wnlw'!-1) by the conditional probability of 
the preceding word P(wniWn-1). In other words, instead of computing the 
probability 

P(rabbitiJust the other I day I saw a) (6.6) 

we approximate it with the probability 

P(rabbitla) (6.7) 

197 

This assumption that the probability of a word depends only on the 
previous word is called a Markov assumption. Markov models are the class MARKov 

of probabilistic models that assume that we can predict the probability of 
some future unit without looking too far into the past. We saw this use of the 
word Markov in introducing the Markov chain in Chapter 5. Recall that a 

219



198 Chapter 6. N-grams 

Markov chain is a kind of weighted finite-state automaton; the intuition of 
the term Markov in Markov chain is that the next state of a weighted FSA is 
always dependent on a finite history (since the number of states in a finite­
state automaton is finite). The basic bigrammodel can be viewed as a simple 
kind of Markov chain which has one state for each word. 

We can generalize the bigram (which looks one word into the past) to 
N·GRAM the trigram (which looks two words into the past) and thus to the N-gram 
FIRST-ORDER (which looks N- 1 words into the past). A bigram is called a first-order 

Markov model (because it looks one token into the past), a trigram is a 
sEcDND·ORDER second-order Markov model, and in general an N-gram is a N- lth or­

der Markov model. Markov models of words were common in engineering, 
psychology, and linguistics until Chomsky's influential review of Skinner's 
Verbal Behavior in 1958 (see the History section at the back of the chapter), 
but went out of vogue until the success of N-gram models in the IBM speech 
recognition laboratory at the Thomas J. Watson Research Center. brought 
them back to the attention of the community. 

The general equation for this N -gram approximation to the conditional 
probability of the next word in a sequence is: 

P(wnlw'[- 1
) ""P(wnlw~=~+1 ) (6.8) 

Equation 6.8 shows that the probability of a word Wn given all the pre­
vious words can be approximated by the probability given only the previous 
Nwords. 

For a bigram grammar, then, we compute the probability of a complete 
string by substituting Equation (6.8) into Equation (6.5). The result: 

n 

P(wl) c:; I1 P(wklwk_J) 
k~l 

(6.9) 

Let's look at an example from a speech-understanding system. The 
Berkeley Restaurant Project is a speech-based restaurant consultant; users 
ask questions about restaurants in Berkeley, California, and the system dis­
plays appropriate information from a database of local restaurants (Jurafsky 
et al., 1994). Here are some sample user queries: 

I'm looking for Cantonese food. 
I'd like to eat dinner someplace nearby. 
Tell me about Chez Panisse. 
Can you give me a listing of the kinds of food that are available? 
I'm looking for a good place to eat breakfast. 
I definitely do not want to have cheap Chinese food. 

220



Section 6.2. Simple (Unsmoothed) N-grams 

When is Caffe Venezia open during the day? 
I don't wanna walk more than ten minutes. 

Table 6.2 shows a sample of the bigram probabilities for some of the 
words that can follow the word eat, taken from actual sentences spoken by 
users (putting off just for now the algorithm for training bigram probabil­
ities). Note that these probabilities encode some facts that we think of as 
strictly syntactic in nature (like the fact that what comes after eat is usu­
ally something that begins a noun phrase, that is, an adjective, quantifier or 
noun), as well as facts that we think of as more culturally based (like the low 
probability of anyone asking for advice on finding British food) . 

eat on . 16 eat Thai .03 
eat some .06 eat breakfast .03 
eat lunch .06 eat in .02 
eat dinner .05 eat Chinese .02 
eat at .04 eat Mexican .02 
eat a .04 eat tomorrow .01 
eat Indian .04 eat dessert .007 
eat today .03 eat British .001 

Figure 6.2 A fragment of a bigram grammar from the Berkeley Restaurant 
Project showing the most likely words to follow eat. 

Assume that in addition to the probabilities in Table 6.2, our grammar 
also includes the bigram probabilities in Table 6.3 ( < s > is a special word 
meaning "Start of sentence"). 

<S> I .25 I want .32 want to .65 to eat .26 British food .60 
<S> I'd .06 I would .29 want a .05 to have .14 British restaurant .15 
<S> Tell .04 I don't .08 want some .04 to spend .09 British cuisine .01 
<S> I'm .02 I have .04 want thai .01 to be .02 British lunch .01 

Figure 6.3 More fragments from the bigram grammar from the Berkeley 
Restaurant Project. 

Now we can compute the probability of sentences like I want to eat 
British food or I want to eat Chinese food by simply multiplying the appro­
priate bigram probabilities together, as follows: 

P(I want to eat British food) = P(II<s> )P(wantii)P(tolwant) 

P( eat ito )P(Britishleat) 

P(foodiBritish) 

199 

221



200 Chapter 6. N-grams 

.25 * .32 * .65 * .26 * .002 * .60 

.000016 

As we cau see, since probabilities are all less than I (by definition), the 
product of many probabilities gets smaller the moie probabilities we multi­
ply. This causes a practical problem: the risk of numerical underflow. If we 
are computing the probability of a very long string (like a paragraph or an 
entire document) it is more customary to do the computation in log space; we 

LOGPRos take the log of each probability (the logprob ), add all the logs (since adding 
in log space is equivalent to multiplying in linear space) and then take the 
anti-log of the result. For this reason many standard programs for computing 
N-grams actually store and calculate all probabilities as logprobs. In this text 
we will always report logs in base 2 (i.e., we will use log to mean log2). 

TRIGRAM A trigram model looks just the same as a bigram model, except that 
we condition on the two previous words (e.g., we use P{jood/eat British) 
instead of P(food/British)). To compute trigram probabilities at the very 
beginning of sentence, we can use two pseudo-words for the first ttigram 
(i.e., P(I/ <start/>< start2 > )). 

NORMALIZING N-gram models can be trained by counting and normalizing (for prob-

RELATIVE 
FREQUENCY 

MAXIMUM 
LIKELIHOOD 
ESTIMATION 
MLE 

abilistic models, normalizing means dividing by some total conn! so that the 
resulting probabilities fall legally between 0 and 1). We take some training 
corpus, and from this corpus take the count of a particular bigram, and divide 
this conn! by the sum of all the bigrams that share the same first word: 

( I ) C(wn-IWn) 
P Wn Wn-1 = ,_, C( ) (6.10) 

k...w Wn-IW 

We can simplify this equation, since the sum of all bigram counts that 
start with a given word Wn-1 must be equal to the unigram count for that 
word Wn_ 1. (The reader should take a moment to be convinced of this): 

P(wn/Wn-IJ = C(7"_1wJ) (6.11) 
C Wn-1 

For the general case of N-gram parameter estimation: 

P(w /wn-1 ) = C(W,:=1+1Wn) 
n n-N+I C( n-1 ) 

Wn-N+l 

(6.12) 

Equation 6.12 estimates the N-gram probability by dividing the ob­
served frequency of a particular sequence by the observed frequency of a 
prefix. This ratio is called a relative frequency; the use of relative fre­
quencies as a way to estimate probabilities is one example of the technique 
known as Maximum Likelihood Estimation or MLE, because the resulting 

222



Section 6.2. Simple (Unsmoothed) N-grams 

parameter set is one in which the likelihood of the training set T given the 
model M (i.e .• P(TIM)) is maximized. For example, suppose the word Chi­
nese occurs 400 times in a corpus of a million words like the Brown corpus. 
What is the probability that it will occur in some other text of way a million 
words? The MLE estimate of its probability is 10cigg00 or .0004. Now .0004 
is not the best possible estimate of the probability of Chinese occurring in all 
situations; but it is the probability that makes it most likely that Chinese will 
occur 400 times in a million-word corpus. 

There are better methods of estimating N -gram probabilities than us­
ing relative frequencies (we will consider a class of important algorithms in 
Section 6.3), but even the more sophisticated algorithms make use in some 
way of this idea of relative frequency. Figure 6.4 shows the bigram counts 
from a piece of a bigram grammar from the Berkeley Restaurant Project. 
Note that the majority of the values are zero. In fact, we have chosen the 
sample words to cohere with each other; a matrix selected from a random set 
of seven words would be even more sparse. 

II I I want I to I eat I Chinese I food I lunch I 
I 8 1087 0 13 0 0 0 
want 3 0 786 0 6 8 6 
to 3 0 10 860 3 0 12 
eat 0 0 2 0 19 2 52 
Chinese 2 0 0 0 0 120 1 
food 19 0 17 0 0 0 0 
lunch 4 0 0 0 0 1 0 

Figure 6.4 Bigram counts for seven of the words (out of 1616 total word 
types) in the Berkeley Restaurant Project corpus of eelO,OOO sentences. 

Figure 6.5 shows the bigram probabilities after normalization (dividing 
each row by the following appropriate unigram counts); 

I 3437 
want 1215 
to 3256 
eat 938 
Chinese 213 
food 1506 
lunch 459 

201 

223



202 Chapter 6. N-grams 

II I I want I to I eat Chinese I food I lunch I 
I .0023 .32 0 .0038 0 0 0 
want .0025 0 .65 0 .0049 .0066' .0049 
to .00092 0 .0031 .26 .00092 0 .0037 
eat 0 0 .0021 0 .020 .0021 .055 
Chinese .0094 0 0 0 0 .56 .0047 
food .013 0 .Oll 0 0 0 0 
lunch .0087 0 0 0 0 .0022 0 

Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total 
word types) in the Berkeley Restaurant Project corpus of ""10,000 sentences. 

More on N-grams and Their Sensitivity to the Training Corpus 

In this section we look at a few examples of different N-gram models to 
get au intuition for two important facts about their behavior. The first is the 
increasing accuracy of N-gram models as we increase the value of N. The 
second is their very strong dependency on their training corpus (in particular 
its genre and its size in words). 

We do this by borrowing a visualization technique proposed by Shan­
non (1951) and also used by Miller and Selfridge (1950). The idea is to train 
various N-grams and then use each to generate random sentences. It's sim­
plest to visualize how this works for the unigram case. Imagine all the words 
of English covering the probability space between 0 and I. We choose a ran­
dom number between 0 and 1, and print out the word that covers the real 
value we have chosen. The same technique can be used to generate higher 
order N-grams by first generating a random bigram that starts with <s> (ac­
cording to its bigram probability), then choosing a random bigram to follow 
it (again, where the likelihood of following a particular bigram is propor­
tional to its conditional probability), and so on. 

To give an intuition for the increasing power of higher order N -grams, 
we trained a unigram, bigram, trigram, and a quadrigram model on the com­
plete corpus of Shakespeare's works. We then used these four grammars to 
generate random sentences. In the following examples we treated each punc­
tuation mark as if it were a word in its own right, and we trained the gram­
mars on a version of the corpus with all capital letters changed to lowercase. 
After generated the sentences we corrected the output for capitalization just 
to improve readability. Some of the resulting sentences: 

I. Unigram approximation to Shakespeare 

224



Section 6.2. Simple (Unsmoothed) N-grams 

(a) To him swallowed confess hear both. Which. Of save on trail for are ay 
device and rote life have 

(b) Every enter now severally so, let 
(c) Hill he late speaks; or! a more to leg less first you enter 

(d) Will rash been and by I the me loves gentle me not slavish page, the and 
hour; ill let 

(e) Are where exeunt and sighs have rise excellency took of.. Sleep knave 
we. near; vile like 

2. Bigram approximation to Shakespeare 

(a) What means, sir. I confess she? then all sorts, he is trim, captain. 
(b) Why dost stand forth tby canopy, forsooth; he is this palpable hit the 

King Henry. Live king. Follow. 

(c) What we, hath got so she !bat I rest and sent to scold and natnre bankrupt, 
nor the first gentleman? 

(d) Enter Menenius, if it so many good direction found's! thou art a strong 
upon command of fear not a liberal largess given away, Falstaff! Exeunt 

(e) Thou whoreson chops. Consumption catch your dearest friend, well, 
and I know where many mouths upon my undoing all but be, how soon, 
then; we'll execute upon my love's bonds and we do you will? 

(f) The world shall- my lord! 

3. Trigram approximation to Shakespeare 

(a) Sweet prince, Falstaff shall die. Harry of Monmouth's grave. 

(b) This shall forbid it should be branded, if renown made it empty. 

(c) Whatis'tthatcried? 
(d) Indeed tbe duke; and had a very good friend. 

(e) Fly, and will rid me these news of price. Therefore tbe sadness of part­
ing, as they say, 'tis done. 

(f) The sweet! How many !ben shall postbumus end his miseries. 

4. Quadrigram approximation to Shakespeare 

(a) King Henry. What! I will go seek the traitor Gloucester. Exeunt some 
of tbe watch. A great banquet serv'd in; 

(b) Will you not tell me who I am? 

(c) It cannot be but so. 
(d) Indeed the short and tbe long. Marry, 'tis a noble Lepidus. 

(e) They say all lovers swear more performance than they are wont to keep 
obliged faith unforfeited! 

(f) Enter Leonato's brother Antonio, and tbe rest, but seek tbe weary beds 
of people sick. 

203 

225



204 Chapter 6. 

METHODOLOGY BOX: TRAINING SETS AND TEST SETS 

The probabilities in a statistical model like anN-gram come from 
the corpus it is trained on. This training corpus needs to be care­
fully designed. If the training corpus is too specific to the task or 
domain, the probabilities may be too narrow and not generalize well 
to new sentences. If the training corpus is too general, the probabil­
ities may not do a sufficient job of reflecting the task or domain. 

Furthermore, suppose we are trying to compute the probabil­
ity of a particular "test" sentence. If our "'test' sentence is part of 
the training corpus, it will have an artificially high probability. The 
training corpus must not be biased by including this sentence. Thus 
when using a statistical model of language given some corpus of rel­
evant data, we start by dividing the data into a training set and a test 
set. We train the statistical parameters of the model on the training 
set, and then use them to compute probabilities on the test set. 

This training-and-testing paradigm can also be used to evaluate 
different N-gram architectrnes. For example to compare the different 
smoothing algorithms we will introduce in Section 6.3, we can take 
a large corpus and divide it into a training set and a test set. Then 
we train the two different N-gram models on the training set and 
see which one better models the test set. But what does it mean to 
"model the test set"? There is a useful metric for how well a given 
statistical model matches a test corpus, called perplexity. Perplexity 
is a variant of entropy, and will be introduced on page 223. 

In some cases we need more than one test set. For example, sup­
pose we have a few different possible language models and we want 
first to pick the best one and then to see how it does on a fair test 
set, that is, one we've never looked at before. We first use a devel­
opment test set (also called a devtest set) to pick the best language 
model, and perhaps tune some parameters. Then once we come up 
with what we think is the best model, we run it on the true test set. 

When comparing models it is important to use statistical tests 
(introduced in any statistics class or textbook for the social sciences) 
to determine if the difference between two models is significant. Co­
hen (1995) is a useful reference which focuses on statistical research 
methods for artificial intelligence. Dietterich (1998) focuses on sta­
tistical tests for comparing classifiers. 

226



Section 6.2. Simple (Unsmoothed) N-grams 

The longer the context on which we train the model, the more coher­
ent the sentences. In the nnigram sentences, there is no coherent relation 
between words, and in fact none of the sentences end in a period or other 
sentence-final punctuation. The bigram sentences can be seen to have very 
local word-to-word coherence (especially if we consider that punctuation 
counts as a word). The trigram and quadrigram sentences are beginning to 
look a lot like Shakespeare. Indeed a careful investigation of the quadri­
gram sentences shows that they look a little too much like Shakespeare. The 
words It cannot be but so are directly from King John. This is because 
the Shakespeare oeuvre, while large by many standards, is somewhat less 
than a million words. Recall that Kucera (1992) gives a count for Shake­
speare's complete works at 884,647 words (tokens) from 29,066 wordform 
types (including proper nouns). That means that even the bigram model is 
very sparse; with 29, 066 types, there are 29, 0662 , or more than 844 million 
possible bigrams, so a I million word training set is clearly vastly insufficient 
to estimate the frequency of the rarer ones; indeed somewhat under 300,000 
different bigram types actually occur in Shakespeare. This is far too small to 
train quadrigrams; thus once the generator has chosen the first quadrigram 
(It cannot be but), there are only five possible continuations (that, I, he, thou, 
and so); indeed for many quadrigrams there is only one continuation. 

To get an idea of the dependence of a grammar on its training set, 
let's look at anN-gram grammar trained on a completely different corpus: 
the Wall Street Journal (WSJ). A native speaker of English is capable of 
reading both Shakespeare and the Wall Street Journal; both are subsets of 
English. Thus it seems intuitive that our N-grams for Shakespeare should 
have some overlap with N-grams from the Wall Street Journal. In order to 
check whether this is true, here are three sentences generated by unigram, 
bigram, and trigram grammars trained on 40 million words of articles from 
the daily Wall Street Journal (these grammars are Katz backoff grammars 
with Good-Turing smoothing; we will learn in the next section how these are 
constructed). Again, we have corrected the output by hand with the proper 
English capitalization for readability. 

1. (unigram) Months the my and issue of year foreign new exchange's 
september were recession exchange new endorsed a acquire to six ex­
ecutives 

2. (bigram) Last December through the way to preserve the Hudson cor­
poration N. B. E. C. Taylor would seem to complete the major central 
planners one point five percent ofU. S. E. has already old M. X. corpo­
ration of living on information such as more frequently fishing to keep 

205 

227



206 Chapter 6. N-grams 

her 

3. (trigram) They also point to ninety nine point six billion doll~rs from 
two hundred four oh six three percent of the rates of interest stores as 
Mexico and Brazil on market conditions 

Compare these examples to the pseudo-Shakespeare on the previous 
page; while superficially they both seem to model "English-like sentences" 
there is obviously no overlap whatsoever in possible sentences, and very lit­
tle if any overlap even in small phrases. The difference between the Shake­
speare and WSJ corpora tell us that a good statistical approximation to En­
glish will have to involve a very large corpus with a very large cross-section 
of different genres. Even then a simple statistical model like an N -gram 
would be incapable of modeling the consistency of style across genres. (We 
would only want to expect Shakespearean sentences when we are reading 
Shakespeare, not in the middle of a Wall Street Journal article.) 

6.3 SMOOTHING 

Never do I ever want 
to hear another word! 
There isn't one, 
I haven't heard! 

Eliza Doolittle in 
Alan Jay Lerner's My 
Fair Lady lyrics 

words people 
never use~ 
could be 
only! 
know them 

Ishikawa Takuboku 1885-1912 

One major problem with standard N-gram models is that they must 
be trained from some corpus, and because any particular training corpus is 
finite, some perfectly acceptable English N-grams are bound to be missing 

sPARSE from it. That is, the bigram matrix for any given training corpus is sparse; it 
is bouud to have a very large number of cases of putative "zero probability 
bigrams" that should really have some non-zero probability. Furthermore, 

228



Section 6.3. Smoothing 

the MLE method also produces poor estimates when the counts are non-zero 
but still small. 

Some part of this problem is endemic to N -grams; since they can't 
use long-distance context, they always tend to underestimate the probability 
of sttings that happen not to have occurred nearby in their training corpus: 
But there are some techniques we can use to assign a non-zero probability 
to these "zero probability bigrarns". This task of reevaluating some of the 
zero-probability and low-probability N-grams, and assigning them non-zero 

207 

values, is called smoothing. In the next few sections we will introduce some sMooTHING 

smoothing algorithms and show how they modify the Berkeley Restaurant 
bigrarn probabilities in Figure 6.5. 

Add-One Smoothing 

One simple way to do smoothing might be just to take our mattix of bigrarn 
counts, before we normalize them into probabilities, and add one to all the 
counts. This algorithm is called add-one smoothing. Although this algo- ADD-oNE 

rithm does not perform well and is not commonly used, it introduces many 
of the concepts that we will see in other smoothing algorithms, and also gives 
us a useful baseline. 

Let's first consider the application of add-one smoothing to unigram 
probabilities, since that will be simpler. The unsmoothed maximum likeli­
hood estimate of the unigram probability can be computed by dividing the 
count of the word by the total number of word tokens N: 

c(wx) 
L;c(w;) 
c(wx) 

N 
The various smoothing estimates will rely on an adjusted count c*. The 

count adjustment for add-one smoothing can then be defined by adding one 
to the count and then multiplying by a normalization factor, N~V, where V 
is the total number of word types in the language, that is, the vocabulary 
size. Since we are adding 1 to the count for each word type, the total number 
of tokens must be increased by the number of types. The adjusted count for 
add-one smoothing is then defined as: 

c* = (c; + 1) __!!_ (6.13) 
' N+V 

and the counts can be turned into probabilities pj by normalizing by N. 

VOCABULARY 
SIZE 

229



208 Chapter 6. N-grams 

DiscouNTING An alternative way to view a smoothing algorithm is as discounting 
(lowering) some non-zero counts in order to get the probability mass ,that 
will be assigned to the zero counts. Thus instead ofreferring to the dis­
counted counts c', many papers also define smoothing algorithms in terms 

DiscouNT of a discount de, the ratio of the discounted counts to the original counts: 

c' 
de=­

c 
Alternatively, we can compute the probability Pi directly from the 

counts as follows: 

, c;+ 1 
P; = N+V 

Now that we have the intuition for the unigram case, let's smooth 
our Berkeley Restaurant Project bigram. Figure 6.6 shows the add-one­
smoothed counts for the bigram in Figure 6.4. 

II I I want I to I eat I Chinese I food I lunch I 
I 9 1088 1 14 1 l I 
want 4 I 787 1 7 9 7 
to 4 1 11 861 4 1 13 
eat 1 I 3 1 20 3 53 
Chinese 3 1 1 1 I 121 2 
food 20 1 18 I 1 1 1 
lunch 5 1 1 1 1 2 1 

Figure 6.6 Add-one Smoothed Bigram counts for seven of the words 
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of 
""10,000 sentences. 

Figure 6. 7 shows the add-one-smoothed probabilities for the bigram in 
Figure 6.5. Recall that normal bigram probabilities are computed by nor­
malizing each row of counts by the unigram count: 

( I ) _ C(wn-1Wn) 
P Wn Wn-1 - ( ) C Wn-1 

(6.14) 

For add-one-smoothed bigram counts we need to first augment the un­
igram count by the number of total word types in the vocabulary V: 

*( I ) _ C(wn-1Wn) + 1 
P Wn Wn-1 - C(wn_

1
) + V (6.15) 

230



Section 6.3. Smootlring 

We need to add V (= 1616) to each of the unigram counts: 

I 3437+1616 = 5053 
want 1215+1616 = 2931 
to 3256+1616 = 4872 
eat 938+1616 = 2554 
Chinese 213+1616 = 1829 
food 1506+1616 = 3122 
lunch 459+1616 = 2075 

The result is the smoothed bigram probabilities in Figure 6. 7. 

I want I to I eat I Chinese I food I lunch I 
I .0018 .22 .00020 .0028 .00020 .00020 .00020 
want .0014 .00035 .28 .00035 .0025 .0032 .0025 
to .00082 .00021 .0023 .18 .00082 .00021 .0027 
eat .00039 .00039 .0012 .00039 .0078 .0012 .021 
Chinese .0016 .00055 .00055 .00055 .00055 .066 .0011 
food .0064 .00032 .0058 .00032 .00032 .00032 .00032 
lunch .0024 .00048 .00048 .00048 .00048 .00096 .00048 

Figure 6.7 Add-one smoothed bigrarn probabilities for seven of the words 
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of 
""10,000 sentences. 

It is often convenient to reconstruct the count matrix so we can see 
how much a smoothing algorithm has changed the original counts. These 
adjusted counts can be computed by Equation (6.13). Figure 6.8 shows the 
reconstructed counts. 

Note that add-one smoothing has made a very big change to the counts. 
C(want to) changed from 786 to 331! We can see this in probability space 
as well: P(tolwant) decreases from .65 in the unsmoothed case to .28 in the 
smoothed case. 

Looking at the discount d (the ratio between new and old counts) shows 
us how strikingly the counts for each prefix-word have been reduced; the 
bigrams starting with Chinese were discounted by a factor of 8! 

209 

231



210 

WITIEN-BELL 
DISCOUNTING 

Chapter 6. N-grams 

II I want I to eat I Chinese I food I lunch I 
I 6 740 .68 10 .68 .68 .68 
want 2 .42 331 .42 3 4 3 
to 3 .69 8 594 3 .69 9 
eat .37 .37 1 .37 7.4 1 20 
Chinese .36 .12 .12 .12 .12 15 .24 
food 10 .48 9 .48 .48 .48 .48 
lunch 1.1 .22 .22 .22 .22 .44 .22 

Figure6.8 Add-one smoothed bigrarn counts for seven of the words (out of 
1616 total word types) in the Berkeley Restaurant Project Corpus of ROIO,OOO 
sentences. 

I .68 
want .42 
to .69 
eat .37 
Chinese .12 
food .48 
lunch .22 

The sharp change in counts and probabilities occurs because too much 
probability mass is moved to all the zeros. The problem is that we arbitrarily 
picked the value "1" to add to each count. We could avoid this problem by 
adding smaller values to the counts ("add-one-half" "add-one-thousandth"), 
but we would need to retrain this parameter for each situation. 

In general add-one smoothing is a poor method of smoothing. Gale and 
Church (1994) summarize a number of additional problems with the add-one 
method; the main problem is that add-one is much worse at predicting the 
actual probability for bigrams with zero counts than other methods like the 
Good-Turing method we will describe below. Furthermore, they show that 
variances of the counts produced by the add-one method are actually worse 
than those from the nnsmoothed MLE method. 

Witten-Bell Discounting 

A much better smoothing algorithm that is only slightly more complex than 
Add-One smoothing we will refer to as Witten-Bell discounting (it is in­
troduced as Method C in Witten and Bell (1991)). Witten-Bell discounting 
is based on a simple but clever intuition about zero-frequency events. Let's 
think of a zero-frequency word or N -gram as one that just hasn't happened 

232



yet. When it does happen, it will be the first time we see this new N -gram, 
So the probability of seeing a zero-frequency N-gram can be modeled by tbe 
probability of seeing anN-gram for the first time. This is a recurring concept 
in statistical language processing: 

Key Concept#4. Things Seen Once: Use the count of things you've 
seen once to help estimate the count of things you've never seen. 

The idea that we can estimate tbe probability of "things we never saw" 
with help from the count of "things we saw once" will return when we dis­
cuss Good-Turing smoothing later in this chapter, and then once again when 
we discuss methods for tagging an unknown word with a part-of-speech in 
Chapter 8. 

How can we compute the probability of seeing anN -gram for the first 
time? By counting the number of times we sawN-grams for the first time in 
our training corpus. This is very simple to produce since the count of "first­
time" N-grams is just the number of N-gram types we saw in the data (since 
we had to see each type for the first time exactly once). 

So we estimate the total probability mass of all the zero N -grams with 
the number of types divided by the number of tokens plus observed types: 

~ * T 
_£...Pi=N+T (6.16) 
cc;=O 

Why do we normalize by the number of tokens plus types 7 We can 
think of our training corpus as a series of events; one event for each token 
and one event for each new type. So Equation 6.16 gives the Maximum 
Likelihood Estimate of the probability of a new type event occurring. Note 
that the number of observed types T is different than the "total types" or 
"vocabulary size V" that we used in add-one smoothing: T is the types we 
have already seen, while V is the total number of possible types we might 
ever see. 

Equation 6.16 gives the total "probability of unseen N-grams". We 
need to divide this up among all the zero N -grams. We could just choose 
to divide it equally. Let Z be the total number of N-grams with count zero 
(types; there aren't any tokens). Each formerly-zero unigram now gets its 
equal share of the redistributed probability mass: z 

z 2: 1 (6.17) 
t':q=O 

* 
T 

(6.18) Pi Z(N+T) 

211 

233



212 Chapter 6. 

If the total probability of zero N -grams is computed from Equation (6. 
the extra probability mass must come from somewhere; we get it by dis­
counting the probability of all the seen N -grams as follows: 

* C; "f ( ) P; =--I c;>O 
N+T 

(6.19) 

Alternatively, we can represent the smoothed counts directly as: 

* { ~N~T' ifc; =0 
C; = C; N~T' if c; > 0 (6.20) 

Witten-Bell discounting looks a lot like add-one smoothing for uni­
grams. But if we extend the equation to bigrams we will see a big difference. 
This is because now our type-counts are conditioned on some history. In or­
der to compute the probability of a bigram Wn-IWn-2 we haven't seen, we 
use "the probability of seeing a new bigram starting with Wn-1 ". This lets 
our estimate of "first-time bigrams" be specific to a word history. Words that 
tend to occur in a smaller number of bigrams will supply a lower "unseen­
bigram" estimate than words that are more promiscuous. 

We represent this fact by conditioning T, the number of bigram types, 
and N, the number of bigram tokens, on the previous word Wx , as follows: 

~ *( I ) T(wx) 6 L.., p W; Wx = N( ) + T( ) ( .21) 
i:c(wxw;)=O Wx Wx 

Again, we will need to distribute this probability mass among all the 
unseen bigrams. Let Z again be the total number of bigrams with a given first 
word that have count zero (types; there aren't any tokens). Each formerly 
zero bigram now gets its equal share of the redistributed probability mass: 

2: 1 (6.22) 
i:c(wxw;)=O 

* I ) T(w,_J) . ( ) 
P (w; Wi-1 = Z(w;-I)(N + T(w;-l)) If Cw1_ 1w1 = 0 (6.23) 

As for the non-zero bigrams, we discount them in the same manner, by 
parameterizing T on the history: 

2: p*(w;!wx) = ciwx;) (6.24) 
i:c(wxw;)>O c(wx + (wx) 

To use Equation 6.24 to smooth the restaurant bigram from Figure 6.5, 
we will need the number of bigram types T ( w) for each of the first words. 
Here are those values: 

234



Section 6.3. Smoothing 

I 95 
want 76 
to 130 
eat 124 
Chinese 20 
food 82 
lunch 45 

In addition we will need the Z values for each of these words. Since 
we know how many words we have in the vocabulary (V = 1,616), there are 
exactly V possible bigrarns that begin with a given word w, so the number of 
unseen bigrarn types with a given prefix is V minus the number of observed 

types: 

Z(w) = V- T(w) (6.25) 

Here are those Z values: 

I 1,521 
want 1,540 
to 1,486 
eat 1,492 
Chinese 1,596 
food 1,534 
lunch 1,571 

Figure 6.9 shows the discounted restaurant bigram counts. 

II I want I to eat I Chinese I food I lunch I 
I 8 1060 .062 13 .062 .062 .062 

want 3 .046 740 .046 6 8 6 

to 3 .085 10 827 3 .085 12 

eat .075 .075 2 .075 17 2 46 

Chinese 2 .012 .012 .012 .012 109 1 

food 18 .059 16 .059 .059 .059 .059 

lunch 4 .026 .026 .026 .026 1 .026 

Figure 6.9 Witten-Bell smoothed bigram counts for seven of the words 
(out of 1616 total word types) in the Berkeley Restaurant Project corpus of 
"'10,000 sentences. 

The discount values for the Witten-Bell algorithm are much more rea­

sonable than for add-one smoothing: 

213 

235



214 

JOINT 
PROBABILITY 

GOOD­
TURING 

Chapter 6. N-grams 

I .97 
want .94 
to .96 
eat .88 
Chinese .91 
food .94 
lunch .91 

It is also possible to use Witten-Bell (or other) discounting in a differ­
ent way. In Equation (6.21), we conditioned the smoothed bigram proba­
bilities on the previous word. That is, we conditioned the number of types 
T(wx) and tokens N(wx) on the previous word Wx· But we could choose 
instead to treat a bigram as if it were a single event, ignoring the fact that 
it is composed of two words. Then T would be the number of types of all 
bigrams, and N would be the number of tokens of all bigrams that occurred. 
Treating the bigrams as a unit in this way, we are essentially discounting, not 
the conditional probability P(w;iwx). but the joint probability P(wxwt). In 
this way the probability P(wxw1) is treated just like a unigram probability. 
This kind of discounting is less commonly used than the "conditional" dis­
counting we walked through above starting with Equation 6.21. (Although it 
is often used for the Good-Turing discounting algorithm described below). 

In Section 6.4 we show that discounting also plays a role in more so­
phisticated language models. Witten-Bell discounting is commonly used in 
speech recognition systems such as Placeway eta!. (1993). 

Good-Thring Discounting 

This section introduces a slightly more complex form of discounting than the 
Witten-Bell algorithm called Good-Turing smoothing. This section may be 
skipped by readers who are not focusing on discounting algorithms. 

The Good-Turing algorithm was first described by Good (1953), who 
credits Turing with the original idea; a complete proof is presented in Church 
et al. (1991). The basic insight of Good-Turing smoothing is to re-estimate 
the amount of probability mass to assign toN -grams with zero or low counts 
by looking at the number of N -grams with higher counts. In other words, 
we examine Nc, the number of N -grams that occur c times. We refer to the 
number of N-grams that occur c times as the frequency of frequency c. So 
applying the idea to smoothing the joint probability of bigrams, No is the 

236



Section 6.3. Smoothing 

number of bigrams b of count 0, N 1 the number of bigrams with count 1, and 
so on: 

Nc= L I (6.26). 
b:c(b)~c 

The Good-Turing estimate gives a smoothed count c' based on the set 
of Nc for all c, as follows: 

c* = (c +I) Nc+l (6.27) 
N, 

For example, the revised count for the bigrams that never occurred 

215 

(co) is estimating by dividing the number of bigrams that occurred once (the 
singleton or hapax legomenon bigrams N1) by the number of bigrams that SINGLETON 

never occurred (No). Using the count of things we've seen once to estimate 
the count of things we've never seen should remind you of the Witten-Bell 
discounting algorithm we saw earlier in this chapter. The Good-Turing al-
gorithm was first applied to the smoothing of N -gram grammars by Katz, 
as cited in Nadas (1984). Figure 6.10 gives an example of the applica-
tion of Good-Turing discounting to a bigram grammar computed by Church 
and Gale (1991) from 22 million words from the Associated Press (AP) 
newswire. The first column shows the count c, i.e., the number of observed 
instances of a bigram. The second column shows the number of bigrams that 
had this count. Thus 449,721 bigrams has a count of 2. The third column 
shows c*, the Good-Turing re-estimation of the count. 

c (MLE) N, c* (GT) 
0 74,671,100,000 0.0000270 
1 2,018,046 0.446 
2 449,721 1.26 
3 188,933 2.24 
4 105,668 3.24 
5 68,379 4.22 
6 48,190 5.19 
7 35,709 6.21 
8 27,710 7.24 
9 22,280 8.25 

Figure 6.10 Bigram "frequencies of frequencies" from 22 million AP bi-
grams, and Good-Thring re-estimations after Church and Gale (1991). 

Church eta!. (1991) show that the Good-Turing estimate relies on the 
assumption that the distribution of each bigram is binomial. The estimate 

237



216 Chapter 6. N-grams 

also assumes we know N0 , the number of bigrams we haven't seen. We 
know this because given a vocabulary size of V, the total number of bigrams 
is V2 (No is V 2 minus all the bigrams we have seen). 

In practice, this discounted estimate c' is not" used for all counts c. 
Large counts (where c > k for some threshold k) are assumed to be reliable. 
Katz (1987) suggests setting kat 5. Thus we define 

c' = c for c > k 

The correct equation for c' when some k is introduced (from Katz 
(1987)) is: 

(c+ 1)Nctl -c(k+l)Nktl 
c' = N, N, for 1 :<:: c :<:: k. 

1 _ (k+l)N,+I 
N, 

With Good-Turing discounting as wifh any other, it is usual to treat 
N-grams wifh low counts (especially counts of 1) as if fhe count was 0. 

6.4 BACKOFF 

The discounting we have been discussing so far can help solve fhe problem of 
zero frequency n-grams. But there is an additional source of knowledge we 
can draw on. If we have no examples of a particular ttigram Wn-2Wn-JWn to 
help us compute P(wnlwn-JWn-2), we can estimate its probability by using 
fhe bigram probability P(wnlwn-d· Similarly, if we don't have counts to 
compute P(wnlwn-J), we can look to fhe unigram P(wn). 

There are two ways to rely on this N-gram "hierarchy", deleted inter­
~'ft'l~8LATIDN polation and backoff. We will focus on backoff, although we give a quick 

BACKOFF overview of deleted interpolation after this section. Backoff N -gram model­
ing is a nonlinear mefhod introduced by Katz (1987). In fhe backoff model, 
like fhe deleted interpolation model, we build anN-gram model based on an 
(N- I)-gram model. The difference is fhat in backoff, if we have non-zero 
ttigram counts, we rely solely on the trigram counts and don't interpolate 
fhe bigram and unigram counts at all. We only "back off" to a lower order 
N-gram if we have zero evidence for a higher-order N-gram. 

The ttigram version of backoff ntight be represented as follows: 

P(w,lw,_zwH), ifC(wi-2Wf-JWi) > 0 

'( I OGJP(w;lwt-d, ife(w,_zw,_ 1w,) = 0 
p Wi Wt-2Wt-d = (6.30) 

and C(wi-JWi) > 0 

ofherwise. 

238



Section 6.4. Backoff 

Let's ignore the a values for a moment; we'll discuss the need for 
these weighting factors below. Here's a first pass at the (recursive) equation 
for representing the general case of this form of backoff. 

'( 1 n-1 ) p Wn Wn-N+l = 

(6.31) 

Again, ignore the a and the P for the moment. Following Katz, we've 
used 8 to indicate the binary function that selects a lower ordered model only 
if the higher-order model gives a zero probability; 

S(x) = { 1, if x = 0 
0, otherwise. 

(6.32) 

and each P(-) is a MLE (i.e., computed directly by dividing counts). The 
next section will work through these equations in more detail. In order to do 
that, we'll need to understand the role of the a values and how to compute 
them. 

Combining Backoff with Discounting 

Our previous discussions of discounting showed how to use a discounting 
algorithm to assign probability mass to unseen events. For simplicity, we 
assumed that these unseen events were all equally probable, and so the prob­
ability mass got distributed evenly among all unseen events. Now we can 
combine discounting with the backoff algorithm we have just seen to be a 
little more clever in assigning probability to unseen events. We will use the 
discounting algorithm to tells us how much total probability mass to set aside 
for all the events we haven't seen, and the backoff algorithm to tell us how 
to distribute this probability in a clever way. 

First, the reader should stop and answer the following question (don't 
look ahead); Why did we need the a values in Equation (6.30) (or Equa­
tion (6.31))? Why couldn't we just have three sets of probabilities without 
weights? 

The answer: without a values, the result of the equation would not be 
a true probability! This is because the original P(wnlw~=h+I) we got from 
relative frequencies were true probabilities, that is, if we sum the probability 
of a given Wn over all N -gram contexts, we should get I: 

L,P(wniWtWj) = 1 (6.33) 
i,j 

217 

239



218 Chapter 6. N-gr~s 

But if that is the case, if we back off to a lower order model when the 
probability is zero, we are adding extra probability mass into the equation, 
and the total probability of a word will be greater than 1! 

Thus any backoff language model must also be 'discounted. This ex-
fi plains the as and Pin Equation 6.31. The P comes from our need to discount 

the MLE probabilities to save some probability mass for the lower order N­
grams. We will use P to mean discounted probabilities, and save P for plain 
old relative frequencies computed directly from counts. The a is used to en­
sure that the probability mass from all the lower order N-grams sums up to 
exactly the amount that we saved by discounting the higher-order N-grams. 
Here's the correct final equation: 

(6.34) 

Now let's see the formal definition of each of these components of the 
equation. We define Pas the discounted (c*) MLE estimate of the conditional 
probability of anN -gram, as follows: 

- n-1 c*(w~-N+l) 
P(wnlwn-N+I) = ( n N+l) (6.35) 

C w1 

This probability P will be slightly less than the MLE estimate 

c(w~-N+I) 

c(w~-~+ 1 ) 
(i.e., on average the c* will be less than c). This will leave some 

probability mass for the lower order N-grarns. Now we need to build the 
a weighting we'll need for passing this mass to the lower order N-grams. 
Let's represent the total amount ofleft-over probability mass by the function 
~. a frmction of theN- 1-grarn context. For a given N- 1-gram context, the 
total left-over probability mass can be computed by subtracting from 1 the 
total discounted probability mass for all N-grams starting with that context: 

~(w~=~+l) = 1- L P(wnlw~=~+l) (6.36) 
Wn:c(w~-N+l)>O 

This gives us the total probability mass that we are ready to distribute 
to all N- !-gram (e.g., bigrarns if our original model was a trigram). Each 
individual N- !-gram (bigrarn) will only get a fraction of this mass, so we 
need to normalize ~by the total probability of all theN- !-grams (bigrarns) 

240



Section 6.4. Backoff 

that begin some N-gram (trigram). The final equation for computing how 
much probability mass to distribute from an N -gram to an N - 1-gram is 
represented by the function a: 

( 
n-1 ) _ 1- ~w,oc(w;_N+t)>OP(wnlw~:::A,+l) 

a Wn-N+l - - n-1 
1- ~w,:c(w;;_N+l)>OP(wnlwn-N+2) 

(6.37) . 

Note that a is a function of the preceding word string, that is, of 
w~:::A,+ 1 ; thus the amount by which we discount each trigram (d), and the 
mass that gets reassigned to lower order N-grams (a) are recomputed for 
every N -gram (more accurately for every N- 1-gram that occurs in any N­

gram). 
We only need to specify what to do when the counts of an N- !-gram 

context are 0, (i.e., when c(w;:'~J+l) = 0) and our definition is complete: 

P( I 
n-N+ 1) P( I n-N+2) 

Wn Wn-N+l = Wn Wn-N+l (6.38) 

and 

(6.39) 

and 

(6.40) 

In Equation (6.35), the discounted probability P can be computed with 
the discounted counts c* from the Witten-Bell discounting (Equation (6.20)) 
or with the Good-Turing discounting discussed below. 

Here is the backoff model expressed in a slightly clearer format in its 

trigram version: 

P(w;[w;-zw;-1), 

a(w~:::i)P(w;lw;_J), 

ifC(w;_zw;_1w;) > 0 

if C(w;-zw;-JW;) = 0 

and C(w;-Jw;) > 0 

otherwise. 

In practice, when discounting, we usually ignore counts of I, that is, 
we treat N -grams with a count of 1 as if they never occurred. 

Gupta eta!. (1992) present a variant backoff method of assigning prob­
abilities to zero trigrams. 

219 

241



220 Chapter 6. 

6.5 DELETED INTERPOLATION 

DELETED 
INTERPOLATION 

The deleted interpolation algorithm, due to Jelinek and Mercer (1<}80), com­
bines different N -gram orders by linearly interpolating all three models w11m·· , 

ever we are computing any trigram. That is, we estimate the prc>balJi!ilty ' 
P(wnlwn-IWn-2) by mixing together the unigram, bigram, and trigram prob­
abilities. Each of these is weighted by a linear weight A: 

F(wniWn-IWn-2) = fqP(wniWn-IWn-2) 

+AzP(wnlwn-I) 

+A3P(wn) 

such that the As sum to 1: 

l:,A;=l 

In practice, in this deleted interpolation deleted interpolation algo­
rithm we don't train just three As for a trigram grammar. Instead, we make 
each A a function of the context. This way if we have particularly accu­
rate counts for a particular bigram, we assume that the counts of the trigrams 
based on this bigram will be more trustworthy, and so we can make the lamb­
das for those trigrams higher and thus give that trigram more weight in 
interpolation. So a more detailed version of the interpolation formula would 
be: 

A1 (w~=i)P( WniWn-zWn-d 

+"-z(w~=i)P(wniWn-d 

+ A3 (w~=i)P(wn) 
Given the P( w .. ) values, the A values are trained so as to maximize the 

likelihood of a held-out corpus separate from the main training corpus, using 
a version of the EM algorithm defined in Chapter 7 (Baum, 1972; Dempster 
et al., 1977; Jelinek and Mercer, 1980). Further details of the algorithm are 
described in Babl et al. (1983). 

6.6 N-GRAMS FOR SPELLING AND PRONUNCIATION 

In Chapter 5 we saw the use of the Bayesian/noisy-channel algorithm for 
correcting spelling errors and for picking a word given a surface pronunci-

242



Section 6. 6. N-grams for Spelling and Pronunciation 

ation. We saw that both these algorithms failed. returning the wrong word, 
because they had no way to model the probability of multiple-word strings. 
Now that our n-grams give us such a model, we return to these two problems. 

Context-Sensitive Spelling Error Correction 

Chapter 5 introduced the idea of detecting spelling errors by looking for 
words that are not in a dictionary, are not generated by some finite-state 
model of English word-formation, or have low probability orthotactics. But 
none of these techniques is sufficient to detect and correct real-word spelling 
errors. real-word error detection. This is the class of errors that result 
in an actual word of English. This can happen from typographical errors 
(insertion, deletion, transposition) that accidently produce a real word (e.g., 
there for three), or because the writer substituted the wrong spelling of a 
homophone or near-homophone (e.g., dessert for desert, or piece for peace). 
The task of correcting these errors is called context-sensitive spelling error 
correction. 

How important are these errors? By an a priori analysis of single typo­
graphical errors (single insertions, deletions, substitutions, or transpositions) 
Peterson (1986) estimates that 15% of such spelling errors produce valid En­
glish words (given a very large list of 350,000 words). Kukich (1992) sum­
marizes a number of other analyses based on empirical studies of corpora, 
which give figures between of 25% and 40% for the percentage of errors 
that are valid English words. Figure 6.11 gives some examples from Kukich 
(1992), broken down into local and global errors. Local errors are those that 
are probably detectable from the immediate surrounding words, while global 
errors are ones in which error detection requires examination of a large con­
text. 

One method for context-sensitive spelling error correction is based on 
N-grams. 

The word N -gram approach to spelling error detection and correction 
was proposed by Mays eta!. (1991). The idea is to generate every possible 
misspelling of each word in a sentence either just by typographical modifi­
cations (letter insertion, deletion, substitution), or by including homophones 
as well, (and presumably including the correct spelling), and then choos­
ing the spelling that gives the sentence the highest prior probability. That 
is, given a sentence W = {WI, w2, ... : wk, ... , Wn}, where Wk has alternative 
spelling w~, w%, etc., we choose the spelling among these possible spellings 
that maximizes P(W), using the N-gram grammar to compute P(W). A 

221 

REAL-WORD 
ERROR 
DETECTION 

243



222 Chapter 6. N-gra!lls 

Local Errors 

The study was conducted mainly be John Black. 
They are leaving in about fifteen minuets to go to her house. 
The design an construction of the system will take more than a year. 
Hopefully, all with continue smoothly in my absence. 
Can they lave him my messages? 
I need to notified the bank of [this problem.] 
He need to go there right now. 
He is trying to fine out. 

Global Errors 

Won't they heave if next Monday at that time? 
This thesis is supported by the fact that since 1989 the system 

has been operating system with all four units on-line, but ... 

Figure 6.11 Some attested real-word spelling errors from Kukich (1992), 
broken down into local and global errors. 

class-based N-gram can be used instead, which can find unlikely part-of­
speech combinations, although it may not do as well at to finding unlikely 
word combinations. 

There are many other statistical approaches to context-sensitive spelling 
error correction, some proposed directly for spelling, other for more general 
types of lexical disambiguation (such as word-sense disambiguation or ac­
cent restoration). Beside the trigram approach we have just described, these 
include Bayesian classifiers, alone or combined with trigrams (Gale et al., 
1993; Golding, 1997; Golding and Schabes, 1996), decision lists (Yarowslcy, 
1994), transformation based learning (Mangn and Brill, 1997), latent se­
mantic analysis (Jones and Martin, 1997), and Winnow (Golding and Roth, 
1999). In a comparison of these, Golding and Roth (1999) found the Win­
now algorithm gave the best performance. In general, however, these algo­
rithms are very similar in many ways; they are all based on features like 
word and part-of-speech N-grams, and Roth (1998, 1999) shows that many 
of them make their predictions using a family of linear predictors called Lin­
ear Statistical Queries (LSQ) hypotheses. Chapter 17 will define all these 
algorithms and discuss these issues further in the context of word-sense dis­
ambiguation. 

244



Section 6. 7. Entropy 

N-grams for Pronunciation Modeling 

TheN -gram model can also be used to get better performance on the words­
from-pronunciation task that we studied in Chapter 5. Recall that the input 
was the pronunciation [n iy] following the word I. We said that the five words 
that could be pronounced [n iy] were need, new, neat, the, and knee. The 
algorithm in Chapter 5 was based on the product of the unigram probability 
of each word and the pronunciation likelihood, and incorrectly chose the 
word new, based mainly on its high unigram probability. 

Adding a simple bigram probability, even without proper smoothing, is 
enough to solve this problem correctly. In the following table we fix the table 
on page 167 by using a bigram rather than unigram word probability p(w) 
for each of the five candidate words (given that the word I occurs 64,736 
times in the combined Brown and Switchboard corpora): 

Word C('l' w) C('l' w)+0.5 p(w['l') 
need !53 153.5 .0016 
new 0 0.5 .000005 
knee 0 0.5 .000005 
the 17 17.5 .00018 
neat 0 0.5 .000005 

Incorporating this new word probability into combined model, it now 
predicts the correct word need, as the table below shows: 

Word p(y[w) p(w) p(y[w)p(w) 
need .11 .0016 .00018 
knee 1.00 .000005 .000005 
neat .52 .000005 .0000026 
new .36 .000005 .0000018 
the 0 .00018 0 

6.7 ENTROPY 

I got the horse right here 
Frank Loesser, Guys and Dolls 

Entropy and perplexity are the most common metrics used to evaluate 
N-gram systems. The next sections summarize a few necessary fundamental 
facts about information theory and then introduce the entropy and perplex­
ity metrics. We strongly suggest that the interested reader consult a good 

223 

245



224 

ENTROPY 

Chapter 6. N-grams 

information theory textbook; Cover and Thomas (1991) is one excellent ex­
ample. 

Entropy is a measure of information, and is invaluable in natUral lan­
guage processing, speech recognition, and computational linguistics. It can 
be nsed as a metric for how much information there is in a particular gram­
mar, for how well a given grammar matches a given language, for how pre­
dictive a given N -gram grammar is about what the next word could be. Given 
two grammars and a corpus, we can use entropy to tell us which gn1mmoLr . 
better matches the corpus. We can also use entropy to compare how diffi­
cult two speech recognition tasks are, and also to measure how well a given 
probabilistic grammar matches human grammars. 

Computing entropy requires that we establish a random variable X that 
ranges over whatever we are predicting (words, letters, parts of speech, the 
set of which we'll call X), and that has a particular probability function, call 
it p(x). The entropy of this random variable X is then 

H(X) =- L,p(x)log2 p(x) 
xEX 

The log can in principle be computed in any base; recall that we use log 
base 2 in all calculations in this book. The result of this is that the entropy is 
measured in bits. 

The most intuitive way to define entropy for computer scientists is to 
think of the entropy as a lower bound on the number of bits it would take 
to encode a certain decision or piece of information in the optimal coding 
scheme. 

Cover and Thomas (1991) suggest the following example. Imagine 
that we want to place a bet on a horse race but it is too far to go all the way 
to Yonkers Racetrack, and we'd like to send a short message to the bookie 
to tell him which horse to bet on. Suppose there are eight horses in this 
particular race. 

One way to encode this message is just to use the binary representation 
of the horse's number as the code; thus horse 1 would be 001, horse 2 010, 
horse 3 0 11, and so on, with horse 8 coded as 0 0 0. If we spend the whole 
day betting, and each horse is coded with 3 bits, on the average we would be 
sending 3 bits per race. 

Can we do better? Suppose that the spread is the actual distribution of 
the bets placed, and that we represent it as the prior probability of each horse 
as follows: 

246



Section 6.7. Entropy 

Horse 1 ~ Horse 5 ~ 
Horse 2 l Horse 6 1 

4 614 
Horse 3 1 Horse 7 8 64 
Horse 4 1;; Horse 8 ,{-4 

The entropy of the random variable X that ranges over horses gives us 
a lower bound ou the number of bits, and is: 

H(X) 
i=8 

- L,p(i)logp(i) 
i=l 

-i log!-! log!-! log !-f6 log -fg-4(-k log -l4) 
2 bits (6.45) 

A code that averages 2 bits per race can be built by using short en­
codings for more probable horses, and longer encodings for less probable 
horses. For example, we could encode the most likely horse with the code 
0, and the remaining horses as 10, then 110, 1110, 111100, 111101, 
111110, and 111111. 

What if the horses are equally likely? We saw above that if we use an 
equal-length binary code for the horse numbers, each horse took 3 bits to 
code, and so the average was 3. Is the entropy the same? In this case each 
horse would have a probability of k. The entropy of the choice of horses is 
then: 

i~S 1 1 1 
H(X) =- L -log-= -log- = 3 bits 

i~l 8 8 8 
(6.46) 

225 

The value 2H is called the perplexity (Jelinek et al., 1977; Bah! et aL, PERPLEXITY 

1983). Perplexity can be intuitively thought of as the weighted average num-
ber of choices a random variable has to make. Thus choosing between 8 
equally likely horses (where H = 3 bits), the perplexity is 23 or 8. Choosing 
between the biased horses in the table above (where H = 2 bits), the perplex-
ity is 22 or 4. 

Until now we have been computing the entropy of a single variable. 
But most of what we will use entropy for involves sequences; for a grammar, 
for example, we will be computing the entropy of some sequence of words 
W = { ... wo, w1, w2,,,,, wn}· One way to do this is to have a variable that 
ranges over sequences of words. For example we can compute the entropy 
of a random variable that ranges over all fiuite sequences of words of length 

247



226 

ENTROPY 
RATE 

Chapter 6. 

bin some language Las follows: 

H(wi,W2, ... ,wn) =- L p(Wt)logp(Wt) 
WfEL 

N-grams 

(6.47) 

We could define the entropy rate (we could also think of this as the 
per-word entropy) as the entropy of this sequence divided by the number 
of words: 

1 1 
-H(Wt) = -- L p(Wt)logp(Wt) (6.48) 
n n WfEL 

But to measure the true entropy of a language, we need to consider 
sequences of infinite length. 1f we think of a language as a stochastic process 
L that produces a sequence of words, its entropy rate H(L) is defined as: 

H(L) = lim~H(wi,w2, ... ,wn) 
n-too n 

lim~ L p(wi, ... ,wn)logp(wi, ... ,wn) (6.49) 
n-+= n WEL 

The Shannon-McMillan-Breiman theorem (Aigoet and Cover, 1988; 
Cover and Thomas, 1991) states that if the language is regular in certain 
ways (to be exact, if it is both stationary and ergodic), 

H(L) =lim -~logp(wiW2 ... wn) (6.50) 
n-+= n 

That is, we can take a single sequence that is long enough instead 
of summing over all possible sequences. The intuition of the Shannon­
McMi!lan-Breiman theorem is that a long enough sequence of words will 
contain in it many other shorter sequences, and that each of these shorter se­
quences will reoccur in the longer sequence according to their probabilities. 

sTATIONARY A stochastic process is said to be stationary if the probabilities it as-
signs to a sequence are invariant with respect to shifts in the time index. In 
other words, the probability distribution for words at time t is the same as the 
probability distribution at time t + 1. Markov models, and hence N -grams, 
are stationary. For example, in a bigram, P; is dependent only on P1_ 1, So if 
we shift onr time index by x, P;+x is still dependent on Pi+x-I· But natural 
language is not stationary, since as we will see in Chapter 9, the probability 
of upcoming words can be dependent on events that were arbitrarily distant 
and time dependent. Thus our statistical models only give an approximation 
to the correct distributions and entropies of natural language. 

To summarize, by making some incorrect but convenient simplifying 
assumptions, we can compute the entropy of some stochastic process by tak-

248



Section 6. 7. Entropy 

ing a very long sample of the output, and computing its average log probabil­
ity. In the next section we talk about the why and how; why we would want to 
do this (i.e., for what kinds of problems would the entropy tell us something 
useful), and how to compute the probability of a very long sequence. 

Cross Entropy for Comparing Models 

In this section we introduce the cross entropy, and discuss its usefulness in 
comparing different probabilistic models. The cross entropy is useful when 
we don't know the actual probability distribution p that generated some data. 
It allows us to use some m, which is a model of p (i.e., an approximation to 
p. The cross-entropy of m on pis defined by: 

. 1 
H(p,m) = hm- L p(wl, ... ,wn)logm(wl,···•wn) 

n--+C<) n WEL 
(6.51) 

That is we draw sequences according to the probability distribution p, 

but sum the log of their probability according to m. 
Again, following the Shannon-McMillan-Breiman theorem, for a sta­

tionary ergodic process: 

. 1 
H(p,m) = hm --logm(wlw2···wn) (6.52) 

n-+= n 
What makes the cross entropy useful is that the cross entropy H(p,m) 

is an upper bound on the entropy H(p). For any model m: 

H(p)-<:: H(p,m) (6.53) 

This means that we can use some simplified model m to help estimate 
the true entropy of a sequence of symbols drawn according to probability 
p. The more accurate m is, the closer the cross entropy H(p,m) will be to 
the true entropy H(p). Thus the difference between H(p,m) and H(p) is 
a measure of how accurate a model is. Between two models m1 and mz, 
the more accurate model will be the one with the lower cross-entropy. (The 
cross-entropy can never be lower than the true entropy, so a model cannot 
err by underestimating the true entropy). 

The Entropy of English 

As we suggested in the previous section, the cross-entropy of some model 
m can be used as an upper bound on the true entropy of some process. We 
can use this method to get an estimate of the true entropy of English. Why 
should we care about the entropy of English? 

227 

CROSS 
ENTROPY 

249



228 Chapter 6. 

METHODOLOGY Box: PERPLEXITY 

The methodology box on page 204 mentioned the idea of com­
puting the perplexity of a test set as a way of comparing two 
probabilistic models. (Despite the risk of ambiguity, we will fol­
low the speech and language processing literature in using the term 
"perplexity" rather than the more technically correct term "cross­
perplexity".) Here's an example of perplexity computation as part 
of a "business news dictation system". We trained unigram, bi­
gram, and trigram Katz-style backoff granunars with Good-Turing 
discounting on 38 million words (including start-of-sentence tokens) 
from the Wall Street Journal (from the WSJO corpus (LDC, 1993)). 
We used a vocabulary of 19,979 words (i.e., the rest of the words 
types were mapped to the unknown word token <UNK> in both 
training and testing). We then computed the perplexity of each of 
these models on a test set of 1.5 million words (where the perplexity 
is defined as 2H(p,m)). The table below shows the perplexity of a 1.5 
million word WSJ test set according to each of these grammars. 

N-gram Order Perplexity 
Unigram 962 
Bigram 170 
Trigram 109 

In computing perplexities the model m must be constructed 
without any knowledge of the test set t. Any kind of knowledge 
of the test set can cause the perplexity to be artificially low. For 
example, sometimes instead of mapping all unknown words to the 
<UNK> token, we use a closed-vocabulary test set in which we 
know in advance what the set of words is. This can greatly reduce 
the perplexity. As long as this knowledge is provided equally to each 
of the models we are comparing, the closed-vocabulary perplexity is 
still a useful metric for comparing models. But this cross-perplexity 
is no longer guaranteed to be greater than the true perplexity of the 
test set, and so great care must be taken in interpreting the results. In 
general, the perplexity of two language models is only comparable 
if they use the same vocabulary. 

250



Section 6.7. Entropy 

One reason is that the true entropy of English would give us a solid 
lower bound for all of our future experiments on probabilistic grammars. 
Another is that we can use the entropy values for English to help under­
stand what parts of a language provide the most information (for example, 
is the predictability of English mainly based on word order, on semantics, 
on morphology, on constituency, or on pragmatic cues?) This can help us 
immensely in knowing where to focus our language-modeling efforts. 

There are two common methods for computing the entropy of English. 
The first was employed by Shannon (1951), as part of his groundbreaking 
work in defining the field of information theory. His idea was to use human 
subjects, and to construct a psychological experiment that requires them to 
guess strings of letters; by looking at how many guesses it takes them to 
guess letters correctly we can estimate the probability of the letters, and 
hence the entropy of the sequence. 

The actual experiment is designed as follows: we present a subject 
with some English text and ask the subject to guess the next letter. The sub­
jects will use their knowledge of the language to guess the most probable 
letter first, the next most probable next, and so on. We record the number of 
guesses it talres for the subject to guess correctly. Shannon's insight was that 
the entropy of the number-of-guesses sequence is the same as the entropy 
of English. (The intuition is that given the number-of-guesses sequence, we 
could reconstruct the original text by choosing the "nth most probable" letter 
whenever the subject took n guesses). This methodology requires the use of 
letter guesses rather than word guesses (since the subject sometimes has to 
do an exhaustive search of all the possible letters!), and so Shannon com­
puted the per-letter entropy of English rather than the per-word entropy. 
He reported an entropy of 1.3 bits (for 27 characters (26letters plus space)). 
Shannon's estimate is likely to be too low, since it is based on a single text 
(Jefferson the Virginian by Dumas Malone). Shannon notes that his subjects 
had worse guesses (hence higher entropies) on other texts (newspaper writ­
ing, scientific work, and poetry). More recently variations on the Shannon 
experiments include the use of a gambling paradigm where the subjects get 
to bet on the next letter (Cover and King, 1978; Cover and Thomas, 1991). 

The second method for computing the entropy of English helps avoid 
the single-text problem that confounds Shannon's results. This method is to 
take a very good stochastic model, train it on a very large corpus, and use 
it to assign a log-probability to a very long sequence of English, using the 
Shannon-McMillan-Breiman theorem: 

1 
H(English) :0: lim--logm(wtwz ... wn) 

n--+= n 
(6.54) 

229 

251



230 Chapter 6. N-grams 

For example, Brown et a!. (1992) trained a trigram language model 
on 583 million words of English, (293,181 different types) and used it to 
compute the probability of the entire Brown corpus (I ,014,312 tokeps). The 
training data include newspapers, encyclopedias, .novels, office correspon­
dence, proceedings of the Canadian parliament, and other miscellaneous 
sources. 

They fhen computed the character-entropy offhe Brown corpus, by us­
ing their word-trigram grammar to assign probabilities to the Brown corpus, 
considered as a sequence of individual letters. They obtained an entropy 
of 1.75 bits per character (where fhe set of characters included all fhe 95 
printable ASCII characters). 

The average length of English written words (including space) has been 
reported at 5.5letters (Nadas, 1984). If fhis is correct, it means that the Shan­
non estimate of 1.3 bits per letter corresponds to a per-word perplexity of 142 
for general English. The numbers we report above for fhe WSJ experiments 
are significantly lower since the training and test set came from same sub­
sample of English. That is, those experiments underestimate fhe complexity 
of English since fhe Wall Street Journal looks very little like Shakespeare. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The underlying mathematics of the N-gram was first proposed by Markov 
(1913), who used what are now called Markov chains (bigrams and tri­
grams) to predict whefher an upcoming letter in Pushkin's Eugene Onegin 
would be a vowel or a consonant. Markov classified 20,000 letters as V or 
C and computed the bigram and trigram probability fhat a given letter would 
be a vowel given the previous one or two letters. Shannon (1948) applied 
N -grams to compute approximations to English word sequences. Based on 
Shannon's work, Markov models were commonly used in modeling word se­
quences by fhe 1950s. In a series of extremely influential papers starting with 
Chomsky (1956) and including Chomsky (1957) and Miller and Chomsky 
(1963), Noam Chomsky argued fhat "finite-state Markov processes", while 
a possibly useful engineering heuristic, were incapable of being a complete 
cognitive model of human grammatical knowledge. These arguments led 
many linguists and computational linguists away from statistical models al­
together. 

252



Section 6. 7. Entropy 

The resurgence of N -gram models came from Jelinek, Mercer, Bahl, 
and colleagues at the IBM Thomas J. Watson Research Center, influenced 
by Shannon, and Baker at CMU, influenced by the work of Baum and col­
leagues. These two labs independently successfully used N -grams in their 
speech recognition systems (Jelinek, 1976; Baker, 1975; Bah! et al., 1983). 
The Good-Turing algorithm was first applied to the smoothing of N-gram 
grammars at IBM by Katz, as cited in Nactas (1984). Jelinek (1990) summa­
rizes this and many other early language model innovations used in the IBM 
language models. 

While smoothing had been applied as an engineering solution to the 
zero-frequency problem at least as early as Jeffreys (1948) (add-one smooth­
ing), it is only relatively recently that smoothing received serious atten­
tion. Church and Gale (1991) gives a good description of the Good-Turing 
method, as well as the proof, and also gives a good description of the Deleted 
Interpolation method and a new smoothing method. Sampson (1996) also 
has a useful discussion of Good-Turing. Problems with the Add-one algo­
rithm are summarized in Gale and Church (1994). Method C in Witten and 
Bell (1991) describes what we called Witten-Bell discounting. Chen and 
Goodman (1996) give an empirical comparison of different smoothing algo­
rithms, including two new methods, average-count and one-count, as well as 
Church and Gale's. Iyer and Ostendorf (1997) discuss a way of smoothing 
by adding in data from additional corpora. 

Much recent work on language modeling has focused on ways to build 
more sophisticated N -grams. These approaches include giving extra weight 
toN-grams which have already occurred recently (the cache LM of Kuhn 
and de Mori (1990)), choosing long-distance triggers instead of just local 
N-grams (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua, 
1998), and using variable-length N-grams (Ney et al., 1994; Kneser, 1996; 
Niesler and Woodland, 1996). Another class of approaches use semantic in­
formation to enrich theN -gram, including semantic word associations based 
on the latent semantic indexing described in Chapter 15 (Coccaro and Ju­
rafsky, 1998; Bellegarda, 1999)), and from on-line dictionaries or thesauri 
(Demetriou et al., 1997). Class-based N-grams, based on word classes such 
as parts-of-speech, are described in Chapter 8. Language models based on 
more structured linguistic lmowledge (such as probabilistic parsers) are de­
scribed in Chapter 12. Finally, a number of augmentations to N-grams are 
based on discourse knowledge, such as using knowledge of the current topic 
(Chen et al., 1998; Seymore and Rosenfeld, 1997; Seymore et al., 1998; Flo­
rian and Yarowsky, 1999; Khudanpur and Wu, 1999) or the current speech 
act in dialogue (see Chapter 19). 

231 

CACHE LM 

TRIGGERS 

VARIABLE-LENGTH 
N-GRAMS 

LATENT 
SEMANTIC 
INDEXING 

CLASS-BASED 

253



232 Chapter 6. N-grams 

6.8 SUMMARY 

This chapter introduced theN -gram, one of the oldest and most brmtdly use­
ful practical tools in language processing. 

• AnN-gram probability is the conditional probability of a word given 
the previous N- I words. N-gram probabilities can be computed by 
simply counting in a corpus and normalizing (the Maximum Likeli­
hood Estimate) or they can be computed by more sophisticated algo­
rithms. The advantage of N -grams is that they take advantage of lots 
of rich lexical knowledge. A disadvantage for some purposes is that 
they are very dependent on the corpus they were trained on. 

• Smoothing algorithms provide a better way of estimating the proba­
bility of N -grams which never occur. Commonly-used smoothing al­
gorithms include backoff or deleted interpolation, with Witten-Bell 
or Good-Turing discounting. 

• Corpus-based language models like N-grams are evaluated by sepa­
rating the corpus into a training set and a test set, training the model 
on the training set, and evaluating on the test set. The entropy H, or 
more commonly the perplexity 2H (more properly cross-entropy and 
cross-perplexity) of a test set are used to compare language models. 

EXERCISES 

6.1 Write out the equation for trigram probability estimation (modifying 
Equation 6.11). 

6.2 Write out the equation for the discount d = 'f for add-one smoothing. 
Do the same for Witten-Bell smoothing. How do they differ? 

6.3 Write a program (Perl is sufficient) to compute unsmoothed unigrams 
and bigrams. 

6.4 Run your N-gram program on two different small corpora of your 
choice (you might use email text or newsgroups). Now compare the statistics 

254



Section 6.8. Summary 

of the two corpora. What are the differences in the most common unigrams 
between the two? How about interesting differences in bigrams? 

6.5 Add an option to your program to generate random sentences. 

6.6 Add an option to your program to do Witten-Bell discounting. 

6.7 Add an option to your program to compute the entropy (or perplexity) 
of a test set. 

6.8 Suppose someone took all the words in a sentence and reordered them 
randomly. Write a program wltich take as input such a bag of words and 
produces as output a guess at the original order. Use the Viterbi algorithm 
and anN-gram grammar produced by your N-gram program (on some cor­
pus). 

6.9 The field of authorship attribution is concerned with discovering the 
author of a particular text. Authorship attribution is important in many fields, 
including history, literature, and forensic linguistics. For example Mosteller 
and Wallace (1964) applied authorship identification techniques to discover 
who wrote The Federalist papers. The Federalist papers were written in 
1787-1788 by Alexander Hamilton, John Jay and James Madison to per­
suade New York to ratify the United States Constitution. They were pub­
lished anonymously, and as a result, although some of the 85 essays were 
clearly attributable to one author or another, the authorship of 12 were in 
dispute between Hamilton and Madison. Foster (1989) applied authorship 
identification techniques to suggest that W.S.'s Funeral Elegy for William 
Peter was probably written by William Shakespeare, and that the anonymous 
author of Primary Colors the roman a clef about the Clinton campaign for 
the American presidency, was journalist Joe Klein (Foster, 1996). 

A standard technique for authorship attribution, first used by Mosteller 
and Wallace, is a Bayesian approach. For example, they trained a proba­
bilistic model of the writing of Hamilton, and another model of the writings 
of Madison, and computed the maximum-likelihood author for each of the 
disputed essays. There are many complex factors that go into these models, 
including vocabulary use, word-length, syllable structure, rhyme, grammar; 
see (Holmes, 1994) for a summary. This approach can also be used for iden­
tifying which geure a text comes from. 

One factor in many models is the use of rare words. As a simple ap­
proximation to this one factor, apply the Bayesian method to the attribution 
of any particular text. You will need three things: a text to test, and two 
potential authors or genres, with a large on-line text sample of each. One of 

233 

BAG OF WORDS 

AUTHORSHIP 
ATIRIBUTION 

255



234 
Chapter 6. N-grams 

them should be the correct author. Train a unigram language model on each 
of the candidate authors. You are only going to use the singleton unigrams 
in each language model. You will compute P(T/Az), the probability of the 
text given author or genre A 1, by (1) taking the language model from A 

1
, (2) 

by multiplying together the probabilities of all the unigrams that only oc­
cur once in the "unknown" text and (3) taking the geometric mean of these 
(i.e., the nth root, where n is the number of probabilities you multiplied). 
Do the same for A2 . Choose whichever is higher. Did it produce the correct . 
candidate? 

256



7 
HMMS AND SPEECH 
RECOGNITION 

When Frederic was a little lad he proved so brave and daring, 
His father thought he'd 'prentice him to some career seafaring. 
I was, alas! his nurs'rymaid, and so it fell to my lot 
To take and bind the promising boy apprentice to a pilot -
A life not bad for a hardy lad, though surely not a high lo~ 
Though I'm a nurse, you might do worse than make your boy a pilot. 
I was a stupid nurs'rymaid, on breakers always steering, 
And I did not catch the word aright, through being hard of hearing; 
Mistaking my instructions, which within my brain did gyrate, 
I took and bound this promising boy apprentice to a pirate. 

The Pirates of Penzance, Gilbert and Sullivan, 1877 

Alas, this mistake by nurserymaid Ruth led to Frederic's long indenture as 
a pirate and, due to a slight complication involving 21st birthdays and leap 
years, nearly led to 63 extra years of apprenticeship. The mistake was quite 
natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, "The two 
words were so much alike!" True, true; spoken language understanding is a 
difficult task, and it is remarkable that humans do as well at it as we do. The 
goal of automatic speech recognition (ASR) research is to address this prob­
lem computationally by building systems that map from an acoustic signal to 
a string of words. Automatic speech understanding (ASU) extends this goal 
to producing some sort of understanding of the sentence, rather than just the 
words. 

The general problem of automatic transcription of speech by any speaker 
in any environment is still far from solved. But recent years have seen ASR 
technology mature to the point where it is viable in certain limited domains. 
One major application area is in human-computer interaction. While many 
tasks are better solved with visual or pointing interfaces, speech has the po­
tential to be a better interface than the keyboard for tasks where full natural 

257



236 Chapter 7. HMMs and Speech Recognition 

language communication is useful, or for which keyboards are not appropri­
ate. This includes hands-busy or eyes-busy applications, such as where the 
user has objects to manipulate or equipment to control. Another impo'rtant 
application area is telephony, where speech recognition is already used for 
example for entering digits, recognizing "yes" to accept collect calls, or call­
routing ("Accounting, please", "Prof. Regier, please"). In some applications, 
a multimodal interface combining speech and pointing can be more efficient 
than a graphical user interface without speech (Cohen eta!., 1998). Finally, 
ASR is being applied to dictation, that is, transcription of extended mono­
logue by a single specific speaker. Dictation is common in fields such as law 
and is also important as part of augmentative communication (interaction be­
tween computers and humans with some disability resulting in the inability 
to type, or the inability to speak). The blind Milton famously dictated Par­
adise Lost to his daughters, and Henry James dictated his later novels after a 
repetitive stress injury. 

Different applications of speech technology necessarily place different 
constraints on the problem and lead to different algorithms. We chose to fo­
cus this chapter on the fundamentals of one crucial area: Large-Vocabulary 

LvcsR Continuous Speecb Recognition (LVCSR), with a small section on acous-
tic issues in speech synthesis. Large-vocabulary generally means that the 
systems have a vocabulary of roughly 5,000 to 60,000 words. The term con­

coNTINuous tinuous means that the words are run together naturally; it contrasts with 
~g~TED· isolated-word speech recognition, in which each word must be preceded 

and followed by a pause. Furthermore, the algorithms we will discuss are 
iif~l'~oENT generally speaker-independent; that is, they are able to recognize speech 

from people whose speech the system has never been exposed to before. 
The chapter begins with an overview of speech recognition architec­

ture, and then proceeds to introduce the HMM, the use of the Viterbi and 
A* algorithms for decoding, speech acoustics and features, and the use of 
Gaussians and MLPs to compute acoustic probabilities. Even relying on the 
previous three chapters, summarizing this much of the field in this chapter 
requires us to omit many crucial areas; the reader is encouraged to see the 
suggested readings at the end of the chapter for useful textbooks and articles:. , 
This chapter also includes a short section on the acoustic component of the 
speech synthesis algorithms discussed in Chapter 4. 

7.1 SPEECH RECOGNITION ARCHITECTURE 

Previous chapters have introduced many of the core algorithms used in sp<Jec'n 
recognition. Chapter 4 introduced the notions of phone and syllable. 

258



Section 7.1. Speech Recognition Architecture 

ter 5 introduced the noisy channel model, the use of the Bayes rule, and 
the probabilistic automaton. Chapter 6 introduced theN-gram language 
model and the perplexity metric. In this chapter we introduce the remaining 
components of a modern speech recognizer: the Hidden Markov Model 
(HMM), the idea of spectral features, the forward-backward algorit)un 
for HMM training, and the Viterbi and stack decoding (also called A' de­
coding algorithms for solving the decoding problem: mapping from strings 
of phone probability vectors to strings of words. 

Let's begin by revisiting the noisy channel model that we saw in Chap­
ter 5. Speech recognition systems treat the acoustic input as if it were a 
"noisy" version of the source sentence. In order to "decode" this noisy 
sentence, we consider all possible sentences, and for each one we compute 
the probability of it generating the noisy sentence. We then chose the sen­
tence with the maximum probability. Figure 7.1 shows this noisy-channel 
metaphor. 

source noisy 
sentence DECODER 

Sentence ~ ?AIIcewasbeginningtoget.. 
lfmusicbethB /' -,..-a ?Every happy family .. , 

foodoflove ... -~-----'---_/..- ?lnaholeinlheground ... 
--, / ?If mus1~ be the food of love ..• 

'- ~/ ?If music be the loot of dove .. 

NOISY CHANNEL ~···----, / 

guess at 
original 
sentence 

If music be the 
food oflove ... 

Figure 7.1 The noisy channel model applied to entire sentences (Figure 5.1 
showed its application to individual words). Modem speech recognizers work 
by searching through a huge space of potential "source" sentences and choos­
ing the one which has the highest probability of generating the "noisy" sen­
tence. To do this they must have models that express the probability of 
sentences being realized as certain strings of words (N-grams). models that 
express the probability of words being realized as certain strings of phones 
(HMMs) and models that express the probability of phones being realized as 
acoustic or spectral features (Gaussians/MLPs). 

Implementing the noisy-channel model as we have expressed it in Fig­
ure 7.1 reqnires solutions to two problems. First, in order to pick the sentence 
that best matches the noisy input we will need a complete metric for a "best 
match". Because speech is so variable, an acoustic input sentence will never 
exactly match any model we have for this sentence. As we have suggested 
in previous chapters, we will use probability as our metric, and will show 
how to combine the various probabilistic estimators to get a complete esti­
mate for the probability of a noisy observation-sequence given a candidate 

237 

A' 
DECODING 

259



238 Chapter 7. HMMs and Speech Recognition 

sentence. Second, since the set of all English sentences is huge, we need 
an efficient algorithm that will not search through all possible sentences, bnt 
only ones that have a good chance of matching the input. This is the decod· 
ing or search problem, and we will summarize two approaches: the Viterbi 
or dynamic programming decoder, and the stack or A* decoder. 

In the rest of this introduction we will introduce the probabilistic or 
Bayesian model for speech recognition (or more accurately re-introduce it, 
since we first used the model in our discussions of spelling and pronunciation 
in Chapter 5); we leave discussion of decoding/search for pages 244-251. 

The goal of the probabilistic noisy channel architecture for speech 
recognition can be summarized as follows: 

"What is the most likely sentence out of all sentences in the lan­
guage L given some acoustic input 0?" 

We can treat the acoustic input 0 as a sequence of individual "sym­
bols" or "observations" (for example by slicing up the input every 10 mil­
liseconds, and representing each slice by floating-point values of the energy 
or frequencies of that slice). Each index then represents some time interval, 
and successive o; indicate temporally consecutive slices of the input (note 
that capital letters will stand for sequences of symbols and lower-case letters 
for individual symbols): 

Similarly, we will treat a sentence as if it were composed simply of a 
string of words: 

Both of these are simplifying assumptions; for example dividing sen­
tences into words is sometimes too fine a division (we'd like to model facts 
about groups of words rather than individual words) and sometimes too 
a division (we'd like to talk about morphology). Usually in speech recogni­
tion a word is defined by orthography (after mapping every word to w"'"'c. 
case): oak is treated as a different word than oaks, but the auxiliary can 
you tell me ... ") is treated as the same word as the noun can ("i need a 
of ... " ). Recent ASR research has begun to focus on building more 
phisticated models of ASR words incorporating the morphological i"r tsights 
of Chapter 3 and the part-of-speech information that we will study in 
ter 8. 

260



Section 7.1. Speech Recognition Architecture 

The probabilistic implementation of our intuition above, then, can be 
expressed as follows: 

W = argmaxP(WIO) 
WEL 

(7.3) 

Recall fhat fhe function argmaxxf(x) means "the x such that f(x) is 
largest". Equation (7.3) is guaranteed to give us the optimal sentence W; we 
now need to make the equation operational. That is, for a given sentence W 

and acoustic sequence 0 we need to compute P(WIO). Recall fhat given any 
probability P(xly), we can use Bayes' rule to break it down as follows: 

( I ) 

_ P(ylx)P(x) 
p X y - P(y) (7.4) 

We saw in Chapter 5 fhat we can substitute (7.4) into (7.3) as follows: 

A P( OIW)P(W) 
W = ar~~ax P( O) (7.5) 

The probabilities on the right-hand side of (7.5) are for fhe most part 
easier to compute fhan P(WIO). For example, P(W), the prior probability 
of fhe word string itself is exactly what is estimated by fhe n-gram language 
models of Chapter 6. And we will see below fhat P( OIW) turns out to be 
easy to estimate as well. But P( 0), the probability of the acoustic obser­
vation sequence, turns out to be harder to estimate. Luckily, we can ignore 
P( 0) just as we saw in Chapter 5. Why? Since we are maximizing over 
all possible sentences, we will be computing P( 

0~~(W) for each sentence in 

the language. But P( 0) doesn't change for each sentence! For each potential 
sentence we are still examining the same observations 0, which must have 
fhe same probability P( 0). Thus: 

W = argmax P( OI~)~(W) = argmaxP( OIW) P(W) (7.6) 
WEL p 0 WEL 

To summarize, the most probable sentence W given some observation 
sequence 0 can be computing by taking the product of two probabilities for 
each sentence, and choosing the sentence for which fhis product is greatest. 
These two terms have names; P(W), the prior probability, is called the lan­
guage model. P( OIW), fhe observation likelihood, is called the acoustic 
model. 

likelihood prior 
A ,..-"--... __...._., 

Key Concept #5. W = argmax P( OIW) P(W) (7. 7) 
WEL 

We have already seen in Chapter 6 how to compute the language model 
prior P(W) by using N-gram grammars. The rest of this chapter will show 

239 

LANGUAGE 
MODEL 
ACOUSTIC 
MODEL 

261



240 Chapter 7. HMMs and Speech Recognition 

how to compute the acoustic model P( OIW), in two steps. First we will 
make the simplifying assumption that the input sequence is a sequence of 
phones F rather than a sequence of acoustic observations. Recall that we 
introduced the forward algorithm in Chapter 5, which was given "obser­
vations" that were strings of phones, and produced the probability of these 
phone observations given a single word. We will show that these probabilis­
tic phone automata are really a special case of the Hidden Markov Model, 
and we will show how to extend these models to give the probability of a 
phone sequence given an entire sentence. 

One problem with the forward algorithm as we presented it was that in 
order to know which word was the most-likely word (the "decoding prob­
lem"), we had to run the forward algorithm again for each word. This is 
clearly intractable for sentences; we can't possibly run the forward algo­
rithm separately for each possible sentence of English. We will thus intro­
duce two different algorithms which simultaneously compute the likelihood 
of an observation sequence given each sentence, and give us the most-likely 
sentence. These are the Viterbi and the A* decoding algorithms. 

Once we have solved the likelihood-computation and decoding prob­
lems for a simplified input consisting of strings of phones, we will show 
how the same algorithms can be applied to true acoustic input rather than 
pre-defined phones. This will involve a quick introduction to acoustic input 
and feature extraction, the process of deriving meaningful features from 
the input soundwave. Then we will introduce the two standard models for 
computing phone-probabilities from these features: Gaussian models, and 
neural net (multi-layer perceptrons) models. 

Finally, we will introduce the standard algorithm for training the Hid­
den Markov Models and the phone-probability estimators, the forward­
backward or Banm-Welch algorithm) (Baum, 1972), a special case of the 
the Expectation-Maximization or EM algorithm (Dempster et al., 1977). 

As a preview of the chapter, Figure 7.2 shows an outline of the compo­
nents of a speech recognition system. The figure shows a speechrecognition 
system broken down into three stages. In the signal processing or feature 
extraction stage, the acoustic waveform is sliced up into frames (usually 
of 10, 15, or 20 milliseconds) which are transformed into spectral features 
which give information about how much energy in the signal is at different 
frequencies. In the subword or phone recognition stage, we use statistical 
techniques like neural networks or Gaussian models to tentatively recognize 
individual speech sounds like p or b. For a neural network, the output of this 
stage is a vector of probabilities over phones for each frame (i.e., "for this 

262



Section 7 .2. Overview of Hidden Markov Models 

frame the probability of [p] is . 8, the probability of [b] is .1, the probability of 
[f] is .02, etc."); for a Gaussian model the probabilities are slightly different. 
Finally, in the decoding stage, we take a dictionary of word pronunciations 
and a language model (probabilistic grammar) and use a Viterbi or A* de-

241 

coder to find the sequence of words which has the highest probability given DECODER 

the acoustic events. 

Neural Net 

Speech 
Waveform 

Feature Extraction 
(Signal Processing) 

Spectral 
Feature 
Vectors 

Phone Likelihood 
[ -- Estimation (Gausslans 

or Neural Networks) 

N-gram Grammar P~on~ 
i- dog ,·m __ \ Likelihoods 

'"", o.1 o.2 P( olq) 
" 0.3 0.1 

Decoding (Viterbi 
HMM Lexicon ->-or Stack Decoder) 

g;.@.8 
~ Words 

, '';I 
'j;'itl<!f. 

L___j ·~ ~- L_j L_j L_j L_j L_j 

ITITITITITITIT-'1 
uuuuuuuuuuuuuuu 
jjjjjjjjjjjjjj 

"l'(Jiil)n 
<'011.12 "' 
m·0.04 m 

'" 0.03 

jjjjjjjjjjj 
L--~L------~~ 

need a 

Figure 7.2 Schematic architecture for a (simplified) speech recognizer. 

7.2 OVERVIEW OF HIDDEN MARKOV MODELS 

In Chapter 5 we used weighted finite-state automata or Markov chains to 
model the pronunciation of words. The automata consisted of a sequence 
of states q = (qoqJqz ... qn). each corresponding to a phone, and a set of 
transition probabilities between states, OOJ,a12,a13 , encoding the probability 
of one phone following another. We represented the states as nodes, and 
the transition probabilities as edges between nodes; an edge existed between 
two nodes if there was a non-zero transition probability between the two 
nodes. We also saw that we could use the forward algorithm to compute the 
likelihood of a sequence of observed phones o = (o1ozo3 ... o1). Figure 7.3 
shows an automaton for the word need with sample observation sequence of 
the kind we saw in Chapter 5. 

While we will see that these models figure importantly in speech recog­
nition, they simplify the problem in two ways. First, they assume that the 

263



242 

HIDDEN 
MARKOV 
MODEL 

Word Model 

Observation 
Sequence 
(phone symbols) 

Chapter 7. 

n 

HMMs and Speech Recognition 

iy d 

o, 

Figure 7.3 A simple weighted automaton or Markov chain pronunciation 
network for the word need, showing the transition probabilities, and a sample 
observation sequence. The transition probabilities a:~)' between two states x 

andy are 1.0 unless otherwise specified. 

input consists of a sequence of symbols! Obviously this is not true in the 
real world, where speech input consists essentially of small movements of 
air particles. In speech recognition, the input is au ambiguous, real-valued 
representation of the sliced-up input signal, called features or spectral fea· 
tures. We will study the details of some of these features beginning on 
page 259; acoustic features represent such information as how much energy 
there is at different frequencies. The second simplifying assumption of the 
weighted automata of Chapter 5 was that the input symbols correspond ex­
actly to the states of the machine. Thus when seeing au input symbol [b], 
we knew that we could move into a state labeled [b ]. In a Hidden Markov 
Model (HMM), by contrast, we can't look at the input symbols and know 
which state to move to. The input symbols don't uniquely determine the next 
state. 1 

Recall that a weighted automaton or simple Markov model is specified 
by the set of states Q , the set of transition probabilities A, a defined start 
state and end state(s), and a set of observation likelihoods B. For weighted 
automata, we defined the probabilities b;(o,) as 1.0 if the state i matched the 
observation o1 and 0 if they didn't match. An HMM formally differs from a 
Markov model by adding two more requirements. First, it has a separate set 
of observation symbols 0, which is not drawn from the same alphabet as the 

1 Actually, as we mentioned in passing, by this second criterion some of the automata we 
saw in Chapter 5 were technically HMMs as well. This is because the first symbol in the 
input string [n iy] was compatible with the [nJ states in the words need or an. Seeing the 
symbols [n}, we didn't know which underlying state it was generated by, need-nor an-n, 

264



Section 7 .2. Overview of Hidden Markov Models 

state set Q. Second, the observation likelihood function B is not limited to 
the values 1.0 and 0; in an HMM the probability b; ( o,) can take on any value 
from 0 to 1.0. 

Word Model 

Observation 
Sequence 
(spectral feature 
vectors) 

au 

b 1(o1) 

u 
o, 

a24 

au 

b,(o,) b,(o,) b 2(o,) b 3(o6) 

u uuu u 
o, 03 04 Os o, 

Figure 7.4 An HMM pronunciation network for the word need, showing 
the transition probabilities, and a sample observation sequence. Note the ad­
dition of the output probabilities B. HMMs used in speech recognition usually 
use self-loops on the states to model variable phone durations. 

Figure 7.4 shows an HMM for the word need and a sample observa­
tion sequence. Note the differences from Figure 7.3. First, the observation 
sequences are now vectors of spectral features representing the speech sig­
nal. Next, note that we've also allowed one state to generate multiple copies 
of the same observation, by having a loop on the state. This loops allows 
HMMs to model the variable duration of phones; longer phones require more 
loops through the HMM. 

In summary, here are the parameters we need to define an HMM: 

• states: a set of states Q = q1q2 ... qN 

• transition probabilities: a set of probabilities A= ao1a02 ... an!· .. ann 

Each a;j represents the probability of transitioning from state i to state 
j. The set of these is the transition probability matrix 

• observation likelihoods: a set of observation likelihoods B = b;(o,), 
each expressing the probability of an observation a, being generated 
from a state i 

In our examples so far we have used two "special" states (non-emitting 
states) as the start and end state; as we saw in Chapter 5 it is also possible to 
avoid the use of these states by specifying two more things: 

243 

265



244 Chapter 7. HMMs and Speech Recognition 

• initial distribution: an initial probability distribution over states, 11:, 

such that Tt; is the probability that the HMM will start iu state i. Of 
course some states j may have n J = 0, meaning that they. cannot be 
initial states. 

• accepting states: a set of legal accepting states 

As was true for the weighted automata, the sequences of symbols that 
are input to the model (if we are thinking of it as recognizer) or which are 
produced by the model (if we are thinking of it as a generator) are generally 
called the observation sequence, referred to as 0 = (OJ o2 o3 ... oy). 

7.3 THE VITERBI ALGORITHM REVISITED 

Chapter 5 showed how the forward algorithm could be used to compute the 
probability of an observation sequence given an automaton, and how the 
Viterbi algorithm can be used to find the most-likely path through the au­
tomaton, as well as the probability of the observation sequence given this 
most-likely path. In Chapter 5 the observation sequences consisted of a sin­
gle word. But in continuous speech, the input consists of sequences of words, 
and we are not given the location of the word boundaries. Knowing where 
the word boundaries are massively simplifies the problem of pronunciation; 
in Chapter 5, since we were sure that the pronunciation [ni] came from one 
word, we only had seven candidates to compare. But in actual speech we 
don't know where the. word boundaries are. For example, try to decode the 
following sentence from Switchboard (don't peek ahead!): 

[ay d ih s hh er d s ah m th ih ng ax b aw m uh v ih ng r ih sen 1 ih] 

The answer is in the footnote. 2 The task is hard partly because of coar­
ticulation and fast speech (e.g., (d] for the first phone of just!). But mainly 
it's the lack of spaces indicating word boundaries that make the task difficult. 
The task of finding word boundaries in connected speech is called segmen­
tation and we will solve it by using the Viterbi algorithm just as we did for 
Chinese word-segmentation in Chapter 5; recall that the algorithm for Chi­
nese word-segmentation relied on choosing the segmentation that resulted 
in the sequence of words with the highest frequency. For speech segmenta­
tion we use the more sophisticated N-gram language models introduced in 
Chapter 6. In the rest of this section we show how the Viterbi algorithm can 

2 I just heard something about moving recently. 

266



Section 7.3. The Viterbi Algorithm Revisited 

be applied to the task of decoding and segmentation of a simple string of 
observations phones, using an n-gram language model. We will show how 
the algorithm is used to segment a very simple string of words. Here's the 
input and output we will work with: 

Input Output 
[aa n iy dh ax] I need the 

Figure 7.5 shows word models for I, need, the, and also, just to make 
things difficult, the word on. 

Word model for "on" 

Word model for "the" 

.12 

Word model for "need" Word model for "I" 

Figure 7.5 Pronunciation networks for the words I, on, need, and the. Ail 
networks (especially the) are significantly simplified. 

Recall that the goal of the Viterbi algorithm is to find the best state se­
quence q = ( q1 q2q3 ... q1) given the set of observed phones o = (OJ o2o3 ... o,). 
A graphic illustration of the output of the dynamic programming algorithm is 
shown in Figure 7.6. Along they-axis are all the words in the lexicon; inside 
each word are its states. The x-axis is ordered by time, with one observed 
phone per time unit3 Each cell in the matrix will contain the probability of 
the most-likely sequence ending at that state. We can find the most-likely 
state sequence for the entire observation string by looking at the cell in the 
right-most column that has the highest probability, and tracing back the se­
quence that produced it. 

3 This x-axis component of the model is simplified in two major ways that we will show 
how to fix in the next section. First, the observations will not be phones but extracted spectral 
features, and second, each phone consists of not time unit observation but many observations 
(since phones can last for more than one phone). They-axis is also simplified in this example, 
since as we will see most ASR system use multiple "subphone" units for each phone. 

245 

267



246 Chapter 7. HMMs and Speech Recognition 

d need iy ------7 ------------
n / 

the 

ax / 
iy~--~-----c--f'--------

~--+------c·--- ---------
n dh f---- !-----~/--~--------

on n aa~----~--------------------l 

ay --~-----------------
aa~/'~------------~ 

aanidhax---

Figure 7.6 An illustration of the results of the Viterbi algorithm used to 
find the most-likely phone sequence (and hence estimate the most-likely word 
sequence). 

More formally, we ate searching for the best state sequence q* = 
( qr q2 ... qr), given an observation sequence o = (or o2 ... or) and a model 
(a weighted automaton or "state graph") A. Each cell viterbi[i,t] of the ma­
trix contains the probability of the best path which accounts for the first t 
observations and ends in state i of the HMM. This is the most-probable path 
out of all possible sequences of states of length t - 1: 

viterbi[t,i] = max P(qrq2 ... q,_r,q1 = i,o!,02 ... o,j'A) (7.8) 
q},q2,···,qt-1 

In order to compute viterbi[t,i], the Viterbi algorithm assumes the dy­
DYNAMIC 
PROGRAMMING namic programming invariant. This is the simplifying (but incorrect) as­
INVARIANT 

sumption that if the ultimate best path for the entire observation sequence 
happens to go through a state qi, that this best path must include the best 
path up to and including state qi. This doesn't mean that the best path at any 
time t is the best path for the whole sequence. A path can look bad at the 
beginning but tum out to be the best path. As we will see later, the Viterbi 
assumption breaks down for certain kinds of granunats (including trigram 
granunars) and so some recognizers have moved to another kind of decoder, 
the stack or A* decoder; more on that later. As we saw in our discussion 
of the minimum-edit-distance algorithm in Chapter 5, the reason for making 
the Viterbi assumption is that it allows us to break down the computation 

268



Section 7.3. The Viterbi Algorithm Revisited 

of the optimal path probability in a simple way; each of the best paths at 
time t is the best extension of each of the paths ending at time t - 1. In 
other words, the recurrence relation for the best path at time t ending in state 
j, viterbi[t,j], is the maximum of the possible extensions of every possible 
previous path from time t - 1 to time t: 

viterbi[t,j] =max(viterbi[t-1,i]aij)bj(o1) (7.9) 
' 

The algorithm as we describe it in Figure 7.9 takes a sequence of ob­
servations, and a single probabilistic automaton, and returns the optimal path 
thtough the automaton. Since the algorithm requires a single automaton, we 
will need to combine the different probabilistic phone networks for the, I, 
need, and a into one automaton. In order to build this new automaton we 
will need to add arcs with probabilities between any two words: bigram 
probabilities. Figure 7.7 shows simple bigram probabilities computed from 
the combined Brown and Switchboard corpus. 

I need 0.0016 need need 0.000047 #Need 0.000018 
Ithe 0.00018 need the 0.012 #The 0.016 
Ion 0.000047 need on 0.000047 #On 0.00077 
II 0.039 need I 0.000016 #I 0.079 
the need 0.00051 on need 0.000055 
the the 0.0099 on the 0.094 
the on 0.00022 on on 0.0031 
the I 0.00051 on I 0.00085 

Figure7.7 Bigram probabilities for the words the, on, need, and !following 
each other, and starting a sentence (i.e., following #). Computed from .the 
combined Brown and Switchboard corpora with add-0.5 smoothing. 

Figure 7.8 shows the combined pronunciation networks for the 4 words 
together with a few of the new arcs with the bigram probabilities. For read­
ability of the diagram, most of the arcs aren't shown; the reader should imag­
ine that each probability in Figure 7.7 is inserted as an arc between every two 
words. 

The algorithm is given in Figure 5.19 in Chapter 5, and is repeated 
here for convenience as Figure 7.9. We see in Figure 7.9 that the Viterbi 
algorithm sets up a probability matrix, with one column for each time index 
t and one row for each state in the state graph. The algorithm first creates 
T +2 columns; Figure 7.9 shows the first six columns. The first column is 
an initial pseudo-observation, the next corresponds to the first observation 

247 

269



248 

.0005 

Figure 7.8 Single automaton made from the words I, need, on, and the. The 
arcs between words have probabilities computed from Figure 7.7. For lackof 
space the figure only shows a few of the between-word arcs. 

phone [aa), and so on. We begin in the first column by setting the probability 
of the start state to 1.0, and the other probabilities to 0; the reader should 
find this in Figure 7 .10. Cells with probability 0 are simply left blank for 
readability. For each column of the matrix, that is, for each time index t, 
each cell viterbi[t,j], will contain the probability of the most likely path to 
end in that cell. We will calculate this probability recursively, by maximizing 
over the probability of corning from all possible preceding states. Then we 
move to the next state; for each of the i states viterbi[O,i] in column 0, we 
compute the probability of moving into each of the j states viterbi[l,j] in 
column I, according to the recurrence relation in (7.9). In the column for 
the input aa, only two cells have non-zero entries, since b1 ( aa) is zero for 
every other state except the two states labeled aa. The value of viterbi(l,aa) 
of the word I is the product of the transition probability from # to I and the 
probability of I being pronounced with the vowel aa. 

Notice that if we look at the column for the observation n, that the word 
on is currently the "most-probable" word. But since there is no word or set 
of words in this lexicon which is pronounced i dh ax, the path starting with 
on is a dead end, that is, this hypothesis can never be extended to cover the 
whole utterance. 

By the time we see the observation iy, there are two competing paths: 
I need and I the; I need is currently more likely. When we get to the obser­
vation dh, we could have artived from either the iy of need or the iy of the. 

270



The Viterbi Algorithm Revisited 

function VlTERBI(observations oflen T,state-graph) returns best-path 

num-states +-- NUM -OF-STATES(state-graph) 
Create a path probability matrix viterbi[ num-states+ 2, T + 2] 
viterbi[O,O]+-- LO 
for each time step t from 0 to T do 

for each state s from 0 to num-states do 
for each transitions' from s specified by state-graph 

new-score+--viterbi[s, t] * a[s,s'] * b,(o1) 

if ((viterbi[s' ,t+ 1] = 0) II (new-score > viterbi[s1
, t+ I])) 

then 
viterbi[s', t+ 1] +-new-score 
back-pointer[s', t + 1] +-- s 

Backtrace from highest probability state in the final column of viterbi[] and 
return path. 

Figure 7.9 Viterbi algorithm for finding optimal sequence of states in con­
tinuous speech recognition, simplified by using phones as inputs (duplicate of 
Figure 5.19). Given an observation sequence of phones and a weighted au­
tomaton (state graph), the algorithm returns the path through the automaton 
which has minimum probability and accepts the observation sequence. a[s, s'] 
is the transition probability from current states to next states' and hs'(or) is 
the observation likelihood of s' given o1. 

The probability of the max of these two paths, in this case the path through I 
need, will go into the cell for dh. 

Finally, the probability for the best path will appear in the final ax 

column. In this example, only one cell is non-zero in this column; the ax 

state of the word the (a real example wouldn't be this simple; many other 
cells would be non-zero). 

If the sentence had actually ended here, we would now need to back­
trace to find the path that gave us this probability. We can't just pick the 
highest probability state for each state column. Why not? Because the most 
likely path early on is not necessarily the most likely path for the whole sen­
tence. Recall that the most likely path after seeing n was the word on. But 
the most likely path for the whole sentence is I need the. Thus we had to 
rely in Figure 7.10 on the "Hansel and Gretel" method (or the "Jason and 
the Minotaur" method if you like your metaphors more classical): whenever 
we moved into a cell, we kept pointers back to the cell we came from. The 
reader should convince themselves that the Viterbi algorithm has simultane­
ously solved the segmentation and decoding problems. 

271



250 

TRIPHONE 

Chapter 7. HMMs and Speech Recognition 

... 
d 

; 

need iy 
----------------------To•1Joooo26~-------------.'--

= .0000026 • 
-------------------~------- ---------------

n .0016 *.0016 ' 
I = .ooooo26 

~I .000000031 •. 77 ax "'.000000022 

iy 
---------- ---------~oooooomP~2--~----- --------

= .0000000028 

the n 
----------- -:ooiii<oooTs".iii~---------------~-------

= .000000023 -----------r-----------------t------ --------
dh .0000026 ~ .012 .92 

: = .0000000291 

n 1.0*.00077 

on 
----~:o;;;:-ooo77 

t:_ __ :_·~~~----------------------------
aa 

/ = .00077 ; 

I 
ay 

--------------------------~---------- ------
aa .20 *.079 

~= .0016 ; 

start 1.0 ' . 

# a a n iy db ax 

Figure 7.10 The entries in the individual state columns for the Viterbi al-
gorithm. Each cell keeps the probability of the best path so far and a pointer '. 
to the previous cell along that path. Backtracing from the successful last word 
(the), we can reconstruct the word sequence I need the. 

The presentation of the Viterbi algorithm in this section has been sim­
plified; actual implementations of Viterbi decoding are more complex in 
three key ways that we have mentioned already. First, in an actual HMM 
for speech recognition, the input would not be phones. Instead, the input 
is a feature vector of spectral and acoustic features. Thus the observation 
likelihood probabilities b;(t) of an observation o, given a state i will not 
simply take on the values 0 or 1, but will be more fine-grained probability 
estimates, computed via mixtures of Gaussian probability estimators or neu­
ral nets. The next section will show how these probabilities are computed. 

Second, the HMM states in most speech recognition systems are not 
simple phones but rather subphones. In these systems each phone is di­
vided into three states: the beginning, middle and final portions of the phone. 
Dividing up a phone in this way captures the intuition that the significant 
changes in the acoustic input happen at a finer granularity than the phone; 
for example the closure and release of a stop consonant. Furthermore, many 
systems use a separate instance of each of these subphones for each triphone 
context (Schwartz eta!., 1985; Deng et al., 1990). Thus instead of around 

272



Section 7 .4. Advanced Methods for Decoding 

60 phone units, there could be as many as 603 context-dependent triphones. 
In practice, many possible sequences of phones never occur or are very rare, 
so systems create a much smaller number of trip hones models by clustering 
the possible triphones (Young and Woodland, 1994). Figure 7.11 shows an 
example of the complete phone model for the triphone b( ax,aw ). 

Figure 7.11 An example of the context-dependent triphone b(ax,aw) (the 
phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of 
about, showing its left, middle, and right subphones. 

Finally, in practice in large-vocabulary recognition it is too expensive 
to consider all possible words when the algorithm is extending paths from 
one state-column to the next. Instead, low-probability paths are pruned at 
each time step and not extended to the next state column. This is usually im-

251 

plemented via beam search: for each state column (time step), the algorithm BEAM SEARCH 

maintains a short list of high-probability words whose path probabilities are 
within some percentage (beam width) of the most probable word path. Only BEAM WIDTH 

transitions from these words are extended when moving to the next time step. 
Since the words are ranked by the probability of the path so far, which words 
are within the beam (active) will change from time step to time step. Making 
this beam search approximation allows a significant speed-up at the cost of 
a degradation to the decoding performance. This beam search strategy was 
first implemented by Lowerre (1968). Because in practice most implemen-
tations of Viterbi use beam search, some of the literature uses the term beam 
search or time-synchronous beam search instead of Viterbi. 

7.4 ADVANCED METHODS FOR DECODING 

There are two main limitations of the Viterbi decoder. First, the Viterbi 
decoder does not actually compute the sequence of words which is most 
probable given the input acoustics. Instead, it computes an approximation to 
this: the sequence of states (i.e., phones or subphones) which is most prob-

273



252 Chapter 7. HMMs and Speech Recognition 

able given the input. This difference may not always be important; the most 
probable sequence of phones may very well correspond exactly to tl)e most 
probable sequence of words. But sometimes the most probable sequence 
of phones does not correspond to the most probable word sequence. For 
example consider a speech recognition system whose lexicon has multiple 
pronunciations for each word. Suppose the correct word sequence includes 
a word with very many pronunciations. Since the probabilities leaving the 
start arc of each word must sum to 1.0, each of these pronunciation-paths 
through this multiple-pronunciation HMM word model will have a smaller 
probability than the path through a word with only a single pronunciation 
path. Thus because the Viterbi decoder can only follow one of these pronun­
ciation paths, it may ignore this word in favor of an incorrect word with only 
one pronunciation path. 

A second problem with the Viterbi decoder is that it cannot be used 
with all possible language models. In fact, the Viterbi algorithm as we have 
defined it cannot take complete advantage of any language model more com­
plex than a bigram grammar. This is because of the fact mentioned early that 
a trigram grammar, for example, violates the dynamic programming in· 
variant that makes dynamic programming algorithms possible. Recall that 
this invariant is the simplifying (but incorrect) assumption that if the ultimate 
best path for the entire observation sequence happens to go through a state 
qf, that this best path must include the best path up to and including state 
qi. Since a ttigram grammar allows the probability of a word to be based on 
the two previous words, it is possible that the best trigram-probability path 
for the sentence may go through a word but not include the best path to that 
word. Such a situation could occur if a particular word Wx has a high tti­
gram probability given Wy, Wz, but that conversely the best path to wy didn't 
include Wz (i.e., P(wylwq, Wz) was low for all q). 

There are two classes of solutions to these problems with Viterbi de­
coding. One class involves modifying the Viterbi decoder. to return mul­
tiple potential utterances and then using other high-level language model 
or pronunciation-modeling algorithms to re-rank these multiple outputs. In 
general this kind of multiple-pass decoding allows a computationally effi­
cient, but perhaps unsophisticated, language model like a bigram to perform 
a rough first decoding pass, allowing more sophisticated but slower decoding 
algorithms to ruu on a reduced search space. 

For example, Schwartz and Chow (1990) give a Viterbi-like algorithm 
N·BEST which returns theN-best sentences (word sequences) for a given speech in­

put. Suppose for example a bigram granrmar is used with this N-best-Viterbi 

274



Advanced Methods for Decoding 253 

to return the 10,000 most highly-probable sentences, each with their likeli­
hood score. A trigram-grammar can then be used to assign a new language­
model prior probability to each of these sentences. These priors can be 
combined with the acoustic likelihood of each sentence to generate a pos-
terior probability for each sentence. Sentences can then be rescored using REscoRED 

this more sophisticated probability. Figure 7.12 shows an intuition for this 
algorithm. 

Simple Smarter 
Knowledge Knowledge 
Source Source 

: ' , , , ... 
'• 

. - N-Best List r-. ..,::· "7 - ·-· 1-Best Utterance 
speech --··-·;> : :!-,> N-Best ? Every happy fam1ly '· input ?In a hole 1n the ground ... '\ If music be the 

;.· Decoder ?If mus1c be the food of love Rescoring ······ ,. food oflove ... 
If music be the ?If mus1c be the foot of dove ... 

food of love ... 

Figure 7.12 The use of N-best decoding as part of a two-stage decoding 
model. Efficient but unsophisticated knowledge sources are used to return the 
N-best utterances. This significantly reduces the search space for the second 
pass models, which are thus free to be very sophisticated but slow. 

An augmentation of N -best, still part of this first class of extensions to 
Viterbi, is to return, not a list of sentences, but a word lattice. A word lattice WORD LAnlcE 

is a directed graph of words and links between them which can compactly 
encode a large munber of possible sentences. Each word in the lattice is aug-
mented with its observation likelihood, so that any particular path through 
the lattice can then be combined with the prior probability derived from a 
more sophisticated language model. For example Murveit et a!. (1993) de-
scribe an algorithm used in the SRI recognizer Decipher which uses a bigram 
grammar in a rough first pass, producing a word lattice which is then refined 
by a more sophisticated language model. 

The second solution to the problems with Viterbi decoding is to employ 
a completely different decoding algorithm. The most common alternative 
algorithm is the stack decoder, also called the A* decoder (Jelinek, 1969; sTACK DECODER 

Jelinek et al., 1975). We will describe the algorithm in terms of the A* A' 

search used in the artificial intelligence literature, although the development A' sEARCH 

of stack decoding actually carne from the communications theory literature 
and the link with AI best-first search was noticed only later (Jelinek, 1976). 

275



254 

PRIORITY 
QUEUE 

Chapter 7. HMMs and Speech Recognition 

A* Decoding 

To see how the A* decoding method works. we need to revisit the Viterbi al­
gorithm. Recall that the Viterbi algorithm computed an approximation of the 
forward algorithm. Viterbi computes the observation likelihood of the single 
best (MAX) path through the HMM. while the forward algorithm computes 
the observation likelihood of the total (SUM) of all the paths through the 
HMM. But we accepted this approximation because Viterbi computed this 
likelihood and searched for the optimal path simultaneously. The A* decod­
ing algorithm. on the other hand. will rely on the complete forward algorithm 
rather than an approximation. This will ensure that we compute the correct 
observation likelihood. Furthermore, the A* decoding algorithm allows ns 
to use any arbitrary language model. 

The A' decoding algorithm is a kind of best-first search of the lattice or 
tree which implicitly defines the sequence of allowable words in a language. 
Consider the tree in Figure 7.13, rooted in the START node on the left. Each 
leaf of this tree defines one sentence of the language; the one formed by 
concatenating all the words along the path from START to the leaf. We 
don't represent this tree explicitly, but the stack decoding algorithm uses the 
tree implicitly as a way to structure the decoding search. 

The algorithm performs a search from the root of the tree toward the 
leaves, looking for the highest probability path, and hence the highest prob­
ability sentence. As we proceed from root toward the leaves, each branch 
leaving a given word node represent a word which may follow the current 
word. Each of these branches has a probability, which expresses the condi­
tional probability of this next word given the part of the sentence we've seen 
so far. In addition, we will use the forward algorithm to assign each word a 
likelihood of producing some part of the observed acoustic data. The A* de­
coder must thus find the path (word sequence) from the root to a leaf which 
has the highest probability, where a path probability is defined as the prod­
uct of its language model probability (prior) and its acoustic match to the 
data (likelihood). It does this by keeping a priority queue of partial paths 
(i.e., prefixes of sentences, each annotated with a score). In a priority queue 
each element has a score, and the pop operation returns the element with 
the highest score. The A* decoding algorithm iteratively chooses the best 
prefix-so-far, computes all the possible next words for that prefix, and adds 
these extended sentences to the queue. The Figure 7.14 shows the complete 
algorithm. 

276



Section 7 .4. Advanced Methods for Decoding 

to 
intention 

bequeath 
my 

do not 

want believe 

the 
can't 

lives 
;, 

START underwriter 

of 
typically 

are 
mice 

dogs 
exceptional 

Figure 7.13 A visual representation of the implicit lattice of allowable 
word sequences that defines a language. The set of sentences of a language 
is far too large to represent explicitly, but the lattice gives a metaphor for ex­
ploring substrings of these sentences. 

Let"s consider a stylized example of a A' decoder working on a wave­
form for which the correct transcription is If music be the food of love. Fig­
ure 7.15 shows the search space after the decoder has examined paths of 

255 

length one from the root. A fast match is used to select the likely next FAST MATCH 

words. A fast match is one of a class of heuristics designed to efficiently 
winnow down the number of possible following words, often by comput-
ing some approximation to the forward probability (see below for further 
discussion of fast matching). 

At this point in our example, we've done the fast match, selected a sub­
set of the possible next words, and assigned each of them a score. The word 
Alice has the highest score. We haven't yet said exactly how the scoring 
works, although it will involve as a component the probability of the hypoth­
esized sentence given the acoustic input P(WIA), which itself is composed 
of the language model probability P(W) and the acoustic likelihood P(AIW). 

Figure 7.16 show the next stage in the search. We have expanded the 
Alice node. This means that the Alice node is no longer on the queue, but its 
children are. Note that now the node labeled if actually has a higher score 
than any of the children of Alice. 

277



256 Chapter 7. HMMs and Speech Recognition 

function STACK-DECODING() retnrns min-distance 

Initialize the priority queue with a nu11 sentence: 
Pop the best (highest score) sentence s off the queue. 
If (sis marked end-of-sentence (EOS) ) outputs and terminate. 
Get list of candidate next words by doing fast matches. 
For each candidate next word w: 

Create a new candidate sentences+ w. 
Use forward algorithm to compute acoustic likelihood L of s + w 
Compute language model probability P of extended sentences+ w 
Compute "score"" for s + w (a function of L. P. and???) 
if (end-of-sentence) set EOS flag for s+ w. 
Inserts+ w into the queue together with its score and EOS flag 

Figure 7.14 TheN decoding algorithm (modified from Paul (1991) and 
Jelinek (1997)). The evaluation function that is used to compute the score for 
a sentence is not completely defined here; possibly evaluation functions are 
discussed below. 

P( "if" I START) 

P(acoustic f ''if")= 
forward probability 

Figure 7.15 The beginning of the search for the sentence If music be the 
food of love. At this early stage Alice is the most likely hypothesis. (It has a 
higher score than the other hypotheses.) 

Figure 7.17 shows the state of the search after expanding the if node, 
removing it, and adding if 'music, if muscle, and if messy on to the queue. 

278



Section 7 .4. Advanced Methods for Decoding 

P( "it"' ISTART) 

P(acousticsl "if" ) = 
forward probability 

Figure 7.16 The next step of the search for the sentence If music be the 
food of love. We've now expanded the Alice node and added three extensions 
which have a relatively high score (was, wants, and walls). Note that now the 
node with the highest score is START if, which is not along the START Alice 
path at all! 

P(acoustic I music)= 
forward probability 

Figure 7.17 We've now expanded the if node. The hypothesis START !f 
music currently has the highest score. 

We've implied that the scoring criterion for a hypothesis is related to its 
probability. Indeed it might seem that the score for a string of words w\ given 

an acoustic string y{ should be the product of the prior and the likelihood: 

P(y{lw\)P(w\) 

257 

279



258 Chapter 7. HMMs and Speech Recognition 

Alas. the score cannot be this probability because the probability will 
be much smaller for a longer path than a shorter one. This is due to a sim­
ple fact about probabilities and substrings; any prefix of a string fnust have 
a higher probability than the string itself (e.g., P(START the ... ) will be 
greater than P(START the book)). Thus if we used probability as the score, 
the A' decoding algorithm would get stuck on the single-word hypotheses. 

Instead, we use what is called the A' evaluation function (Nilsson, 
1980; Pearl, 1984) called f'(p), given a partial path p: 

!'(p) =g(p)+h'(p) 

f' (p) is the estimated score of the best complete path (complete sen­
tence) which starts with the partial path p. In other words, it is an estimate of 
how well this path would do if we let it continue through the sentence. The 
A' algorithm builds this estimate from two components: 

o g(p) is the score from the beginning of utterance to the end of the par­
tial path p. This g function can be nicely estimated by the probability 
of p given the acoustics so far (i.e., as P(AjW)P(W) for the word string 
W constituting p ). 

• h' (p) is an estimate of the best scoring extension of the partial path to 
the end of the utterance. 

Coming up with a good estimate of h' is an unsolved and interesting 
problem. One approach is to choose as h' an estimate which correlates with 
the number of words remaining in the sentence (Paul, 1991); see Jelinek 
(1997) for further discussion. 

We mentioned above that both the A' and various other two-stage de­
coding algorithms require the use of a fast match for quickly finding which 
words in the lexicon are likely candidates for matching some portion of the 
acoustic input. Many fast match algorithms are based on the use of a tree-

TREE-
STRUCTURED structured lexicon, which stores the pronunciations of all the words in such 
LEXICON 

a way that the computation of the forward probability can be shared for 
words which start with the same sequence of pbones. The tree-structured 
lexicon was first suggested by Klovstad and Mondshein (1975); fast match 
algorithms which make use of it include Gupta et a!. (1988), Bah! et a!. 
(1992) in the context of A' decoding, and Ney eta!. (1992) and Nguyen and 
Schwartz (1999) in the context of Viterbi decoding. Figure 7.18 shows an 
example of a tree-structured lexicon from the Sphinx-IT recognizer (Ravis­
hankar, 1996). Each tree root represents the first phone of all words begin-

280



Section 7.5. Acoustic Processing of Speech 

ning with that context dependent phone (phone context may or may not be 
preserved across word boundaries), and each leaf is associated with a word. 

A AW(B,N) N(AW,DD) DD(N,#) I ABOUND 

AB(AX,AW)k 
., AW(B,TD) TD(AW,X)I ABOUT 

I AX(#,B) K 
~B(AX,AH) AH(B ,V) 1---i v (AH,X) I ABOVE 

A KD(EY,#) I BAKE 
jEY(B,KD)K 

, KD(EY,TD) rfTD(KD,#) I BAKED 

I B(#,EY) [ 
;IK(EY,IX) IX(K,NG) NG(IX.#) I BAKING 

~ EY(B,K) ( 
\ A AXR(K,#) I BAKER 
jK(EY,IX)_}.._ 

'I AXR(K,IY) IY(AXR,#) I BAKERY 

Figure 7.18 A tree-structured lexicon from the Sphinx-IT recognizer (af-
ter Ravishankar (1996)). Each node corresponds to a particular ttiphone in a 
slightly modified version of the ARPAbet; thus EY(B,KD) means the phone 
EY preceded by a B and followed by the closure of a K. 

There are many other kinds of multiple-stage search, such as the for­
ward-backward search algorithm (not to be confused with the forward­
backward algorithm for HMM parameter setting) (Austin et al., 1991) which 
performs a simple forward search followed by a detailed backward (i.e., 
time-reversed) search. 

7.5 ACOUSTIC PROCESSING OF SPEECH 

This section presents a very brief overview of the kind of acoustic processing 
commonly called feature extraction or signal analysis in the speech recog­
nition literature. The term features refers to the vector of numbers which 
represent one time-slice of a speech signal. A number of kinds of features 

259 

FORWARD· 
BACKWARD 

FEATURE 
EXTRACTION 

SIGNAL ANALYSIS 

are commonly used, such as LPC features and PLP features. All of these are ere 
spectral features, which means that they represent the waveform in terms of PLP 

the distribution of different frequencies which make up the waveform; such SPECTRAL FEATURES 

a distribution of frequencies is called a spectrum. We will begin with a brief 

281



260 Chapter 7. HMMs and Speech Recognition 

introduction to the acoustic waveform and how it is digitized, summarize the 
idea of frequency analysis and spectra, and then sketch out different kinds of 
extracted features. This will be an extremely brief overview; the interested 
reader should refer to other books ou the linguistics aspects of acoustic pho­
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects of 
digital signal processing of speech (Rabiner and Juang, 1993). 

Sound Waves 

The input to a speech recognizer, like the input to the human ear, is a complex 
series of changes in air pressure. These changes in air pressure obviously 
originate with the speaker, and are caused by the specific way that air passes 
through the glottis and out the oral or nasal cavities. We represent sound 
waves by plotting the change in air pressure over time. One metaphor which 
sometimes helps in understanding these graphs is to imagine a vertical 
which is blocking the air pressure waves (perhaps in a microphone in front of 
a speaker's mouth, or the eardrum in a hearer's ear). The graph measures the 
amount of compression or rarefaction (uncompression) of the air molecules 
at this plate. Figure 7.19 shows the waveform taken from the Switchboard 
corpus of telephone speech of someone saying "she just had a baby". 

t~~4 
0.470 0-l~CJ 0.490 0.500 0.5\0 0.52<1 0.53<J 05![) Cl,500 0.560 

Figure 7.19 A waveform of the vowel [iy] from the utterance shown in Figure 7.20. The 
y-axis shows the changes in air pressure above and below normal atmospheric pressure. The 
x-axis shows time. Notice that the wave repeats regularly. 

FREQUENCY 

AMPLITUDE 

CYCLES PER 
SECOND 

HERTZ 

Two important characteristics of a wave are its frequency and ampli­
tude. The frequency is the number of times a second that a wave repeats 
itself, or cycles. Note in Figure 7.19 that there are 28 repetitions of the wave 
in the .11 seconds we have captured. Thus the frequency of this segment of 
the wave is 28/.11 or 255 cycles per second. Cycles per second are usually 
called Hertz (shortened to Hz), so the frequency in Figure 7.19 would be 
described as 255 Hz. 

The vertical axis in Figure 7.19 measures the amount of air pressure 

282



7.5. Acoustic Processing of Speech 261 

variation. A high value on the vertical axis (a high amplitude) indicates AMPLITUDE 

that there is more air pressure at that point in time, a zero value means there 
is normal (atmospheric) air pressure, while a negative value means there is 
lower than normal air pressure (rarefaction). 

Two important perceptual properties are related to frequency and am­
plitude. The pitch of a sound is the perceptual correlate of frequency; in PITCH 

general if a sound has a higher frequency we perceive it as having a higher 
pitch, although the relationship is not linear, since human hearing has differ-
ent acuities for different frequencies. Similarly, the loudness of a sound is 
the perceptual correlate of the power, which is related to the square of the 
amplitude. So sounds with higher amplitudes are perceived as louder, but 
again the relationship is not linear. 

How to Interpret a Waveform 

Since humans (and to some extent machines) can transcribe and understand 
speech just given the sound wave, the waveform must contain enough infor­
mation to make the task possible. In most cases this information is hard to 
unlock just by looking at the waveform, but such visual inspection is still 
sufficient to learn some things. For example, the difference between vowels 
and most consonants is relatively clear on a waveform. Recall that vowels 
are voiced, tend to be long, and are relatively loud. Length in time manifests 
itself directly as length in space on a waveform plot. Loudness manifests 
itself as high amplitude. How do we recognize voicing? Recall that voicing 
is caused by regular openings and closing of the vocal folds. When the vocal 
folds are vibrating, we can see regular peaks in amplitude of the kind we saw 
in Figure 7.19. During a stop consonant, for example the closure of a [p], [t], 
or [k], we should expect no peaks at all; in fact we expect silence. 

Notice in Figure 7.20 the places where there are regular amplitude 
peaks indicating voicing; from second .46 to .58 (the vowel [iy]), from sec­
ond .65 to .74 (the vowel [ax]) and so on. The places where there is no 
amplitude indicate the silence of a stop closure; for example from second 
1.06 to second 1.08 (the closure for the first [b], or from second 1.26 to 1.28 
(the closure for the second [b]). 

Fricatives like [sh] can also be recognized in a waveform; they produce 
an intense irregular pattern; the [sh] from second .33 to .46 is a good example 
of a fricative. 

283



262 Chapter 7. HMMs and Speech 

2000 

Figure 7.20 A waveform of the sentence "She just had a baby" from the Switchboard 
pus (conversation 4325). The speaker is female, was 20 years old in 1991, which is apjJro;,c 
imately when the recording was made, and speaks the South Midlands dialect of Arnei1Catn 
English. The phone labels show where each phone ends. The last bit of the final [iy] 
is cut off in this figure. 

SPECTRAL 

Spectra 

While some broad phonetic features (presence of voicing, stop c!o"tlr'es,' 
fricatives) can be interpreted from a waveform, more detailed cl<tssitficatio£)' 
(which vowel? which fricative?) requires a different representation of 
input in terms of spectral features. Spectral features are based on the 
sight of Fourier that every complex wave can be represented as a smn 
many simple waves of different frequencies. A musical analogy for this 
the chord; just as a chord is composed of multiple notes, any waveform 
composed of the waves corresponding to its individual "notes". 

Figure 7.21 The waveform of part of the vowel [aoJ from the word had cut 
out from the waveform shown in Figure 7.20. 

Consider Figure 7.21, which shows part of the waveform for the 
[<eJ of the word had at second 0.9 of the sentence. Note that there is a 
plex wave which repeats abont nine times in the figure; but there is also 
smaller repeated wave which repeats four times for every larger pattern 
tice the four small peaks inside each repeated wave). The complex wave 

284



7.5. Acoustic Processing of Speech 

a:li·equertcy of about 250 Hz (we can figure this out since it repeats roughly 
times in .036 seconds. and 9 cycles/.036 seconds = 250 Hz). The smaller 

then should have a frequency of roughly four times the frequency of 
larger wave, or roughly 1000 Hz. Then if you look carefully you can see 
little waves on the peak of many of the 1000Hz waves. The frequency 

this tiniest wave must be roughly twice that of the 1000 Hz wave, hence 

Hz. 
A spectrum is a representation of these different frequency compo­
of a wave. It can be computed by a Fourier transform, a mathematical 

prc>cedrure which separates out each of the frequency components of a wave. 
than using the Fourier transform spectrum directly, most speech ap­

plicatioJrrs use a smoothed version of the spectrum called the LPC spectrum 
and Hanauer, 1971 ; Itllkura, 197 5). 
Figure 7.22 shows an LPC spectrum for the waveform in Figure 7.21. 
(Linear Predictive Coding) is a way of coding the spectrum that mllkes 

easier to see where the spectral peaks are. 

80 

70 ~ 

60 ~ 
• 50 

40 ~ 

30 

20 

10 

o• 1 
-10~. ;......~~~!;;c-~~"""c~' -~~~""""'· ·~-~~~~ 

0 1000 2000 3000 

Figure 7.22 An LPC spectrum for the vowel [ao] waveform of She just had 
a baby at the point in time shown in Figure 7.21. LPC mllkes it easy to see 
formants. 

The x-axis of a spectrum shows frequency while they-axis shows some 
measure of the magnitude of each frequency component (in decibels (dB), 

logarithmic measure of amplitude). Thus Figure 7.22 shows that there are 
im!lOrtant frequency components at 930 Hz, 1860 Hz, and 3020 Hz, along 

many other lower-maguitude frequency components. These important 
JWrnp•~ne:nts at roughly 1000 Hz and 2000 Hz are just what we predicted by 
lookin.g at the wave in Figure 7.21! 

263 

SPECTRUM 

FOURIER 
TRANSFORM 

LPG 

SPECTRAL 
PEAKS 

285



264 Chapter 7. HMMs and Speech Recognition 

Why is a spectrum useful? It tums out that these spectral peaks that 
are easily visible in a spectrum are very characteristic of different sounds; 
phones have characteristic spectral "signatures". For example different 
ical elements give off different wavelengths of light when they bum, allow­
ing us to detect elements in stars light-years away by looking at the spectrum 
of the light. Similarly, by looking at the spectrum of a waveform, we can de­
tect the characteristic signature of the different ph ones that are present. This 
use of spectral information is essential to both human and machine speech 

cocHLEA recognition. In human audition, the function of the cochlea or inner ear is 
INNER EAR to compute a spectrum of the incoming waveform. Similarly, the features 

used as input to the HMMs in speech recognition are all representations of 
spectra, usually variants of LPC spectra, as we will see. 

While a spectrum shows the frequency components of a wave at one 
SPECTROGRAM point in time, a spectrogram is a way of envisioning how the different fre­

quencies which make up a waveform change over time. The x-axis shows 
time, as it did for the waveform, but the y-axis now shows frequencies in 
Hertz. The darkness of a point on a spectrogram corresponding to the ampli­
tude of the frequency component. For example, look in Figure 7.23 around 
second 0.9 and notice the dark bar at around 1000 Hz. This means that the 
[iy] of the word she has an important component around 1000Hz (1000Hz is 
just between the notes B and C). The dark horizontal bars on a spectrogram, 

FORMANTs representing spectral peaks, usually of vowels, are called formants. 

Figure 7.23 A spectrogram of the sentence "She just had a baby" whose waveform 
shown in Figure 7.20. One way to think of a spectrogram is as a collection of spectra (time­
slices) like Figure 7.22 placed end to end. 

What specific clues can spectral representations give for phone identi­
fication? First, different vowels have their formants at characteristic places. 
We've seen that [<e] in the sample waveform had formants at 930Hz, 1860 
Hz, and 3020 Hz. Consider the vowel [iy], at the beginning of the utterance 

286



Section 7.5. Acoustic Processing of Speech 

in Figure 7.20. The spectrum for this vowel is shown in Figure 7.24. The first 
formant of [iy] is 540Hz; much lower than the first formant for [ze], while the 
second formant (2581 Hz) is much higher than the second formant for [ze]. 
If you look carefully you can see these formants as dark bars in Figure 7.23 
just around 0.5 seconds. 

80-

70 ~ 

60;.... 
~ 

50 ,...... 
~ 

40L 

30 ~ 

~~} 

J 

0~ 

-10:;-f-~~~-'7,;~~~-'-'c~~~~~~~~~'-' 
0 1000 2000 3000 

Figure 7.24 A smoothed (LPC) spectrum for the vowel [iy] at the start of 
She just had a baby. Note that the first formant (540Hz) is much lower than 
the first formant for [ao] shown in Figure 7.22, while the second formant (2581 
Hz) is much higher than the second formant for[&]. 

The location of the first two formants (called Fl and F2) plays a large 
role in determining vowel identity, although the formants still differ from 
speaker to speaker. Formants also can be used to identify the nasal phones 
[n], [m], and [lJ], the lateral phone [1], and [r]. Why do different vowels have 
different spectral signatures? The formants are caused by the resonant cav­
ities of the mouth. The oral cavity can be thought of as a filter which se­
lectively passes through some of the harmonics of the vocal cord vibrations. 
Moving the tongue creates spaces of different size inside the mouth which 
selectively amplify waves of the appropriate wavelength, hence amplifying 
different frequency bands. 

Feature Extraction 

Our survey of the features of waveforms and spectra was necessarily brief, 
but the reader should have the basic idea of the importance of spectral fea­
tures and their relation to the original waveform. Let's now summarize the 
process of extraction of spectral features, beginning with the sound wave 

265 

287



266 Chapter 7. HMMs and Speech Recognition 

itself and ending with a feature vector4 An input soundwave is first dig­
itized. This process of analog-to-digital conversion has two steps: sam-

sAMPLING piing and quantization. A signal is sampled by measuring its amplitude 
sAMPLING RATE at a particular time; the sampling rate is the humber of samples taken per 

second. Common sampling rates are 8,000 Hz and 16,000 Hz. In order to 
accurately measure a wave, it is necessary to have at least two samples in 
each cycle: one measuring the positive part of the wave and one measuring 
the negative part. More than two samples per cycle increases the amplitude 
accuracy, but less than two samples will cause the frequency of the wave to 
be completely missed. Thus the maximum frequency wave that can be mea­
sured is one whose frequency is half the sample rate (since every cycle needs 
two samples). This maximum frequency for a given sampling rate is called 

~i(~g~JNcY the Nyquist frequency. Most information in human speech is in frequen­
cies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary 
for complete accuracy. But telephone speech is filtered by the switching net­
work, and only frequencies less than 4,000 Hz are transmitted by telephones. 
Thus an 8,000 Hz sampling rate is sufficient for telephone-bandwidth speech 
like the Switchboard corpus. 

Even an 8,000 Hz sampling rate requires 8000 amplitude measure­
ments for each second of speech, and so it is important to store the amplitude 
measurement efficiently. They are usually stored as integers, either 8-bit 
(values from -128-127) or 16 bit (values from -32768-32767). This pro-

ouANTIZATION cess of representing a real-valued number as a integer is called quantization 
because there is a minimum granularity (the quantum size) and all values 
which are closer together than this quantum size are represented identically. 

Once a waveform has been digitized, it is converted to some set of 
spectral features. An LPC spectrum is represented by a vector of features; 
each formant is represented by two features, plus two additional features to 
represent spectral tilt. Thus five formants can be represented by 12 (5 x 2+2) 
features. It is possible to use LPC features directly as the observation sym­
bols of an HMM. However, further processing is often done to the features. 

gg:m!i1Nrs One popular feature set is cepstral, which are computed from the LPC coef­
ficients by taking the Fourier transform of the spectrum. Another feature set, 

PLP PLP (Perceptual Linear Predictive analysis (Hermansky, 1990)), takes the 
LPC features and modifies them in ways consistent with human hearing. For 

4 The reader might want to bear in mind Picone's (1993) reminder that the use of the word 
extraction should not be thought of as encouraging the metaphor of features as something 
"in the signal" waiting to be extracted. 

288



Section 7.6. Computing Acoustic Probabilities 

example, the spectral resolution of human hearing is worse at high frequen­
cies, and the perceived loudness of a sound is related to the cube rate of its 
intensity. So PLP applies various filters to the LPC spectrum and takes the 
cube root of the features. 

7.6 COMPUTING ACOUSTIC PROBABILITIES 

The last section showed how the speech input can be passed through signal 
processing transformations and turned into a series of vectors of features, 
each vector representing one time-slice of the input signal. How are these 
feature vectors turned into probabilities? 

One way to compute probabilities on feature vectors is to first cluster 
them into discrete symbols that we can count; we can then compute the 
probability of a given cluster just by counting the number of times it occurs in 
some training set. This method is usually called vector quantization. Vector 
quantization was quite common in early speech recognition algorithms but 
has mainly been replaced by a more direct but compute-intensive approach: 
computing observation probabilities on a real-valued ('continuous') input 
vector. This method thus computes a probability density function or pdf 
over a continuous space. 

There are two popular versions of the continuous approach. The most 
widespread of the two is the use of Gaussian pdfs, in the simplest ver­
sion of which each state has a single Gaussian function which maps the 
observation vector o1 to a probability. An alternative approach is the use 
of neural networks or multi-layer perceptrons which can also be trained 
to assign a probability to a real-valued feature vector. HMMs with Gaus­
sian observation-probability-estimators are trained by a simple extension to 
the forward-backward algorithm (discussed in Appendix D). HMMs with 
neural-net observation-probability-estimators are trained by a completely 
different algorithm known as error back-propagation. 

In the simplest use of Gaussians, we assume that the possible values 
of the observation feature vector o, are normally distributed, and so we rep­
resent the observation probability function b1(o1) as a Gaussian curve with 
mean vector 111 and covariance matrix LJ; (prime denotes vector transpose). 
We present the equation here for completeness, although we will not cover 
the details of the mathematics: 

(7.10) 

267 

CLUSTER 

VECTOR 
QUANTIZATION 

PROBABILITY 
DENSITY 
FUNCTION 

GAUSSIAN 

NEURAL 
NETWORKS 
MUmLAYER 
PERCEPTRONS 

ERROR BACK­
PROPAGATION 

289



268 

GAUSSIAN 
MIXTURES 

TIED 
MIXTURES 

NEURAL 
NETWORK 
MULTILAYER 
PERCEPTRON 

MLP 

Chapter 7. HMMs and Speech 

Usually we make the simplifying assumption that the covariance rna, 
trix Lj is diagonal, i.e., that it contains the simple variance of cepstral fea­
ture 1, the simple variance of cepstral feature 2, and so on, without wc.rn•in,, 
about the effect of cepstral feature 1 on the variance of cepstral feature 2. 
This means that in practice we are keeping only a single separate mean 
variance for each feature in the feature vector. 

Most recognizers do something even more complicated; they keep 
multiple Gaussians for each state, so that the probability of each feature of 
the observation vector is computed by adding together a variety of Gaussian 
curves. This technique is called Gaussian mixtures. In addition, many 
systems share Gaussians between states in a technique known as parameter 
tying (or tied mixtures) (Huang and Jack, 1989). For example acoustically 
similar phone states might share (i.e., use the same) Gaussians for 
features. 

How are the mean and covariance of the Gaussians estimated? It is 
helpful again to consider the simpler case of a non-hidden Markov Model, 
with only one state i. The vector of feature means f1 and the vector of covari­
ances 2:, could then be estimated by averaging: 

1 T 

fli T L,o, 
t=l 

1 T 
i, = T L,[(o,- /lj)' (o,- f.lj)] 

t::::l 

But since there are multiple hidden states, we don't know which obser­
vation vector o1 was produced by which state. Appendix D will show how 
the forward-backward algorithm can be modified to assign each observation • 
vector o, to every possible state i, prorated by the probability that the HMM 
was in state i at timet. 

An alternative way to model continuous-valued features is the use of a 
neural network, multilayer perceptron (MLP) or Artificial Neural Net­
works (ANNs). Neural networks are far too complex for us to introduce 
in a page or two here; thus we will just give the intuition of how they 
are used in probability estimation as an alternative to Gaussian estimators. 
The interested reader should consult basic neural network textbooks (Ander­
son, 1995; Hertz et al., 1991) as well as references specifically focusing on 
neural-network speech recognition (Bourlard and Morgan, 1994). 

A neural network is a set of small computation units connected by 
weighted links. The network is given a vector of input values and computes 

290



7.6. Computing Acoustic Probabilities 

vector of output values. The computation proceeds by each computational 
computing some non-linear function of its input units and passing the 

resulting value on to its output units. 
The use of neural networks we will describe here is often called a hy-

brid HMM-MLP approach, since it uses some elements of the HMM (such HYBRID 

as the state-graph representation of the pronunciation of a word) but the 
observation-probability computation is done by an MLP instead of a mix-
ture of Gaussians. The input to these MLPs is a representation of the sigual 
at a time t and some surrounding window; for example this might mean a 
vector of spectral features for a time t and eight additional vectors for times 
t +I Oms, t + 20ms, t + 30ms, t + 40ms, t- !Oms, and so on. Thus the input 
to the network is a set of nine vectors, each vector having the complete set of 
real-valued spectral features for one time slice. The network has one output 
unit for each phone; by constraining the values of all the output units to sum 
to 1, the net can be used to compute the probability of a state j given an 
observation vector o,, or P(jlo1). Figure 7.25 shows a sample of such a net. 

This MLP computes the probability of the HMM state j given an ob­
servation o1, or P(qjlo1). But the observation likelihood we need for the 
HMM, bj(o,), is P(o,jq1). The Bayes rule can help us see how to compute 
one from the other. The net is computing: 

( ·I ) - P(o,jqi)p(qj) (7.13) 
p q] o, - ( ) 

pOt 

We can rearrange the terms as follows: 

p(o, lqi) P(qilo,) 
p(o,) p(qj) 

(7.14) 

· P0 

269 

The two terms on the right-hand side of (7.14) can be directly com­
puted from the MLP; the numerator is the output of the MLP, and the de­
nominator is the total probability of a given state, summing over all obser­
vations (i.e., the sum over all t of cr1(t)). Thus although we cannot directly 

compute P(orlq 1·), we can use (7.14) to compute p(o(,lq);), which is known as 
a scaled likelihood (the likelihood divided by the probability of the observa- SCALED 

LIKELIHOOD 

tion). In fact, the scaled likelihood is just as good as the regular likelihood, 
since the probability of the observation p( a,) is a constant during recognition 
and doesn't hurt us to have in the equation. 

The error-back-propagation algorithm for training an MLP requires 
that we know the correct phone label q1 for each observation o1• Given a 
large training set of observations and correct labels, the algorithm iteratively 
adjusts the weights in the MLP to minimize the error with this training set. 

291



270 Chapter 7. HMMs and Speech 

z Output Layer 
54-61 Ph~pes 

Hidden Layer: 
500-4000 Fully 
Connected Units 

Input Layer: 
9 Frames of20 RASTA or PLP 
features, total of 180 units 

~nt 
Left Context ~ Right Context 

-40"'-'1 -30ms -20"'-<· -!Oms ll!ms 20ms J()m,, 40ms 

Figure 7.25 A neural net used to estimate phone state probabilities. Such 
a net can be used in an HMl\1 model as an alternative to the Gaussian models. 
This particular net is from the MLP systems described in Bourlard and Morgan 
(1994); it is given a vector of features for a frame and for the four frames 
on either side, and estimates p(qjfo1). This probability is then converted to 
an estimate of the observation likelihood b = p(ot[qj) using the Bayes rule. 
These nets are trained using the error-back-propagation algorithm as part of 
the sarue embedded training algorithm that is used for Gaussians. 

In the next section we will see where this labeled training set comes from, 
and how this training fits in with the embedded training algorithm used 
for HMMs. Neural nets seem to achieve roughly the same performance as 
a Gaussian model but have the advantage of using less parameters and the 
disadvantage of taking somewhat longer to train. 

7.7 TRAINING A SPEECH RECOGNIZER 

We have now introduced all the algorithms which make up the standard 
speech recognition system that was sketched in Figure 7.2 on page 241. 
We've seen how to build a Viterbi decoder, and how it takes 3 inputs (the 
observation likelihoods (via Gaussian or MLP estimation from the spectral 
features), the HMM lexicon, and theN -gram language model) and produces 
the most probable string of words. But we have not seen how all the proba-

292



Section 7.7. Training a Speech Recognizer 271 

METHODOLOGY Box: WORD ERROR RATE 

The standard evaluation metric for speech recognition systems 
is the word error rate. The word error rate is based on how much 
the word string returned by the recognizer (often called the hypoth­
esized word string) differs from a correct or reference transcription. 
Given such a correct transcription, the first step in computing word 
error is to compute the minimum edit distance in words between 
the hypothesized and correct strings. The result of this computation 
will be the minimum number of word substitutions, word inser­
tions, and word deletions necessary to map between the correct and 
hypothesized strings. The word error rate is then defined as follows 
(note that because the equation includes insertions, the error rate can 
be great than 100%): 

Word Error Rate = 
Insertions+ Substitutions+ Deletions 

100 
Total Words in Correct Transcript 

Here is an example of alignments between a reference and a 
hypothesized utterance from the CALLHOME corpus, showing the 
counts used to compute the word error rate: 

REF: i *** ** UM the PHONE IS i LEFT THE portable 
HYP: i GOT IT TO the ***** FULLEST i LOVE TO portable 
Eval: I I s D s s s 
REF: **** PHONE UPSTAIRS last night so the battery ran out 
HYP: FORM OF STORES last night so the battery ran out 
Eva!: s s 
This utterance has six substitutions, three insertions, and one dele­
tion: 

6+3+1 
Word Error Rate = 100 

18 
=56% 

As of the time of this writing, state-of-the-art speech recognition 
systems were achieving around 20% word error rate on natural­
speech tasks like the National Institute of Standards and Technology 
(NIST)'s Hub4 test set from the Broadcast News corpus (Chen et al., 
1999), and around 40% word error rate on NIST's Hub5 test set from 
the combined Switchboard, Switchboard-II, and CALLHOME cor­
pora (Rain et al., 1999). 

293



272 

EMBEDDED 
TRAINING 

Chapter 7. HMMs and Speech Recognition 

bilistic models that make up a recognizer get trained. 
In this section we give a brief sketch of the embedded training proce­

dure that is used by most ASR systems, whether based on Gaussians, MLPs, 
or even vector quantization. Some of the details of the algorithm (like the 
forward-backward algorithm for training HMM probabilities) have been re­
moved to Appendix D. 

Let's begin by summarizing the four probabilistic models we need to 
train in a basic speech recognition system: 

• language model probabilities: P(w;lwHWi-2) 

• observation likelihoods: b j ( o1) 

• transition probabilities: aij 

• pronunciation lexicon: HMM state graph structure 

In order to train these components we usually have 

• a training corpus of speech wavefiles, together with a word-transcription 

• a much larger corpus of text for training the language model, includ­
ing the word-transcriptions from the speech corpus together with many 
other similar texts 

• often a smaller training corpus of speech which is phonetically labeled 
(i.e., frames of the acoustic signal are hand-annotated with phonemes) 

Let's begin with the N-gram language model. This is trained in the 
way we described in Chapter 6; by counting N -gram occurrences in a large 
corpus, then smoothing and normalizing the counts. The corpus used for 
training the language model is usually much larger than the corpus used to 
train the HMM a and b parameters. This is because the larger the training 
corpus the more accurate the models. Since N-gram models are much faster 
to train than HMM observation probabilities, and since text just takes less 
space than speech, it turns out to be feasible to train language models on 
huge corpora of as much as half a billion words of text. Generally the corpus 
used for training the HMM parameters is included as part of the language 
model training data; it is important that the acoustic and language model 
training be consistent. 

The HMM lexicon structure is built by hand, by taking an off-the-shelf 
pronunciation dictionary such as the PRONLEX dictionary (LDC, 1995) or 
the CMUdict dictionary, both described in Chapter 4. In some systems, each 
phone in the dictionary maps into a state in the HMM. So the word cat would 
have three states corresponding to [k], [ae], and [t]. Many systems, however, 
use the more complex subphone structure described on page 251, in which 

294



Section 7.7. Training a Speech Recognizer 

each phone is divided into 3 states: the beginning. middle and final portions 
of the phone. and in which furthermore there are separate instances of each 
of these subphones for each triphone context. 

The details of the embedded training of the HMM parameters varies; 
we'll present a simplified version. First, we need some initial estimate of 
the transition and observation probabilities aiJ and b j ( o,). For the transi­
tion probabilities, we start by assuming that for any state all the possible 
following states are all equiprobable. The observation probabilities can be 
bootstrapped from a small hand-labeled training corpus. For example, the 
TIMIT or Switchboard corpora contain approximately 4 hours each of pho­
netically labeled speech. They supply a "correct" phone state label q for 
each frame of speech. These can be fed to an MLP or averaged to give initial 
Gaussian means and variances. For MLPs this initial estimate is important, 
and so a hand-labeled bootstrap is the norm. For Gaussian models the initial 
value of the parameters seems to be less important and so the initial mean 
and variances for Gaussians often are just set identically for all states by 
using the mean and variances of the entire training set. 

Now we have initial estimates for the a and b probabilities. The next 
stage of the algorithm differs for Gaussian and MLP systems. For MLP sys­
tems we apply what is called a forced Viterbi alignment. A forced Viterbi 
alignment takes as input the correct words in an utterance, along with the 
spectral feature vectors. It produces the best sequence of HMM states, with 
each state aligned with the feature vectors. A forced Viterbi is thus a simpli­
fication of the regular Viterbi decoding algorithm, since it only has to figure 
out the correct phone sequence, but doesn't have to discover the word se­
quence. It is called forced because we constrain the algorithm by requiring 
the best path to go through a particular sequence of words. It still requires 
the Viterbi algorithm since words have multiple pronunciations, and since 
the duration of each phone is not fixed. The result of the forced Viterbi is a 
set of features vectors with "correct" phone labels, which can then be used 
to retrain the neural network. The counts of the transitions which are taken 
in the forced alignments can be used to estimate the HMM transition proba­
bilities. 

For the Gaussian HMMs, instead of using forced Viterbi, we use the 
forward-backward algorithm described in Appendix D. We compute the for­
ward and backward probabilities for each sentence given the initial a and 
b probabilities, and use them to re-estimate the a and b probabilities. Just 
as for the MLP situation, the forward-backward algorithm needs to be con­
strained by our knowledge of the correct words. The forward-backward al-

273 

FORCED 
VITERBI 

295



274 Chapter 7. HMMs and Speech 

gorithm computes its probabilities given a model A. We use the "known" 
words sequence in a transcribed sentence to tell us which word medels to · 
string together to get the model A that we use to compute the forward and·· 
backward probabilities for each sentence. 

7.8 WAVEFORM GENERATION FOR SPEECH SYNTHESIS 

Now that we have covered acoustic processing we can return to the acoustic 
component of a text-to-speech (ITS) system. Recall from Chapter 4 that the 
output of the linguistic processing component of a TTS system is a sequence 
of phones, each with a duration, and a FO contour that specifies the pitch. 

TARGET This specification is often called the target, as it is this that we want the 
synthesizer to produce. 

The most commonly used type of algorithm works by waveform con- . 
rr8~1!,:,9~~ATION catenation. Such concatenative synthesis is based on a database of speech 

that has been recorded by a single speaker. This database is then segmented 
into a number of short units, which can be phones, diphones, syllables, 
or other units. The simplest sort of synthesizer would have phone units and 
the database would have a single unit for each phone in the phone inventory. 
By selecting units appropriately, we can generate a series of units which 
match the phone sequence in the input. By using signal processing to smooth · 
joins at the unit edges, we can simply concatenate the waveforms for each of 
these units to form a single synthetic speech waveform. 

Experience has shown that single phone concatenative systems don't 
produce good quality speech. Just as in speech recognition, the context of 
the phone plays an important role in its acoustic pattern and hence a /t/ before 
a /a/ sounds very different from a /t/ before an Is/. 

The trip hone models described in Figure 7.11 on page 251 are a pop­
ular choice of unit in speech recognition, because they cover both the left 
and right contexts of a phone. Unfortunately, a language typically has a 
very large number of triphones (tens of thousands) and it is currently pro' 

DIPHONEs hibitive to collect so many units for speech synthesis. Hence diphones are 
often used in speech synthesis as they provide a reasonable balance between 
context-dependency and size (typically 1000-2000 in a language). In speech 
synthesis, diphone units normally start half-way through the first phone and 
end half-way through the second. This is because it is known that phones are 
more stable in the ntiddle than at the edges, so that the ntiddles of most Ia! 
phones in a diphone are reasonably sintilar, even if the acoustic patterns start 

296



7.8. Waveform Generation for Speech Synthesis 

to differ substantially after that. If diphones are concatenated in the middles 
of phones, the discontinuities between adjacent units are often negligible. 

Pitch and Duration Modification 

The diphone synthesizer as just described will produce a reasonable qual­
ity speech waveform corresponding to the requested phone sequence. But 
the pitch and duration (i.e., the prosody) of each phone in the concatenated 
waveform will be the same as when the diphones were recorded and will not 
correspond to the pitch and durations requested in the input. The next stage 
of the synthesis process therefore is to use signal processing techniques to 
change the prosody of the concatenated waveform. 

The linear prediction (LPC) model described earlier can be used for 
prosody modification as it explicitly separates the pitch of a signal from its 
spectral envelope If the concatenated waveform is represented by a sequence 
of linear prediction coefficients, a set of pulses can be generated correspond­
ing to the desired pitch and used to re-excite the coefficients to produce a 
speech waveform again. By contracting and expanding frames of coeffi­
cients, the duration can be changed. While linear prediction produces the 
correct FO and durations it produces a somewhat "buzzy" speech signaL 

275 

Another technique for achieving the same goal is the time-domain 
pitch-synchronous overlap and add (TD-PSOLA) technique. TD-PSOLA TD~PsoLA 

works pitch-synchronously in that each frame is centered around a pitch-
mark in the speech, rather than at regular intervals as in normal speech sig-
nal processing. The concatenated waveform is split into a number of frames, 
each centered around a pitchmark and extending a pitch period either side. 
Prosody is changed by recombining these frames at a new set of pitchmarks 
determined by the requested pitch and duration of the input. The synthetic 
waveform is created by simply overlapping and adding the frames. Pitch is 
increased by making the new pitchmarks closer together (shorter pitch peri-
ods implies higher frequency pitch), and decreased by making them further 
apart. Speech is made longer by duplication frames and shorter by leaving 
frames out. The operation of TD-PSOLA can be compared to that of a tape 
recorder with variable speed - if you play back a tape faster than it was 
recorded, the pitch periods will come closer together and hence the pitch 
will increase. But speeding up a tape recording effectively increases the fre-
quency of all the components of the speech (including the formants which 
characterize the vowels) and will give the impression of a "squeaky", unnat-
ural voice. TD-PSOLA differs because it separates each frame first and then 

297



276 Chapter 7. HMMs and Speech 

decreases the distance between the frames. Because the internals of 
frame aren't changed, the frequency of the non-pitch components is 
altered, and the resultant speech sounds the same as the original ex"cept 
a different pitch. 

Unit Selection 

While signal processing and diphone concatenation can produce re~tsonalble 
quality speech, the result is not ideal. There are a number of reasons for 
but they all boil down to the fact that having a single example of each dir•hon< 
is not enough. First of all, signal processing inevitably incrus dis:tmtic1n. 
and the quality of the speech gets worse when the signal processing has 
stretch the pitch and druation by large amounts. Furthermore, there are 
other subtle effects which are outside the scope of most signal pnJcessin~ 
algorithms. For instance, the amount of vocal effort decreases over time 
the utterance is spoken, producing weaker speech at the end of the uttenmce. 
lf diphones are taken from near the start of an utterance, they will 
unnatrual in phrase-final positions. 

Unit-selection synthesis is an attempt to address this problem by 
lecting several examples of each unit at different pitches and druations 
linguistic situations, so that the unit is close to the target in the first 
and hence the signal processing needs to do less work. One technique 
unit-selection (Hunt and Black, 1996) works as follows: 

The input to the algorithm is the same as other concatenative S)'l1trne:-. 
sizers, with the addition that the FO contour is now specified as three 
values per phone, rather than as a contoru. The technique uses phones 
its units, indexing phones in a large database of naturally occruring sp,,ech .. 
Each phone in the database is also marked with a duration and three 
values. The algorithm works in two stages. First, for each phone in the 
word, a set of candidate units which match closely in terms of phone i·, ierttity, 
druation and FO is selected from the database. These candidates are rartkec:l 
using a target cost function, which specifies just how close each uuit 
ally is to the target. The second part of the algorithm works by me:astirintg 
how well each candidate for each unit joins with its neighbor's cm1di•dates. 
Various locations for the joins are assessed, which allows the potential 
units to be joined in the middle, as with diphones. These potential joins are 
ranked using a concatenation cost function. The final step is to pick the best 
set of units which minimize the overall target and concatenation cost for 
whole sentence. This step is performed using the Viterbi algorithm in a · 

298



Section 7.9. Human Speech Recognition 

ilar way to HMM speech recognition: here the target cost is the observation 
probability and the concatenation cost is the transition probability. 

By using a much larger database which contains many examples of 
each unit, unit-selection synthesis often produces more natural speech than 
straight dip hone synthesis. Some systems then use signal processing to make 
sure the prosody matches the target, while others simply concatenate the 
units following the idea that a utterance which only roughly matches the 
target is better than one that exactly matches it but also has some signal 
processing distortion. 

7.9 HUMAN SPEECH RECOGNITION 

Speech recognition in humans shares some features with the automatic 
speech recognition models we have presented. We mentioned above that 
signal processing algorithms like PLP analysis (Hermansky, 1990) were in 
fact inspired by properties of the human auditory system. In addition, four 
properties of human lexical access (the process of retrieving a word from 
the mental lexicon) are also true of ASR models: frequency, parallelism, 
neighborhood effects, and cue-based processing. For example, as in ASR 
with its N -gram language models, human lexical access is sensitive to word 
frequency. High-frequency spoken words are accessed faster or with less 
information than low-frequency words. They are successfully recognized 
in noisier environments than low frequency words, or when only parts of 
the words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter 
alia). Like ASR models, human lexical access is parallel: multiple words 
are active at the same time (Marslen-Wilson and Welsh, 1978; Salasoo and 
Pisoni, 1985, inter alia). Human lexical access exhibits neighborhood ef­
fects (the neighborhood of a word is the set of words which closely resem­
ble it). Words with large frequency-weighted neighborhoods are accessed 
slower than words with less neighbors (Luce eta!., 1990). Jurafsky (1996) 
shows that the effect of neighborhood on access can be explained by the 
Bayesian models used in ASR. 

Finally, human speech perception is cue based: speech input is inter­
preted by integrating cues at many different levels. For example, there is 
evidence that human perception of individual phones is based on the inte­
gration of multiple cues, including acoustic cues, such as formant structure 
or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi­
sual cues, such as lip movement (Massaro and Cohen, 1983; Massaro, 1998), 

277 

LEXICAL 
ACCESS 

299



278 

WORD 
ASSOCIATION 
REPETITION 
PRIMING 

ON-LINE 

Chapter 7. HMMs and Speech Recognition 

and lexical cues such as the identity of the word in which the phone is placed 
(Warren. 1970; Samuel, 1981; Connine and Clifton, 1987; Connine, )990). 
For example, in what is often called the phoneme restoration effect, Warren 
(1970) took a speech sample and replaced one phone (e.g. the [s] in legisla­
ture) with a cough. Warren found that subjects listening to the resulting tape 
typically heard the entire word legislature including the [s], and perceived 
the cough as background. Other cues in human speech perception include 
semantic word association (words are accessed more quickly if a semanti­
cally related word has been heard recently) and repetition priming (words 
are accessed more quickly if they themselves have just been heard). The 
intuitions of both these results are incorporated into recent language models 
discussed in Chapter 6, such as the cache model of Kuhn and de Mori (1990), 
which models repetition priming, or the trigger model of Rosenfeld (1996) 
and the LSA models of Coccaro and Jurafsky (1998) and Bellegarda (1999), 
which model word association. In a fascinating reminder that good ideas are 
never discovered only once, Cole and Rudnicky (1983) point out that many 
of these insights about context effects on word and phone processing were 
actually discovered by William Bagley (1901). Bagley achieved his results, 
including an early version of the phoneme restoration effect, by recording 
speech on Edison phonograph cylinders, modifying it, and presenting it to 
subjects. Bagley's results were forgotten and only rediscovered much later.5 

One difference between current ASR models and human speech recog­
nition is the time-course of the model. It is important for the performance of 
the ASR algorithm that the the decoding search optimizes over the entire ut­
terance. This means that the best sentence hypothesis returned by a decoder 
at the end of the sentence may be very different than the current-best hy­
pothesis, halfway into the sentence. By contrast, there is extensive evidence 
that human processing is on-line: people incrementally segment and utter­
ance into words and assign it an interpretation as they hear it. For example, 
Marslen-Wilson (1973) studied close shadowers: people who are able to 
shadow (repeat back) a passage as they hear it with lags as short as 250 ms. 
Marslen-Wilson found that when these shadowers made errors, they were 
syntactically and semantically appropriate with the context, indicating that 
word segmentation, parsing, and interpretation took place within these 250 
ms. Cole (1973) and Cole and Jakirnik (1980) found similar effects in their 
work on the detection of mispronunciations. These results have led psy­
chological models of human speech perception (such as the Cohort model 

5 Recall the discussion on page 15 of multiple independent discovery in science. 

300



Section 7.10. Summary 

(Mars len-Wilson and Welsh, 1978) and the computational TRACE model 
(McClelland and Elman. 1986)) to focus on !he time-course of word selec­
tion and segmentation. The TRACE model. for example, is a connectionist 
or neural network interactive-activation model, based on independent com­
putational units organized into tbree levels: feature, phoneme, and word. 
Each unit represents a hypothesis about its presence in the input. Units are 
activated in parallel by !he input, and activation flows between units; con­
nections between units on different levels are excitatory, while connections 
between units on single level are inhibitatory. Thus !he activation of a word 
slightly inhibits all olher words. 

We have focused on !he similarities between human and machine 
speech recognition; there are also many differences. In particular, many 
other cues have been shown to play a role in human speech recognition but 
have yet to be successfully integrated into ASR. The most important class 
of lhese missing cues is prosody. To give only one example, Cutler and 
Norris (1988), Cutler and Carter (1987) note !hat most multisyllabic English 
word tokens have stress on the initial syllable, suggesting in !heir metrical 
segmentation strategy (MSS) that stress should be used as a cue for word 
segmentation. 

7.10 SUMMARY 

Togelher wilh Chapters 4-6, this chapter introduced !he fundamental algo­
rilhms for addressing the problem of Large Vocabulary Continuous Speech 
Recognition and Text-To-Speech synthesis. 

• The input to a speech recognizer is a series of acoustic waves. The 
waveform, spectrogram and spectrum are among the visualization 
tools used to understand !he information in the signal. 

• In the first step in speech recognition, wound waves are sampled, 
quantized, and converted to some sort of spectral representation; A 
commonly used spectral representation is the LPC cepstrum, which 
provides a vector of features for each time-slice of the input. 

• These feature vectors are used to estimate !he phonetic likelihoods 
(also called observation likelihoods) either by a mixture of Gaussian 
estimators or by a neural net. 

• Decoding or search is !he process of finding !he optimal sequence of 
model states which matches a sequence of input observations. (The 

279 

CONNECTIONIST 

NEURAL 
NETWORK 

301



280 Chapter 7. HMMs and Speech Recognition 

fact that are two terms for this process is a hint that speech recogni­
tion is inherently inter-disciplinary, and draws its metaphors from more 
than one field; decoding comes from information theory, and search 
from artificial intelligence). 

o We introduced two decoding algorithms: time-synchronous Viterbi 
decoding (which is usually implemented with pruning and can then 
be called beam search) and stack or A' decoding. Both algorithms 
take as input a series of feature vectors, and two ancillary algorithms: 
one for assigning likelihoods (e.g., Gaussians or MLP) and one for 
assigning priors (e.g., anN-gram language model). Both give as output 
a string of words. 

o The embedded training paradigm is the normal method for training 
speech recognizers. Given an initial lexicon with hand-built pronunci­
ation structures, it will train the HMM transition probabilities and the 
HMM observation probabilities. This HMM observation probability 
estimation can be done via a Gaussian or an MLP. 

o One way to implement the acoustic component of a TTS system is 
concatenative synthesis, in which au utterance is built by concatenat­
ing and then smoothing diphones taken from a large database of speech 
recorded by a single speaker. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

The first machine which recognized speech was probably a commercial toy 
named "Radio Rex" which was sold in the 1920s. Rex was a celluloid dog 
that moved (via a spring) when the spring was released by 500Hz acoustic 
energy. Since 500Hz is roughly the first formant of the vowel in "Rex", the 
dog seemed to come when he was called (David and Selfridge, 1962). 

By the late 1940s and early 1950s, a number of machine speech recog­
nition systems had been built. An early Bell Labs system could recognize 
any of the 10 digits from a single speaker (Davis et al., 1952). This system 
had 10 speaker-dependent stored patterns, one for each digit, each of which 
roughly represented the first two vowel formants in the digit. They achieved 
97-99% accuracy by choosing the pattern which had the highest relative 
correlation coefficient with the input. Fry (1959) and Denes (1959) built a 
phoneme recognizer at University College, London, which recognized four 
vowels and nine consonants based on a similar pattern-recognition principle. 

302



Section 7.10. Summary 

Fry and Denes's system was the first to use phoneme transition probabilities 
to constrain the recognizer. 

The late 1960s and early 1970s produced a number of important para­
digm shifts. First were a number of feature-extraction algorithms, include 
the efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1965), the 
application of cepstral processing to speech (Oppenheim et a!., 1968), and 
the development of LPC for speech coding (Atal and Hanauer, 1971). Sec-

281 

ond were a number of ways of handling warping; stretching or shrinking WARPING 

the input signal to handle differences in speaking rate and segment length 
when matching against stored patterns. The natural algorithm for solving 
this problem was dynamic programming, and, as we saw in Chapter 5, the 
algorithm was reinvented multiple times to address this problem. The first 
application to speech processing was by Vintsyuk (1968), although his re-
sult was not picked up by other researchers, and was reinvented by Velichko 
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af­
terwards, Itakura (1975) combined this dynamic progranrming idea with the 
LPC coefficients that had previously been used only for speech coding. The 
resulting system extracted LPC features for incoming words and used dy-
namic programming to match them against stored LPC templates. 

The third innovation of this period was the rise of the HMM. Hid­
den Markov Models seem to have been applied to speech independently 
at two laboratories around 1972. One application arose from the work of 
statisticians, in particular Baum and colleagues at the Institute for Defense 
Analyses in Princeton on HMMs and their application to various predic­
tion problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James 
Baker learned of this work and applied the algorithm to speech process­
ing (Baker, 1975) during his graduate work at CMU. Independently, Freder­
ick Jelinek, Robert Mercer, and Lalit Bah! (drawing from their research in 
information-theoretical models influenced by the work of Shannon (1948)) 
applied HMMs to speech at the IBM Thomas J. Watson Research Center 
(Jelinek et a!., 1975). IBM's and Baker's systems were very similar, par­
ticularly in their use of the Bayesian framework described in this chapter. 
One early difference was the decoding algorithm; Baker's DRAGON system 
used Viterbi (dynamic programming) decoding, while the IBM system ap­
plied Jelinek's stack decoding algorithm (Jelinek, 1969). Baker then joined 
the IBM group for a brief time before founding the speech-recognition com­
pany Dragon Systems. The HMM approach to speech recognition would 
tum out to completely dominate the field by the end of the century; indeed 
the IBM lab was the driving force in extending statistical models to natu-

303



282 

BAKE-OFF 

Chapter 7. HMMs and Speech Recognition 

ral language processing as well, including the development of class-based 
N-grams, HMM-based part-of-speech tagging, statistical machine transla­
tion, and the use of entropy/perplexity as an evaluation metric. 

The use of the HMM slowly spread through the speech community, 
One cause was a number of research and development programs sponsored 
by the Advanced Research Projects Agency of the U.S. Department of De­
fense (ARPA). The first five-year program starting in 1971, and is reviewed 
in Klatt (I 977). The goal of this first program was to build speech under­
standing systems based on a few speakers, a constrained grammar and lexi­
con (1000 words), and less than 10% semantic error rate. Four systems were 
funded and compared against each other: the System Development Corpo­
ration (SDC) system, Bolt, Beranek & Newman (BBN)'s HWIM system, 
Carnegie-Mellon University's Hearsay-II system, and Carnegie-Mellon's 
system (Lowerre, 1968). The Harpy system used a simplified version of 
Baker's HMM-based DRAGON system and was the best of the tested sys­
tems, and according to Klatt the only one to meet the original goals of the 
ARPA project (with a semantic error rate of 94% on a simple task). 

Beginning in the mid-1980s, ARPA funded a number of new speech 
research programs. The first was the "Resource Management" (RM) task 
(Price et al., 1988), which like the earlier ARPA task involved transcrip­
tion (recognition) of read-speech (speakers reading sentences constructed 
from a 1000-word vocabulary) but which now included a component that 
involved speaker-independent recognition. Later tasks included recognition 
of sentences read from the Wall Street Journal (WSJ) beginning with limited 
systems of 5,000 words, and finally with systems of unlimited vocabulary 
(in practice most systems use approximately 60,000 words). Later speech­
recognition tasks moved away from read-speech to more natural domains; 
the Broadcast News (also called Hub-4) domain (LDC, 1998; Graff, 1997) 
(transcription of actual news broadcasts, including quite difficult passages 
such as on-the-street interviews) and the CALLHOME and CALLFRIEND 
domain (LDC, 1999) (natural telephone conversations between friends), part 
of what was also called Hub-5. The Air Traffic Information System (ATIS) 
task (Hemphill et a!., 1990) was a speech understanding task whose goal 
was to simulate helping a nser book a flight, by answering questions about 
potential airlines, times, dates, and so forth. 

Each of the ARPA tasks involved an approximately annual bake-off at 
which all ARPA -funded systems, and many other 'volunteer' systems from 
North American and Europe, were evaluated against each other in terms of 
word error rate or semantic error rate. In the early evaluations, for-profit cor-

304



Section 7.10. Summary 

porations did not generally compete, but eventually many (especially IBM 
and ATT) competed regularly. The ARPA competitions resulted in widescale 
borrowing of techniques among labs, since it was easy to see which ideas 
had provided an error-reduction the previous year, and were probably an im­
portant factor in the eventual spread of the HMM paradigm to virtual every. 
major speech recognition lab. The ARPA program also resulted in a number 
of useful databases, originally designed for training and testing systems for 
each evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard) 
but then made available for general research use. 

There are a number of textbooks on speech recognition that are good 
choices for readers who seek a more in-depth understanding of the material 
in this chapter: Jelinek (1997), Gold and Morgan (1999), and Rabiner and 
Juang (1993) are the most comprehensive. The last two textbooks also have 
comprehensive discussions of the history of the field, and together with the 
survey paper of Levinson (1995) have influenced our short history discussion 
in this chapter. Our description of the forward-backward algorithm was mod­
eled after Rabiner (1989). Another useful tutorial paper is Knill and Young 
(1997). Research in the speech recognition field often appears in the pro­
ceedings of the biennial EUROSPEECH Conference and the International 
Conference on Spoken Language Processing (ICSLP), held in alternating 
years, as well as the annual IEEE International Conference on Acoustics, 
Speech, and Signal Processing (ICASSP). Journals include Speech Com­
munication, Computer Speech and Language, IEEE Transactions on Pattern 
Analysis and Machine Intelligence, and IEEE Transactions on Acoustics, 
Speech, and Signal Processing. 

EXERCISES 

7.1 Analyze each of the errors in the incorrectly recognized transcription 
of "urn the phone is I left the ... " on page 271. For each one, give your best 
guess as to whether you think it is caused by a problem in signal process­
ing, pronunciation modeling, lexicon size, language model, or pruning in the 
decoding search. 

7.2 In practice, speech recognizers do aU their probability computation us-

283 

ing the log probability (or logprob) rather than actual probabilities. This LOGPRos 

305



284 
Chapter 7. HMMs and Speech Recognition 

helps avoid underflow for very small probabilities, but also makes the Viterbi 
algorithm very efficient, since all probability multiplications can be imple­
mented by adding log probabilities. Rewrite the pseudocode for the Viterbi 
algorithm in Figure 7.9 on page 249 to make use of logprobs instead of prob­
abilities. 

7.3 Now modify the Viterbi algorithm in Fignre 7.9 on page 249 to im­
plement the beam search described on page 25 I. Hint: Yon will probably 
need to add in code to check whether a given state is at the end of a word or 
not. 

7.4 Finally, modify the Viterbi algorithm in Fignre 7.9 on page 249 with 
more detailed pseudocode implementing the array of backtrace pointers. 

7.5 Implement the Stack decoding algorithm of Figure 7.14 on 256. Pick 
a very simple h* function like an estimate of the number of words remaining 
in the sentence. 

7.6 Modify the forward algorithm of Fignre 5. I 6 to use the tree-structured 
lexicon of Figure 7.18 on page 259. 

306



17 
WORD SENSE 
DISAMBIGUATION AND 
INFORMATION 
RETRIEVAL 

Oh are you from Wales? 
Do you know afella named Jonah? 
He used to live in whales for a while. 

Groucho Marx 

This chapter introduces a number of topics related to lexical semantic pro­
cessing. By this, we have in mind applications that make use of word mean­
ings, but which are to varying degrees decoupled from the more complex 
tasks of compositional sentence analysis and discourse understanding. 

The first topic we cover, word sense disambiguation, is of consider­
able theoretical and practical interest. Recall from Chapter 16 that the task of 
word sense disambiguation is to examine word tokens in context and specify 
exactly which sense of each word is being used. As we will see, this is a 
non-trivial undertaking given the somewhat illusive nature of a word sense. 
Nevertheless, there are robust algorithms that can achieve high levels of ac­
curacy given certain reasonable assumptions. 

The second topic we cover, information retrieval, is an extremely 
broad field, encompassing a wide-range of topics pertaining to the storage, 
analysis, and retrieval of all manner of media (Baeza-Yates and Ribeiro­
Neto, 1999). Our concern in this chapter is solely with the storage andre­
trieval of text documents in response to users' requests for information. We 
are interested in approaches in which users' needs are expressed as words, 
and documents are represented in terms of the words they contain. Section 
17.3 presents the vector space model, some variant of which is used in many 
current systems, including most Web search engines. 

LEXICAL 
SEMANTIC 
PROCESSING 

WORD SENSE 
DISAMBIGUATION 

INFORMATION 
RETRIEVAL 

307



632 

17.1 

Chapter 17. Word Sense Disambiguation and Information Retrieval 

SELECTIONAL RESTRICTION-BASED DISAMBIGUATION 

For the most part, our discussions of compositional semantic analyzers in 
Chapter 15 ignored the issue of lexical ambiguity. By now it should be 
clear that this is not a reasonable approach. Without some means of se­
lecting correct senses for the words in the input, the enormous amount of 
homonymy and polysemy in the lexicon will quickly overwhelm any ap­
proach in an avalanche of competing interpretations. As with syntactic part­
of-speech tagging, there are two fundamental approaches to handling this 
ambiguity problem. In an integrated rule-to-rule approach to semantic anal­
ysis, the selection of correct word senses occurs during semantic analysis 
as a side-effect of the elimination of ill-formed semantic representations. In 
a stand-alone approach, sense disambiguation is performed independent of, 
and prior to, compositional semantic analysis. This section discusses the role 
of selectional restrictions in the former approach. The stand-alone approach 
is discussed in detail in Section 17.2. 

Selectional restrictions and type hierarchies are the primary knowledge­
sources used to perform disambiguation in most integrated approaches. They 
are used to rule out inappropriate senses and thereby reduce the amount of 
ambiguity present during semantic analysis. In an integrated rule-to-rule ap­
proach to semantic analysis, selectional restrictions are used to block the 
formation of component meaning representations that contain selectional re­
striction violations. By blocking such ill-formed components, the semantic 
analyzer will find itself dealing with fewer ambiguous meaning representa­
tions. This ability to focus on correct senses by eliminating flawed represen­
tations that result from incorrect senses can be viewed as a form of indirect 
word sense disambiguation. While the linguistic basis for this approach can 
be traced back to the work of Katz and Fodor (1963), the most sophisticated 
computational exploration of it is due to Hirst (1987). 

As an example of this approach, consider the following pair of WSJ 
examples, focusing solely on their use of the lexeme dish: 

(17.1) "In our house, everybody has a career and none of them includes 
washing dishes," he says. 

(17.2) In her tiny kitchen at home, Ms. Chen works efficiently, stir-frying 
several simple dishes, including braised pig's ears and chicken 
livers with green peppers. 

These examples make use of two polysemous senses of the lexeme dish. 
first refers to the physical objects that we eat from, while the second refers 

308



Section 17.1. Selectional Restriction-Based Disambiguation 

the actual meals or recipes. The fact that we perceive no ambiguity in these 
examples can be attributed to the selectional restrictions imposed by wash 
and stir-fry on their PATIENT roles. along with the semantic type information 
associated with the two senses of dish. The restrictions imposed by wash 
conflict with the food sense of dish since it does not denote something that 
is normally washable. Similarly, the restrictions on stir-fry conflict with the 
artifact sense of dish, since it does not denote something edible. Therefore, 
in both of these cases the predicate selects the correct sense of an ambiguous 
argument by eliminating the sense that fails to match one of its selectional 
restrictions. 

Now consider the following WSJ and ATIS examples, focusing on the 
ambiguous predicate serve: 

(17.3) Well, there was the time they served green-lipped mussels from 
New Zealand. 

(17.4) Which airlines serve Denver? 

(17.5) Which ones serve breakfast? 

Here the sense of serve in example (17.3) requires some kind of food as its 
PATIENT, the sense in example (17.4) requires some kind of geographical or 
political entity, and the sense in the last example requires a meal designator. 
If we assume that mussels, Denver and breakfast are unambiguous, then it is 
the arguments in these examples that select the appropriate sense of the verb. 

Of course, there are also cases where both the predicate and the argu­
ment have multiple senses. Consider the following BERP example: 

(17.6) I'm looking for a restaurant that serves vegetarian dishes. 

Restricting ourselves to three senses of serve and two senses of dish yields 
six possible sense combinations in this example. However, since only one 
combination of the six is free from a selectional restriction violation, de­
termining the correct sense of both serve and dish is straightforward; the 
predicate and argument mutually select the correct senses. 

Although there are a wide variety of ways to integrate this style of 
disambiguation into a semantic analyzer, the most straightforward approach 
follows the rule-to-rule strategy introduced in Chapter 15. In this integrated 
approach, fragments of meaning representations are composed and checked 
for selectional restriction violations as soon as their corresponding syntac­
tic constituents are created. Those representations that contain selectional 
restriction violations are eliminated from further consideration. 

633 

309



634 Chapter 17. Word Sense Disambiguation and Information Retrieval 

This approach requires two additions to the knowledge structures used 
in semantic analyzers: access to hierarchical type information about argu­
ments, and semantic selectional restriction information about the arguments 
to predicates. Recall from Chapter 16 that both of these can be encoded us­
ing knowledge from WordNet. The type information is available in the form 
of the hypernym information about the heads of the meaning structures be­
ing used as arguments to predicates. The selectional restriction information 
about argument roles can be encoded by associating the appropriate Word­
Net synsets with the arguments to each predicate-bearing lexical item. 

Limitations of Selectional Restrictions 

There are a number of practical and theoretical problems with this use of 
selectional restrictions. The first symptom of these problems is the fact that 
there are examples like the following where the available selectional restric­
tions are too general to uniquely select a correct sense: 

(17.7) What kind of dishes do you recommend? 

In cases like this, we either have to rely on the stand-alone methods to be 
discussed in Section 17 .2, or knowledge of the broader discourse context, as 
will be discussed in Chapter 18. 

More problematic are examples that contain obvious violations of se­
lectional restrictions but are nevertheless perfectly well-formed and inter­
pretable. Therefore, any approach based on a strict elimination of such in­
terpretations is in serious trouble. Consider the following WSJ example: 

(17.8) Bnt it fell apart in 1931, perhaps because people realized you can't 
eat gold for lunch if you're hungry. 

The phrase eat gold clearly violates the selectional restriction that eat places 
on its PATIENT role. Nevertheless, this example is perfectly well-formed. 
The key is the negative environment set up by can't prior to the violation of 
the restriction. This example malces it clear that any purely local, or rule-to­
rule, analysis of selectional restrictions will fail when a wider context makes 
the violation of a selectional restriction acceptable. 

A second problem with selectional restrictions is illustrated by the fol­
lowing example: 

(17.9) In his two championship trials, Mr. Kullcarni ate glass on an empty 
stomach, accompanied only by water and tea. 

Although the event described in this example is somewhat unusual, the sen­
tence itself is not semantically ill-formed, despite the violation of eat's selec-

310



Section 17 .1. Selectional Resttiction-Based Disambiguation 

tional restriction. Examples such as this illustrate the fact that thematic roles 
and selectional resttictions are merely loose approximations of the deeper 
concepts they represent. They cannot hope to account for uses that require 
deeper commonsense knowledge about what eating is all about. At best, they 
reflect the idea that the things that are eaten are normally edible. 

Finally, as discussed in Chapter 16, metaphoric and metonymic uses 
challenge this approach as well. Consider the following WSJ example: 

( 17 .I 0) If you want to kill the Soviet Union, get it to try to eat Afghanistan. 

Here the typical selectional resttictions on the PATIENTS of both kill and eat 
will eliminate all possible literal senses leaving the system with no possible 
meanings. In many systems, such a situation serves to trigger alternative 
mechanisms for interpreting metaphor and metonymy (Fass, 1997). 

As Hirst (1987) observes, examples like these often result in the elim­
ination of all senses, bringing semantic analysis to a halt. One approach 
to alleviating this problem is to adopt the view of selectional restrictions as 
preferences, rather than rigid requirements. Although there have been many 
instantiations of this approach over the years (Wilks, 1975c, 1975b, 1978), 
the one that has received the most thorough empirical evaluation is Resnik's 
(1997) work, which uses the notion of a selectional association. A selec­
tional association is a probabilistic measure of the strength of association 
between a predicate and a class dominating the argument to the predicate. 
Resnik (1997) gives a method for deriving these associations using Word­
Net's hyponymy relations combined with a tagged corpus containing verb­
argument relations. 

Resnik (1998) shows that these selectional associations can be used to 
perform a limited form of word sense disambiguation. Roughly speaking 
the algorithm selects as the correct sense for an argument, the one that has 
the highest selectional association between one of its ancestor hypemyms 
and the predicate. Resnik (1997) reports an average of 44% correct with 
this technique for verb-object relationships, a result that is an improvement 
over the most frequent sense baseline which performs at 28%. A limitation 
of this approach is that it only addresses the case where the predicate is 
unambiguous and selects the correct sense of the argument. A more complex 
decision criteria would be needed for the situation where both the predicate 
and argument are ambiguous. 

635 

311



636 Chapter 17. Word Sense Disambiguation and Information Retrieval 

17.2 ROBUST WORD SENSE DISAMBIGUATION 

The selectional restriction approach to disambiguation has too many require­
ments to be useful in large-scale practical applications·. Even with the use of 
WordNet, the requirements of complete selectional restriction information 
for all predicate roles, and complete type information for the senses of all 
possible fillers are unlikely to be met. In addition, as we saw in Chapters 10, 
12, and 15, the availability of a complete and accurate parse for all inputs is 
unlikely to be met in environments involving unrestricted text. 

To address these concerns, a number of robust stand-alone disambigua­
tion systems with more modest requirements have been developed over the 
years. As with part-of-speech taggers, these systems are designed to op­
erate in a stand-alone fashion and make minimal assumptions about what 
information will be available from other processes. The following sections 
explore the application of supervised, bootstrapping, and unsupervised rna­
chine learning approaches to this problem. We then consider the role of 
machine readable dictionaries in the construction of stand-alone taggers. 

Machine Learning Approaches 

In machine learning approaches, systems are trained to perform the task 
of word sense disambiguation. In these approaches, what is learned is a 
classifier that can be used to assign as yet unseen examples to one of a fixed 
number of senses. As we will see, these approaches vary as to the nature 
of the training material, how much material is needed, the degree of human 
intervention, the kind of linguistic knowledge used, and the output produced. 
What they all share is an emphasis on acquiring the knowledge needed for 
the task from data, rather than from human analysts. The principal question 
to keep in mind as we explore these systems is whether the method scales; 
that is, would it be possible to apply the method to a substantial part of the 
entire vocabulary of a language? 

The Inputs: Feature Vectors 

In most of these approaches, the initial input consists of the word to be dis­
ambiguated, which we will refer to as the target word, along with a portion 
of the text in which it is embedded, which we will call its context. This 
initial input is then processed in the following ways: 

312



Section 17 .2. Robust Word Sense Disambiguation 

• The input is normally part-of-speech tagged using one of the high ac­
curacy methods described in Chapter 8. 

• The original context may be replaced with larger or smaller segments 
surrounding the target word. 

• Often some amount of stemming, or more sophisticated morphological 
processing, is performed on all the words in the context. 

• Less often, some form of partial parsing, or dependency parsing, is 
performed to ascertain thematic or grammatical roles and relations. 

After this initial processing, the input is then boiled down to a fixed set 
of features that capture information relevant to the learning task. This task 
consists of two steps: selecting the relevant linguistic features, and encoding 
them in a form usable in a learning algorithm. A simple feature vector con­
sisting of numeric or nominal values can easily encode the most frequently 
used linguistic information, and is appropriate for use in most learning algo­
rithms. 

The linguistic features used in training WSD systems can be roughly 
divided into two classes: collocational features and co-occurrence features. 
In general, the term collocation refers to a quantifiable position-specific re­
lationship between two lexical items. Collocational features encode infor­
mation about the lexical inhabitants of specific positions located to the left 
or right of the target word. Typical features include the word, the root form 
of the word, and the word's part-of-speech. Such features are effective at en­
coding local lexical and grammatical information that can often accurately 
isolate a given sense. 

As an example of this type of feature-encoding, consider the situation 
where we need to disambiguate the word bass in the following example: 

(17 .11) An electric guitar and bass player stand off to one side, not really 
part of the scene, just as a sort of nod to gringo expectations 
perhaps. 

A feature-vector consisting of the two words to the right and left of the target 
word, along with their respective parts-of-speech, would yield the following 
vector: 

[guitar, NNl, and, CJC, player, NNl, stand, VVB] 

The second type of feature consists of co-occurrence data about neigh­
boring words, ignoring their exact position. In this approach, the words 
themselves (or their roots) serve as features. The value of the feature is the 
number of times the word occurs in a region surrounding the target word. 

637 

FEATURE 
VECTOR 

COLLOCATION 

313



638 

SUPERVISED 
LEARNING 

NAIVE BAYES 
CLASSIFIER 

Chapter 17. Word Sense Disambiguation aud Information Retrieval 

This region is most often defined as a fixed size window with the target word 
at the center. To make this approach manageable, a small number oj fre­
quently used content words are selected for use as features. This kind of 
feature is effective at capturing the general topic of the discourse in which 
the target word has occurred. This, in turn, tends to identify senses of a word 
that are specific to certain domains. 

For example, a co-occurrence vector consisting of the 12 most frequent 
content words from a collection of bass sentences drawn from the WSJ cor­
pus would have the following words as features: fishing, big, sound, player, 
fly, rod, pound, double, runs, playing, guitar, band. Using these words as 
features with a window size of 10, example (17.11) would be represented by 
the following vector: 

[0,0,0,1,0,0,0,0,0,0,1,0] 

As we will see, most robust approaches to sense disambiguation make 
use of a combination of both collocational and co-occurrence features. 

Supervised Learning Approaches 

fu supervised approaches, a sense disambiguation system is learned from a 
representative set of labeled instances drawn from the same distribution as 
the test set to be used. This is au application of the supervised learning 
approach to creating a classifier. In such approaches, a learning system is 
presented with a training set consisting of feature-encoded inputs along with 
their appropriate label, or category. The output of the system is a classifier 
system capable of assigning labels to new feature-encoded inputs. 

Bayesian classifiers (Duda and Hart, 1973), decision lists (Rivest, 1 
decision trees (Quinlan, 1986), neural networks (Rumelhart et a!., 1986), 
logic learning systems (Mooney, 1995), and nearest neighbor methods (C<>VeJr 
aud Hart, 1967) all fit into this paradigm. We will restrict our discussion to 
the naive Bayes and decision list approaches, since they have been the focus 
of considerable work in word sense disambiguation. 

The naive Bayes classifier approach to WSD is based on the premise 
that choosing the best sense for au input vector amounts to choosing the most 
probable sense given that vector. In other words: 

s= argmaxP(s!V) 
sES 

fu this formula, S denotes the set of senses appropriate for the target asso• 
ciated with this vector, s denotes each of the possible senses in S, aud 
stauds for the vector representation of the input context. As is almost always 

314



Section 17.2. Robust Word Sense Disambiguation 

METHODOLOGY BOX: EVALUATING WSD SYSTEMS 

The basic metric used in evaluating sense disambiguation sys­
tems is simple precision: the percentage of words that are tagged 
correctly. The primary baseline against which this metric is com­
pared is the most frequent sense metric (Gale et al., 1992): how 
well a system would perform if it simply chose the roost frequent 
sense of a word. 

The use of precision requires access to the correct senses for the 
words in a test set. Fortunately, two large sense-tagged corpora are 
now available: the SEMCOR corpus (Landes et al., 1998), which con­
sists of a portion of the Brown corpus tagged with WordNet senses, 
and the SENSEVAL corpus (Kilgarriff and Rosenzweig, 2000), which 
is a tagged corpus derived from the HECTOR corpus and dictionary 
project. 

639 

One complication arising from the use of simple precision is 
that the nature of the senses used in an evaluation has a huge effect 
on the results. In particular, results derived from the use of coarse 
distinctions among homographs, such as the musical and fish senses 
of bass, can not easily be compared to results based on the use of 
fine-grained sense distinctions such as those found in traditional dic­
tionaries, or lexical resources like WordNet. 

A second complication has to do with rnetrics that go beyond 
simple precision and make use of partial credit. For example, con­
fusing a particular musical sense of bass with a fish sense, is clearly 
worse than confusing it with another musical sense. With such a 
metric, an exact sense-match would receive full credit, while select­
ing a broader sense would receive partial credit. Of course, this kind 
of scheme is entirely dependent on the organization of senses in the 
particular dictionary being used. 

Standardized evaluation frameworks for word sense disam­
biguation systems are now available. In particular, the SENSEVAL 

effort (Kilgarriff and Palmer, 2000), provides the same kind of eval­
uation framework for sense disambiguation, that the MUC (Sund­
heim, 1995b) and TREC (Voorhees and Harman, 1998) evaluations 
have provided for information extraction and information retrieval. 

315



640 Chapter 17. Word Sense Disambiguation and Information Retrieval 

the case. it would be difficult to collect statistics for this equation directly. 
Instead, we rewrite it in the usual Bayesian manner as follows: ' 

• P(lfls)P(s) 
s = argmax P( ) 

'ES j1 
(17.13) 

Of course, the data available that associates specific vectors with senses 
is too sparse to be useful. However, what is available in abundance in a 
tagged training set is information about individual feature-value pairs in the 
context of specific senses. Therefore, we can make the independence as­
sumption that gives this method its name, and that has served us well in part­
of-speech tagging, speech recognition, and probabilistic parsing - naively 
assuming that the features are independent of one another. Making this as­
sumption yields the following approximation for P(lfls): 

n 

P(lfls) ""II P(vJis) (17.14) 
}=! 

In other words, we can estimate the probability of an entire vector given a 
sense by the product of the probabilities of its individual features given that 
sense. 

Given this equation, training a naive Bayes classifier amounts to col­
lecting counts of the individual feature-value statistics with respect to each 
sense of the target word in a sense-tagged training corpus. To make this con­
crete, let's return to example (17.11). The individual statistics needed for 
this example might include the probability of the word player occurring im­
mediately to the right of a use of each of the bass senses, or the probability 
of the word guitar one place to the left of a use of one of the bass senses. 

Returning to equation (17.13), the term P(s) is the prior for each sense, 
which just corresponds to the proportion of each sense in the sense-tagged 
training corpus. Finally, since P(lf) is the same for aU possible senses, it 
does not effect the final ranking of senses, leaving us with the following: 

n 

s= argmaxP(s) II P(vJis) 
sES )=l 

Of course, all the issues discussed in Chapter 6 with respect to zero counts 
and smoothing apply here as well. 

In a large experiment evaluating a number of supervised learning al­
gorithms, Mooney (1996) reports that a naive-Bayes classifier and a neural 
network achieved the highest performance, both achieving around 73% cor· 
rect in assigning one of six senses to a corpus of examples of the word line. 

DECISION 
usr Decision list classifiers are equivalent to simple case statements in 
CLASSIFIERS 

316



Section 17 .2. Robust Word Sense Disambiguation 

Rule Sense 
fish within window =} bass1 

striped bass =} bass1 

guitar within window =} bass2 

bass player =} bass2 

piano within window =} bass2 

tenor within window =} bass2 

sea bass =} bass1 

playN bass =} bass2 

river within window =} bass1 

violin within window =} bass2 

salmon within window =} bass1 

on bass =} bass2 

bass are =} bass1 

Figure 17.1 An abbreviated decision list for disambiguating the fish sense 
of bass from the music sense. Adapted from Yarowsky (1996). 

most programming languages. In a decision list classifier, a sequence of 
tests is applied to each vector encoded input. If a test succeeds, then the 
sense associated with that test is returned. If the test fails, then the next test 
in the sequence is applied. This continues until the end of the list, where a 
default test simply returns the majority sense. 

Figure 17.1 shows a portion of a decision list for the task of discrim­
inating the fish sense of bass from the music sense. The first test says that 
if the word fish occurs anywhere within the input context then bass1 is the 
correct answer. If it doesn't then each of the subsequent tests is consulted in 
turn until one returns true; as with case statements a default test that returns 
true is included at the end of the list. 

Learning a decision Jist classifier consists of generating and ordering 
individual tests based on the characteristics of the training data. There are 
a wide number of methods that can be used to create such lists. In the ap­
proach used by Yarowsky (1994) every individual feature-value pair consti­
tutes a test. These tests are then ordered according to their individual accu­
racy on the entire training set, where the accuracy of a test is based on its 
log-likelihood ratio: 

Abs(Log (P(Sense1lft =vj))) (l7.l6) 
P(Sense2lft = Vj) 

The decision list is created from these tests by simply ordering the tests in the 

641 

317



642 

BOOTSTRAPPING 
APPROACH 

Chapter 17. Word Sense Disambiguation and Information Retrie':'al 

list according to this measure, with each test returning the appropriate sense. 
Yarowsky (1996) reports that this technique consistently achieves over 95% 
correct on a wide variety of binary decision tasks. 

We should note that this training method differs qnite a bit from stan­
dard decision list learning algorithms. For the details and theoretical moti­
vation for these approaches see Rivest (1987) or Russell and Norvig (1995). 

Bootstrapping Approaches 

A major problem with supervised approaches is the need for a large sense­
tagged training set. The bootstrapping approach (Hearst, 1991; Y arowsky, 
1995) eliminates the need for a large training set by relying on a relatively 
small number of instances of each sense for each lexeme of interest. These 
labeled instances are used as seeds to train an initial classifier using any of 
the supervised learning methods mentioned in the last section. This initial 
classifier is then be used to extract a larger training set from the remaining 
untagged corpus. Repeating this process results in a series of classifiers with 
improving accuracy and coverage. 

The key to this approach lies in its ability to create a larger training set 
from a small set of seeds. To succeed, it must include only those instances 
in which the initial classifier has a high degree of confidence. This larger 
training set is then used to create a new more accurate classifier with broader 
coverage. With each iteration of this process, the training corpus grows and 
the untagged corpus shrinks. As with most iterative methods, this process 
can be repeated until some sufficiently low error-rate on the training set is 
reached, or until no further examples from the untagged corpus are above 
threshold. 

The initial seeds used in these bootstrapping methods can be generated 
in a number of ways. Hearst (1991) generates a seed set by simply hand­
labeling a small set of examples from the initial corpus. This approach has 
three major advantages: 

o There is a reasonable certainty that the seed instances are correct, 
ensuring that the learner does not get off on the wrong foot. 

o The analyst can make some effort to choose examples that are not only 
correct, but in some sense prototypical of each sense. 

o It is reasonably easy to carry out. 

An effective alternative technique is to search for sentences contain­
ing words or phrases that are strongly associated with the target senses. 
Y arowsky ( 1995) calls this the One Sense per Collocation constraint and 

318



Section 17.2. Robust Word Sense Disambiguation 

Klucevsek plays Giulietti or Titano piano accordions with the more flexible, more 
difficult free bass rather than the traditional Stradella hass with its preset chords 
designed mainly for accompaniment. 

We need more good teachers - right now, there are only a half a dozen who c~ 
play the free bass with ease. 

An electric guitar and bass player stand off to one side, not really part of the scene, 
just as a sort of nod to gringo expectations perhaps. 

When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of 
Fame, honors this historic night next Saturday, Harry Goodman, Mr. Goodman's 
brother and bass player at the original concert, will be in the audience with other 
family members. 
The researchers said the worms spend part of their life cycle in such fish as Pacific 
salmon and striped bass and Pacific rockfish or snapper. 

Associates describe Mr. Whitacre as a quiet, disciplined and assertive manager 
whose favorite form of escape is bass fishing. 

And it all started when fishermen decided the striped bass in Lake Mead were too 
skinny. 

Though still a far cry from the lake's record 52-pound bass of a decade ago, "you 
could fillet these fish again, and that made people very, very happy," Mr. Paulson 
says. 

Saturday morning I arise at 8:30 and click on "America's best-known fisherman;' 
giving advice on catching bass in cold weather from the seat of a bass boat in 
Louisiana. 

Figure 17.2 Samples of bass sentences extracted from the WSJ using the 
simple correlates play and fish. 

presents results that show it yields remarkably good results. As an illustra­

tion of this technique, consider the situation where we would like to generate 

a reasonable set of seed sentences for the fish and musical senses of bass. 
Without too much thought, we might come up with fish as a reasonable in­

dicator of bass 1, and play as a reasonable indicator of bass2 . Figure 17.2 

shows a partial result of a such a search for the strings "fish" and "play" in a 
corpus of bass examples drawn from the WSJ. 

Of course, we might also want some way to automatically suggest 

these associated words. Yarowsky (1995) suggests two methods to select ef­
fective correlates: deriving them from machine readable dictionary entries, 

and selecting seeds using collocational statistics such as those described in 

Chapter 6. Yarowsky (1995) reports an average performance of 96.5% on a 

643 

319



644 Chapter 17. Word Sense Disambiguation and Information Retrieval 

coarse binary sense assignment involving 12 words. In these experiments, 
a training set derived using bootstrapping with seed sentences discovered 
using correlates was used to train a decision list classifier for each word. 

Unsupervised Methods: Discovering Word Senses 

Unsupervised approaches to sense disambiguation eschew the use of sense 
tagged data of any kind during training. In these approaches, feature-vector 
representations of unlabeled instances are taken as input and are then grouped 
into clusters according to a similarity metric. These clusters can then be rep­
resented as the average of their constituent feature-vectors, and labeled by . 
hand with known word senses. Unseen feature-encoded instances can be ·. 
classified by assigning them the word sense from the cluster to which they 
are closest according to the similarity metric. 

Fortunately, clustering is a well-studied problem with a wide number 
of standard algorithms that can be applied to inputs structured as vectors of 
numerical values (Duda and Hart, 1973). A frequently used technique in 

~r8§f,",\~~TIVE language applications is known as agglomerative clustering. In this tech­
nique, each of theN training instances is initially assigned to its own cluster. 
New clusters are then formed in a bottom-up fashion by successively merg­
ing the two clusters that are most similar. This process continues until either 
a specified number of clusters is reached, or some global goodness measure 
among the clusters is achieved. In cases where the number of training in­
stances makes this method too expensive, random sampling can be used on 
the original training set (Cutting et al., 1992b) to achieve similar results. 

The fact that these unsupervised methods do not make use of hand­
labeled data poses a number of challenges for evaluating any clustering re­
sult. The following problems are among the most important ones that have 
to be addressed in unsupervised approaches: 

• The correct senses of the instances used in the training data may not be 
known. 

o The clusters are almost certainly heterogeneous with respect to the 
senses of the training instances contained within them. 

o The number of clusters is almost always different from the number of 
senses of the target word being disambiguated. 

Schiitze's experiments (Schiitze, 1992, 1998) constitute an extensive 
application of unsupervised clustering to word sense disambiguation. Al­
though the actual technique is quite involved, unsupervised clustering is at 
the core of the method. Schiitze' s results indicate that for coarse binary dis-

320



Section 17 .2. Robust Word Sense Disambiguation 

tinctions, unsupervised techniques can achieve results approaching those of 
supervised and bootstrap methods, in most instances approaching the 90% 
range. As with most of the supervised methods, this method was tested on a 
small sample of words. 

Dictionary-Based Approaches 

A major drawback with all of these approaches is the problem of scale. All 
require a considerable amount of work to create a classifier for each ambigu­
ous entry in the lexicon. For this reason, most of the experiments with these 
methods report results ranging from 2 to 12 lexical items (The work of N g 
and Lee (1996) is a notable exception reporting results disambiguating 121 
nouns and 70 verbs). Scaling up any of these approaches to deal with all 
the ambiguous words in a language would be a large undertaking. Instead, 
attempts to perform large-scale disambiguation have focused on the use of 
machine readable dictionaries, of the kind discussed in Chapter 16. In this 
style of approach, the dictionary provides both the means for constructing a 
sense !agger, and the target senses to be used. 

The first implementation of this approach is due to Lesk (1986). In 
this approach, all the sense definitions of the word to be disambiguated are 
retrieved from the dictionary. Each of these senses is then compared to the 
dictionary definitions of all the remaining words in the context. The sense 
with the highest overlap with these context words is chosen as the correct 
sense. Note that the various sense definitions of the context words are all 
simply lumped together in this approach. 

To make this more concrete, consider Lesk's example of selecting the 
appropriate sense of cone in the phrase pine cone given the following defini­
tions for pine and cone. 

pme 1 kinds of evergreen tree with needle-shaped leaves 
2 waste away through sorrow or illness 

cone 1 solid body which narrows to a point 
2 something of this shape whether solid or hollow 
3 fruit of certain evergreen trees 

In this example, Lesk' s method would select cone3 as the correct sense 
since two of the words in its entry, evergreen and tree, overlap with words 
in the entry for pine, whereas neither of the other entries have any overlap 
with words in the definition of pine. Lesk reports accuracies of 50-70% on 
short samples of text selected from Austen's Pride and Prejudice and an AP 
newswire article. 

645 

321



646 

SUBJECT 
CODES 

17.3 

Chapter 17. Word Sense Disambiguation and Information Retrieval 

The primary problem with this approach is that the dictionary entries 
for the target words are relatively short, and may not provide sufficrent ma­
terial to create adequate classifiers since the words used in the context and 
their definitions must have direct overlap with the words contained in the 
appropriate sense definition in order to be useful. 1 One way to remedy this 
problem is to expand the list of words used in the classifier to include words 
related to, but not contained in their individual sense definitions. This can be 
accomplished by including words whose definitions make use of the target 
word. For example, the word deposit does not occur in the definition of bank 
in the American Heritage Dictionary (Morris, 1985). However, bank does 
occur in the definition of deposit. Therefore, the classifier for bank can be 
expanded to include deposit as a relevant feature. 

Of course, just knowing that deposit is related to bank does not help 
much since we don't know to which sense of bank it is related. Specifi­
cally, to make use of deposit as a feature, we have to know which sense of 
bank was being used in its definition. Fortunately, many dictionaries and 
thesauri include tags known as subject codes in their entries that correspond 
roughly to broad conceptual categories. For example, the entry for bank 
in the Longman's Dictionary of Contemporary English (LDOCE) (Procter, 
1978) includes the subject code EC (Economics) for the financial senses of 
bank. Given such subject codes, we can guess that expanded terms with 
the subject code EC will be related to this sense of bank rather than any of 
the others. Guthrie eta!. (1991) report results ranging from 47% correct for 
fine-grained LDOCE distinctions to 72% for more coarse distinctions. 

INFORMATION RETRIEVAL 

Information retrieval is a growing field that encompasses a wide range of 
topics related to the storage and retrieval of all manner of media. The focus 
of this section is with the storage of text documents and their subsequent 
retrieval in response to users' requests for information. Of particular int:ere:sf. 
is the widespread adoption of word-based indexing and retrieval methods. 
Most current information retrieval systems are based on an extreme inter­
pretation of the principle of compositional semantics. In these systems, 
meaning of documents resides solely in the words that are contained w"llli'. 

1 Indeed, Lesk (1986) notes that the performance of his system seems to roughly correl!tte • 
with the length of the dictionary entries. 

322



Section 17.3. Information Retrieval 

them. To revisit the Mad Hatter's quote from the beginning of Chapter 16, 
in these systems I see what I eat and I eat what I see mean precisely the 
same thing. The ordering and constituency of the words that make up the 
sentences that make up documents play no role in determining their mean­
ing. Because they ignore syntactic information, these approaches are often 
referred to as bag of words methods. 

Before moving on, we need to introduce some new terminology. In in­
formation retrieval, a document refers generically to the unit of text indexed 
in the system and available for retrieval. Depending on the application, a 
document can refer to anything from intuitive notions like newspaper arti­
cles, or encyclopedia entries, to smaller units such as paragraphs and sen­
tences. In Web-based applications, it can refer to a Web page, a part of a 
page, or to an entire Website. A collection refers to a set of documents being 
used to satisfy user requests. A term refers to a lexical item that occurs in 
a collection, but it may also include phrases. Finally, a query represents a 
user's information need expressed as a set of terms. 

The specific information retrieval task that we will consider in detail is 
known as ad hoc retrieval. In this task, it is assumed that an unaided user 
poses a query to a retrieval system, which then returns a possibly ordered 
set of potentially useful documents. Several other related, lexically oriented, 
information retrieval tasks will be discussed in Section 17.4. 

The Vector Space Model 

In the vector space model of information retrieval, documents and queries 
are represented as vectors of features representing the terms that occur within 
them (Salton, 1971). More properly, they are represented as vectors of fea­
tures consisting of the terms that occur within the collection, with the value 
of each feature indicating the presence or absence of a given term in a given 
document. These vectors can be represented as follows: 

dj = (t!,J,tz,j,t3,j,- · ·,tN,j) 

ilk= (tJ,ht2,htJ,k, · · · )N,k) 

In this notation, J1 and ilk denote a particular document and query, while 
the various t features represent the N terms that occur in the collection as a 
whole. Let's first consider the case where these features take on the value 
of one or zero, indicating the presence or absence of a term in a document 
or query. Given this approach, a simple way to determine the relevance of 
a document to a query is to determine the number of terms they have in 

BAG OF 
WORDS 

647 

DOCUMENT 

COLLECTION 

TERM 

QUERY 

AD HOC 
RETRIEVAL 

VECTOR 
SPACE MODEL 

323



648 

WEIGHTS 

TERM-BY­
DOCUMENT 
MATRIX 

Chapter 17. Word Sense Disambiguation and Information Retrieval · 

common. This can be accomplished by the following similarity metric: 

N 

sim(qko dJ) = 2:,t;.k x t;.J 
i=l 

In this equation, the similarity between the query vector, qk and the document 
vector, dj, is measured by simply summing the number of terms they share. 

Of course, a problem with the use of binary values for features is that 
it fails to capture the fact that some terms are more important to the meaning 
of a document than others. A useful generalization is to replace the ones 
and zeroes with numerical weights that indicate the importance of the vari­
ous terms in particular documents and queries. We can thus generalize onr 
vectors as follows: 

~ = (wl,}l Wz,j, W3,), · · ·, Wn,j) 

Zjk = (wl,k, Wz,kJ W3,kJ · • ·, Wn,k) 

This characterization of documents as vectors of term weights allows 
us to view the document collection as a whole as a matrix of weights, where 
w;,J represents the weight of term i in document j. This weight matrix is 
typically called a term-by-document matrix matrix. Under this view, the 
columns of the matrix represent the documents in the collection, and the 
rows represent the terms. 

It is useful to view the features used to represent documents (and queri<es) 
in this model as dimensions in a multi-dimensional space. Correspondingly, 
the weights that serve as values for those features serve to locate documents 
in that space. When a user's query is translated into a vector it denotes a 
point in that space. Documents that are located close to the query can then 
be judged as being more relevant than documents that are farther away. 

This characterization of documents and queries as vectors provides all 
the basic parts for an ad hoc retrieval system. A document retrieval system 
can simply accept a user's query, create a vector representation for it, com­
pare it against the vectors representing all known documents, and sort the 
results. The result is a list of documents rank ordered by their similarity to 
the query. 

Consider as an example of this approach, the space shown in Figure 
17.3. This figure shows a simplified space consisting of the three dimensions 
corresponding to the terms speech, language and processing. The three vec­
tors illustrated in this space represent documents derived from the chapter 
and section headings of Chapters 1, 7, and 13 of this text, which we will de­
note as Docl, Doc?, and Docl3, respectively. If we use raw term frequency 

324



Section 17.3. Information Retrieval 

in document as a weight, then Docl is represented by the vector ( 1, 2, 1), 
Doc7 by (6,0, 1), and Doc13 by (0,5, 1). As is clear from the figure, this 
space captures certain intuitions about how these chapters are related. Chap­
ter 1, being general, is fairly similar to both Chapters 7 and 13. Chapters 7 
and 13, on the other hand, are distant from one another since they cover a 
different set of topics. 

Ch 7 ( ,0, ) 

Ch 13 (0,5,1) 

Language 
Processing 

(0,0,0) 

Figure 17.3 A simple vector space representation of documents derived 
from the text of the chapter and section headings of Chapters 1, 7. and 13 in 
three dimensions. 

Unfortunately, this instantiation of a vector space places too much em­
phasis on the absolute values of the various coordinates of each document. 
For example, what is important about the speech dimension of the Doc7, is 

649 

325



650 

DOT PRODUCT 

COSINE 

Chapter 17. Word Sense Disambiguation and Information Retrieval 

not the value 6 but rather that it is the dominant contributor to the meaning 
of that document Similarly, the specific values of I, 2, and 1 for Docl are 
not important, what is important is that the three dimensions have roughly 
similar weights. It would be sensible, for example, to assume that a new 
document with weights 3, 6, and 3 would be quite similar to Docl despite 
the magnitude differences in the term weights. 

We can accomplish this effect by normalizing document vectors. 
normalizing, we simply mean converting all the vectors to a standard ,v,,0 ,u ... 
Converting to a unit length can be accomplished by dividing each of 
dimensions by the overall length of the vector, which is defined as L~l wf. 
This, in effect, eliminates the importance of the exact length of a do·crnne11t'~: , 
vector in the space, and emphasizes instead the direction of the do<:urnetlt 
vector with respect to the origin. 

Applying this technique to our three sample documents results in 
following term-by-document matrix, A, where the columns represent 
Doc7 and Doc13 and the rows represent the terms speech, language, 
processing: 

( 

.41 .81 .41 ) 
A= .98 0 .16 

0 .98 .19 

You should verify that with this scheme, the normalized vectors for 
and our hypothetical (3, 6, 3) document end up as identical vectors. 

Now let's return to the topic of determining the similarity between vee" 
tors. Updating the similarity metric given earlier with numerical we•igl1ts 
rather than binary values, gives us the following equation: 

N 

sim(Zh,<0) = i]k · <0 = L w;,k x Wt,j 

i=l 

This equation specifies the dot product between vectors. In general, the 
product between two vectors is of no use as a similarity metric, since it is 
sensitive to the absolute magnitudes of the various dimensions. 
the dot product between vectors that have been normalized has a useful 
intuitive interpretation: it computes the cosine of the angle between 
vectors. When two documents are identical they will receive a cosine 
one; when they are orthogonal (share no common terms) they will receive 
cosine of zero. 

Note that if for some reason the vectors are not stored in a normali><ed, 
form, then the normalization can be incorporated directly into the sinill<rrity 

326



Section 17.3. Information Retrieval 

measnre as follows: 

. (~ d~) -r=~L;c~"=c·~~J=W-"i,::..k_x7w~i"',j=c= stm qkJ J = 

VL~1 wr,k x VL~1 wL 
(17.19) 

Of conrse, in situations where the document collection is relatively static and 
many queries are being performed, it makes sense to normalize the document 
vectors once and store them, rather than include the normalization in the 
similarity metric. 

Let's consider how this similarity metric would work in the context 
of some small examples. Consider the carefully selected query consisting 
solely of the terms speech, language and processing. Converting this query 
to a vector and normalizing it results in the vector (.57, .57, .57). Computing 
the cosines between this vector and our three document vectors shows that 
Docl is closest with a cosine of .92, followed by Docl3 with a cosine of 
.67, and finally Doc7 with a cosine of .65. Not surprisingly, this ranking is 
in close accord with onr intuitions about the relationship between this query 
and these documents. 

Now consider a shorter query consisting solely of the terms speech and 
processing. Processing this query yields the normalized vector (.70,0, .70). 
When the cosines are computed between this vector and onr documents, 
Doc7 is now the closest with a cosine of .80, followed by Docl with a score 
of .58, with Doc13 coming in a distant third with a cosine of .13. 

Term Weighting 

In practice, the method used to assign terms weights in the document and 
query vectors has an enormous impact on the effectiveness of a retrieval 
system. Two factors have proven to be critical in deriving effective term 
weights: term frequency within a single document, and the distribution of 
terms across a collection. We can begin with the simple notion that terms 
which occnr frequently within a document may reflect its meaning more 
strongly than terms that occur less frequently and should thus have higher 
weights. In its simplest form, this factor is called term frequency and is 
simply the raw frequency of a term within a document (Luhn, 1957). 

The second factor to consider is the distribution of terms across the 
collection as a whole. Terms that are limited to a few documents are useful 
for discriminating those documents from the rest of the collection. On the 
other hand, terms that occur frequently across the entire collection are less 
useful in discriminating among documents. What is needed therefore is a 

651 

TERM 
FREQUENCY 

327



652 Chapter 17. Word Sense Disambiguation and Information Retrieval 

METHODOLOGY Box: EVALUATING INFORMATION ,RE­

TRIEVAL SYSTEMS 

Information retrieval systems are evaluated with respect to the 
notion of relevance - a judgment by a human that a document is 
relevant to a query. A system's ability to retrieve relevant docmnents 
is assessed with a recall measure, as in Chapter 15. 

Recall _ #of relevant documents returned 
- total# of relevant documents in the collection 

Of course, a system can achieve 100% recall by simply return­
ing all the documents in the collection. A system's accuracy is based 
on how many of the documents returned for a given query are actu­
ally relevant, wltich can be assessed by a precision metric. 

Precision = #of relevant documents returned 
#of documents returned 

These measures are complicated by the fact that most systems 
do not make explicit relevance judgments, but rather rank their col­
lection with respect to a query. To deal with this we can specify a 
set of cutoffs in the output, and measure average precision for the 
documents ranked above the cutoff. Alternatively, we can specify 
a set of recall levels and measure average precision at those levels. 
This latter method gives rise to what are known as precision-recall 
curves as shown in Figure 17 .4. As these curves show, comparing 
the performance of two systems can be difficult. In this comparison, 
one system is better at both high and low levels of recall, while the 
other is better in the middle region. An alternative to these curves 
are metrics that attempt to combine recall and precision into a single 
value. The F measure introduced on page 578 is one such measure. 

The U.S. government-sponsored TREC (Text REtrieval Confer­
ence) evaluations have provided a rigorous testbed for the evalua­
tion of a variety of information retrieval tasks and techniques. Like 
the MUC evaluations, TREC provides large document sets for both 
training and testing, along with a uniform scoring system. Train­
ing materials consist of sets of documents accompanied by sets of 
queries (called topics in TREC) and relevance judgments. Voorhees 
and Harman (1998) provide the details for the most recent meeting. 
Details of all of the meetings can be found at the TREC page on the 
National Institute of Standards and Technology Website. 

328



Section 17.3. Information Retrieval 

0.8 

0.6 

0.4 

0.2 

oL---L-__ L_ __ L_ __ L_ __ L_ __ L_ __ L-__ L_ __ L_~ 

0 0.! 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
Recall 

Figure 17.4 Precision-recall curves for two hypothetical systems. These 
curves plot the average precision of a set of returned documents at a given 
level of recall. For example, with both of these systems, drawing a cutoff in 
the return set at the document where they achieve 30% recal1 results in an 
average precision of 55%. 

measure that favors terms which occur in fewer documents. The fraction 
N /n;, where N is the total number of documents in the collection, and n; 
is the number of documents in which term i occurs, provides exactly this 
measure. The fewer documents a term occurs in, the higher this weight. 
The lowest weight of 1 is assigned to terms that occur in all the documents. 
Due to the large number of documents in many collections, this measure is 
usually squashed with a log function leaving us with the following inverse 
document frequency term weight (Sparck Jones, 1 972): 

idf1 =log(~) (17.20) 

Combining the term frequency factor with this factor results in a scheme 
known as tf · idf weighting: 

Wi,J = tfi,j X idfi (17.21) 

That is, the weight of term i in the vector for document j is the product of 
its overall frequency in j with the log of its inverse document frequency in 

653 

INVERSE 
DOCUMENT 
FREQUENCY 

329



654 

STEMMING 

Chapter 17. Word Sense Disambiguation and Information Retrieval 

the collection. With some minor variations, this weighting scheme is used to 
assign term weights to documents in nearly all vector space retrieval models. 

Despite the fact that we use the same representations for documents 
and queries, it is not at all clear that the same weighting scheme should be 
used for both. In many ad hoc retrieval settings, such as Web search engines, 
user queries are not very much like documents at all. For example, an analy­
sis of a very large set of queries (I ,000,000,000 actually) from the Alta Vista 
search engine reveals that the average query length is around 2.3 words (Sil­
verstein eta!., 1998). In such an environment, the raw term frequency in the 
query is not likely to be a very useful factor. Instead, Salton and Buckley 
(1988) recommend the following formula for weighting query terms, where 
max j tfj,k denotes the frequency of the most frequent term in document k. 

Wik= 0.5+ ' Xldfi ( 
0.5tfik ) . 

' maxjtfj,k 

Term Selection and Creation 

Thus far, we have been assuming that it is precisely the words that occur 
in a collection that are used to index the documents in the collection. Two 
common variations on this assumption involve the use of stemming, and a 
stop list. 

The notion of stemming takes us back to Chapter 3 and the topic 
of morphological analysis. The basic question addressed by stemming is 
whether the morphological variants of a lexical item should be listed (and 
counted) separately, or whether they should be collapsed into a single root 
form. For example, without stemming, the terms process, processing and 
processed will be treated as distinct items with separate term frequencies 
in a term-by-document matrix; with stemming they will be conflated to the 
single term process with a single summed frequency count. The major ad­
vantage to using stemming is that it allows a particular query term to match 
documents containing any of the morphological variants of the term. The 
Porter stemmer (Porter, 1980) described in Chapter 3 is frequently used for 
retrieval from collections of English documents. 

A problem with this approach is that it throws away useful distinc­
tions. For example, consider the use of the Porter stemmer on documents 
and queries containing the words stocks and stockings. In this case, 
Porter Stemmer reduces these surface forms to the single term stock. Of 
course, the result of this is that queries concerning stock prices will return 
documents about stockings, and queries about stockings will find documents 

330



Section 17.3. Information Retrieval 

about stocks2 More technically, stemming may increase recall by finding 
documents with terms that are morphologically related to queries, but it may 
also reduce precision by returning semantically unrelated documents. For 
this reason, few Web search engines currently make use of stemming. Hull 
(1996) presents results from a series of experiments that explore the efficacy 
of stemming. 

A second common technique involves the use of stop lists, which ad-

655 

dress the issue of what words should be allowed into the index. A stop list sTOP usr 

is simply a list of high frequency words that are eliminated from the rep­
resentation of both documents and queries. Two motivations are normally 
given for this strategy: high frequency, closed-class terms are seen as car-
rying little semantic weight and are thus unlikely to help with retrieval, and 
eliminating them can save considerable space in the inverted index files used 
to map from terms to the documents that contain them. The downside of 
using a stop list is that it makes it difficult to search for phrases that contain 
words in the stop list. For example, a common stop list derived from the 
Brown corpus presented in Frakes and Baeza-Yates (1992), would reduce 
the phrase to be or not to be to the phrase not. 

Homonymy, Polysemy, and Synonymy 

Since the vector space model is based solely on the use of simple terms, it 
is useful to consider the effect that various lexical semantic phenomena may 
have on the model. Consider a query containing the word canine with its 
tooth and dog senses. A query containing canine will be judged similar to 
documents making use of either of these senses. However, given that users 
are probably only interested in one of these senses, the documents contain­
ing the other sense will be judged non-relevant. Homonymy and polysemy, 
therefore, can have the effect of reducing precision by leading a system to 
return documents irrelevant to the user's information need. 

Now consider a query consisting of the lexeme dog. This query will be 
judged close to documents that make frequent use of the term dog, but may 
fail to match documents that use close synonyms like canine, as well as doc­
uments that use hyponyms such as Malamute. Synonymy and hyponymy, 
therefore, can have the effect of reducing recall by causing the retrieval sys-

2 This example is motivated by some bad publicity received by a well-known search engine, 
when it returned some rather salacious sites containing extensive use of the term stockings in 
response to queries concerning stock prices. In response, a spokesman announced that their 
engineers were working hard on a solution to this strange problem with words. 

331



656 Chapter 17. Word Sense Disambiguation and Information Retri~val 

tern to miss relevant documents. 
Note that it is inaccurate to state flatly that polysemy reduces precision, 

and synonymy reduces recall since, as we discussed on page 652, both mea­
sures are relative to a fixed cutoff. As a result, every non-relevant document 
that rises above the cutoff due to polysemy takes up a slot in the fixed size 
return set, and may thus push a relevant document below threshold, thus re­
ducing recall. Similarly, when a document is missed due to synonymy, a slot 
is opened in the return set for a non-relevant document, potentially reducing 
precision as well. 

These issues lead naturally to the question of whether or not word 
sense disambiguation can help in information retrieval. The current evi­
dence on tltis point is mixed, with some experiments reporting a gain using 
disambiguation-like techniques (Schiitze and Pedersen, 1995), and others re­
porting either no gain, or a degradation in performance (Kravetz and Croft, 
1992; Sanderson, 1994; Voorhees, 1998). 

Improving User Queries 

One of the most effective ways to improve retrieval performance is to find a 
way to improve user queries. The techniques presented in this section have 
been shown to varying degrees to be effective at this task. 

The single most effective way to improve retrieval performance in the 
~m~~~~' vector space model is the use of relevance feedback (Rocchio, 1971). In 

this method, a user presents a query to the system and is presented with a 
small set of retrieved documents. The user is then asked to specify which 
of these documents appears relevant to their need. The user's original qnery 
is then reformulated based on the distribution of terms in the relevant and 
non-relevant documents that the user examined. This reformulated query is 
then passed to the system as a new query with the new results being shown to 
the user. Typically an enormous improvement is seen after a single iteration 
of this technique. 

The formal basis for the implementation of this technique falls out di­
rectly from some of the basic geometric intuitions of the vector modeL In 
particular, we would like to push the vector representing the user's origi­
nal query toward the documents that have been found to be relevant, and 
away from the documents judged not relevant. This can be accomplished by 
adding an averaged vector representing the relevant documents to the origi­
nal query, and subtracting an averaged vector representing the non-relevant 
documents. 

332



Section 17.3. Information Retrieval 

More formally, let's assume that q; represents the user's original query, 
R is the number of relevant documents returned from the original query, S 
is the number of non-relevant documents, and documents in the relevant and 
non-relevant sets are denoted as r and s, respectively. In addition, assume 
that ~ and y range from 0 to 1 and that ~ + y = 1. Given these assumptions, 
the following represents a standard relevance feedback update formula: 

A R S 
- - ~-'~- Y~­qt+I = q;+- £., Yj-- £., Sk 

R J~I s k~I 
The factors ~ and y in this formula represent parameters that can be 

adjusted experimentally. Intuitively, ~ represents how far the new vector 
should be pushed towards the relevant documents, and y represents how far 
it should be pushed away from the non-relevant ones. Salton and Buckley 
(1990) report good results with~= . 75 andy= .25. 

We should note that evaluating systems that use relevance feedback is 
rather tricky. In particular, an enormous improvement is often seen in the 
documents retrieved by the first reformulated query. This should not be too 
surprising since it includes the documents that the user told the system were 
relevant on the first round. The preferred way to avoid this inflation is to only 
compute recall and precision measures for what is called the residual collec­
tion, the original collection without any of the documents shown to the user 
on any previous round. This usually has the effect of driving the system's 
raw performance below that achieved with the first query, since the most 
highly relevant documents have now been eliminated. Nevertheless, this is 
an effective technique to use when comparing distinct relevance feedback 
mechanisms. 

An alternative approach to query improvement focuses on the terms 
that comprise the query vector, rather than the query vector itself. In query 
expansion, the user's original query is expanded to include terms related to 
the original terms. This has typically been accomplished by adding terms 
chosen from lists of terms that are highly correlated with the user's original 
terms in the collection. Such highly correlated terms are listed in what is 
typically called a thesaurus, although since it is based on correlation, rather 
than synonymy, it is only loosely connected to the standard references that 
carry the same name. 

Unfortunately, it is usually the case that available thesaurus-like re­
sources are not suitable for most collections. In thesaurus generation, a 
correlation-based thesaurus is generated automatically from all or a portion 
of the documents in the collection. Not surprisingly, one of the most popular 

657 

RESIDUAL 
COLLECTION 

QUERY 
EXPANSION 

THESAURUS 

THESAURUS 
GENERATION 

333



658 Chapter 17. Word Sense Disambiguation and Information Retrieval 

ti5~TERING methods used in thesaurus generation involves the use of term clustering. 
Recall from our characterization of the term-by-document matrix that fue 
columns in the matrix represent the documents and the· rows represent the 
terms. Therefore, in thesaurus generation, the rows can be clustered to form 
sets of synonyms, which can then be added to the user's original query to 
improve its recall. 

This technique is typically instantiated in one of two ways: a thesaurus 
can be generated once from the document collection as a whole (Crouch and 
Yang, 1992), or sets of synonym-like terms can be generated dynamically 
from the returned set for the original query (Attar and Fraenkel, 1977). Note 
that this second approach entails far more effort, since in effect a small the­
saurus is generated for the documents returned for every query, rather than 
once for the entire collection. 

17.4 OTHER INFORMATION RETRIEVAL TASKS 

As noted earlier, ad-hoc retrieval is not the only word-based task in infor­
mation retrieval. Some of the other more important ones include document 
categorization, document clustering, text segmentation, and summarization. 

B~f~8~\tl1moN The document categorization task is to assign a new document to 
one of a pre-existing set of document classes. In this setting, the task of 
creating a classifier consists of discovering a useful characterization of the 
documents that belong in each class. Although this can be done by hand, 
the standard approach is to use supervised machine learning. In particular, 
classifiers can be trained on a set of documents that have been labeled with 
the correct class. Any of the supervised learning methods introduced on page 
638 for word sense disambiguation can be applied to this task as well. When 
categorization is performed with the intent of transmitting a document to a 

ROUTING user, or set of interested users, it is usually referred to as ronting. The term 
FILTERING filtering is used in the special case where the categorization task is to either 

accept or reject a document, as in e-mail filters that attempt to screen for 
junk mail. 

The categorization task assumes an existing classification, or cluster-
BfS~~~~JG ing, of documents. By contrast, the task of document clustering is to create, 

or discover, a reasonable set of clusters for a given set of documents. As was 
the case in word sense discovery, a reasonable cluster is defined as one that 
maximizes the within-cluster document similarity, and minimizes between­
cluster similarity. There are two principal motivations for the use of this 

334



Section 17.4. Other Information Retrieval Tasks 

technique in an ad hoc retrieval setting: efficiency, aud the cluster hypothe­
sis. 

The efficiency motivation arises from the enormous size of mauy mod­
ern document collections. Recall that the retrieval method described in the 
last section requires every query to be compared against every document in 
the collection. If a collection can be divided up into a set of N conceptually 
coherent clusters, then queries could first be compared against representa­
tions of each of theN clusters. Ordinary retrieval could then be applied only 
within the top cluster or clusters, thus saving the cost of comparing the query 
to the docun1ents in all of the other more distant clusters. 

The cluster hypothesis (Jardine and van Rijsbergen, 1971) takes this 
argument a step further by asserting that retrieval from a clustered collection 
will not only be more efficient, but will in fact improve retrieval performance 
in terms of recall and precision. The basic notion behind this hypothesis is 
that by separating documents according to topic, relevant documents will 
be found together in the same cluster, and non-relevant documents will be 
avoided since they will reside in clusters that are not used for retrieval. De­
spite the plausibility of this hypothesis, there is only mixed empirical support 
for it. Results vary considerably based on the clustering algorithm aud doc­
ument collection in use (Willett, 1988; Shaw eta!., 1996). 

A promising alternative application of clustering is to cluster the doc­
uments returned in response to a user's query, rather than the document col­
lection as whole. Hearst and Pedersen (1996) present evidence that this tech­
nique provides mauy of benefits promised by the cluster hypothesis. 

In text segmentation, larger documents are automatically broken down 
into smaller semantically coherent chunks. This is useful in domains where 
there are a significant number of large documents that cover a wide variety 
of topics. Text segmentation cau be used to either perform retrieval below 
the document level, or to visually guide the user to relevant parts of retrieved 
documents. Again, not surprisingly, segmentation algorithms often make use 
of vector-like representations for the subparts of a larger document. Adja­
cent subparts that have similar cosines are more likely to be about the same 
topic than adjacent segments with more distant cosines. Roughly speaking, 
such discontinuities in the similarity between adjacent text segments can be 
used to divide larger documents into subparts (Salton et al., 1993; Hearst, 
1997). 

Finally, the task of text summarization (Sparck Jones, 1997) is to 
produce a shorter, summary version of au original document. In general, 
two approaches have been taken to this problem. In the knowledge-based 

659 

CLUSTER 
HYPOTHESIS 

TEXT 
SEGMENTATION 

TEXT 
SUMMARIZATION 

335



660 Chapter 17. Word Sense Disambiguation and Information Retrieval 

approach, the original document undergoes a semantic aualysis which pro­
duces a representation of the meaning of the text. This representation is then 
passed to a text generator which produces a summary text that conveys the 
important points of the original aud satisfies given length restrictions. More 
details an text generation are presented in Chapter 20. In selection-based 

~B~E,S:l~?tif1~~ED summarization, a summary document is created by first assigning a im­
portance weight to all the sentences from the original document according 
to very simple ward frequency aud discourse structure heuristics. A sum­
mary document is then generated by determining a threshold such tbat the 
inclusion of all sentences above the threshold results in a document with the 
desired size. 

17.5 SUMMARY 

This chapter has explored two major areas of lexical semantic processing: 
word sense disambiguation and information retrieval. 

• Word sense disambiguation systems assign word tokens in context to 
one of a pre-specified set of senses. 

• Selectional restriction-based approaches can be used to disambiguate 
both predicates aud arguments, but require considerable information 
about semautic roles restrictions aud hierarchical type information 
about role fillers. 

• Machine learning approaches to sense disambiguation make it possi­
ble to automatically create robust sense disambiguation systems. 

- Supervised approaches use collections of texts annotated with 
their correct senses to train classifiers. 

- Bootstrapping approaches permit the use of supervised methods 
with far fewer resources. 

- Unsupervised clustering-based approaches attempt to dis:cove1c ·9 
representations of word senses from unannotated texts. 

• Machine readable dictionaries facilitate the creation ofbrcJadl-c<we:raJ~C· 
sense disarnbiguators. 

• The dontinaut models of information retrieval represent the meanings 
of documents and queries as bags of words. 

• The vector space model views documents and queries as vectors in 
a large multidimensional space. In this model, the similarity between 

336



Section 17.5. Summary 

documents and queries, or other documents, can be measured by the 
cosine of the angle between the vectors. 

o User queries can be improved through query reformulation using either 
relevance feedback or thesaurus-based query expansion. 

BIBLIOGRAPHICAL AND HISTORICAL NOTES 

Word sense disambiguation traces its roots to some of the earliest applica­
tions of digital computers. The notion of disambiguating a word by look­
ing at a small window around it was apparently first suggested by Warren 
Weaver (1955), in the context of machine translation. Among the notions 
first proposed in this early period were the use of a thesaurus for disam­
biguation (Masterman, 1957), supervised training of Bayesian models for 
disambiguation (Madhu and Lytel, 1965), and the use of clustering in word 
sense analysis (Sparck Jones, 1986). 

An enormous amount of work on disambiguation has been conducted 
within the context of Al-oriented natural language processing systems. Most 
natural language analysis systems of this type exhibit some form of lexical 
disambiguation capability, however, a number of these efforts made word 
sense disambiguation a larger focus of their work. Among the most in­
fluential efforts were the efforts of Quillian (1968) and Simmons (1973) 
with semantic networks, the work of Wilks with Preference Semantics Wilks 
(1975c, 1975b, 1975a), and the work of Small and Rieger (1982) and Ries­
beck (1975) on word-based understanding systems. Hirst's ABSITY system 
(Hirst and Chamiak, 1982; Hirst, 1987, 1988), which used a technique based 
on semantic networks called marker passing, represents the most advanced 
system of this type. As with these largely symbolic approaches, most con­
nectionist approaches to word sense disambiguation have relied on small lex­
icons with hand-coded representations (Cottrell, 1985; Kawamoto, 1988). 

We should note that considerable work on sense disambiguation has 
been conducted in the areas of Cognitive Science and psycholinguistics. Ap­
propriately enough, it is generally described using a different name: lexical 
ambiguity resolution. Small et al. (1988) present a variety of papers from 
this perspective. 

The earliest implementation of a robust empirical approach to sense 
disambiguation is due to Kelly and Stone (1975) who directed a team that 
hand-crafted a set of disambiguation rules for 1790 ambiguous English words. 

661 

337



662 Chapter 17. Word Sense Disambiguation and Information Retrieval 

Lesk (1986) was the first to use a machine readable dictionary for word sense 
disambiguation. The efforts at New Mexico State University using LDOCE 
are among the most extensive explorations of the use of machine readable 
dictionaries. Much of this work is described in Wilks et a!. (1996). The .. 
problem of dictionary senses being too fine-grained or lacking an appropri- · 
ate organization has been addressed in the work of Dolan (1994) and Chen 
and Chang (1998). 

Modem interest in supervised machine learning approaches to disam­
biguation began with Black (1988), who applied decision tree learning to the 
task. The need for large amounts of annotated text in these methods led to in­
vestigations into the use of bootstrapping methods (Hearst, 1991; Yarowsky, 
1995). The problem of how to weight and combine the disparate sources of 
evidence used in many robust systems is explored in Ng and Lee (1996) and 
McRoy (1992). There has been considerably less work in the area of unsu­
pervised methods. The earliest attempt to use clustering in the study of word 
senses is due to Sparck Jones (1986). Zemik (1991) successfully applied a 
standard information retrieval clustering algorithm to the problem, and pro­
vided an evaluation based on improvements in retrieval performance. More 
extensive recent work on clustering can be found in Pedersen and Bruce 
(1997) and Schiitze (1997, 1998). 

Note that of all of these robust efforts, only three have attempted to ex­
ploit the power of mutually disambiguating all the words in a sentence. The 
system described in Kelly and Stone (1975) makes multiple passes over a 
sentence to take later advantage of easily disambiguated words; Cowie et a!. 
(1992) use a simulated annealing model to perform a parallel search for a 
desirable set of senses; Veronis and Ide (1990) use inhibition and excita­
tion in a neural network automatically constructed from a machine readable 
dictionary. 

Ide and Veronis (1998) provide a comprehensive review of the history 
and current state of word sense disambiguation. Ng and Zelle (1997) provide 
a more focused review from a machine learning perspective. Wilks et al. 
(1996) describe a wide array of dictionary and corpus-based experiments, 
along with detailed descriptions of some very early work. 

Luhu (1957) is generally credited with first advancing the notion of 
fully automatic indexing of documents based on their contents. Over the 
years Salton's SMART project (Salton, 1971) at Cornell developed or eval­
uated many of the most important notions in information retrieval including 
the vector model, term weighting schemes, relevance feedback, and the use 
of cosine as a similarity metric. The notion of using inverse document fre-

338



Section 17.5. Summary 

quency in term weighting is due to Sparck Jones (1972). The original notion 
of relevance feedback is due to Rocchio (1971). An alternative to the vec­
tor model that we have not covered is the probabilistic model. Originally 
shown effective by Robinson and Sparck Jones (1976), a Bayesian network. 
version of the probabilistic model is the basis for the widely used INQUERY 

system (Callan et al., 1992). Crestani et al. (1998) present a comprehensive 
review of probabilistic models in information retrieval. 

The cluster hypothesis was introduced in Jardine and van Rijsbergen 
(1971). Willett (1988) provides a critical review of the major efforts in this 
area. Mather (1998) presents an algorithm-independent clustering metric 
that can be used to evaluate the performance of various clustering algorithms. 
A collection of papers on document categorization and its close siblings, 
filtering and routing, can be found in Lewis and Hayes (1994). A recent 
example of routing is AT&T's "How May I Help You?" task where the 
goal is to classify a user's utterance into one of fifteen possible categories, 
such as third number billing, or collect call. Once the system has classified 
the call, the system routes the caller to an appropriate human operator. The 
classification accuracy on this task approaches 80%, despite the fact that the 
speech recognizer has a word accuracy rate of only around 50% (Gorin et al., 
1997). 

Text segmentation has generally been investigated from one of two per­
spectives: approaches based on strong theories of discourse structure, and 
approaches based on lexical text cohesion (Morris and Hirst, 1991). Hearst 
(1997) describes a robust technique based on a vector model of lexical cohe­
sion. Techniques based on strong discourse-models are discussed in Chap­
ter 18 and Chapter 20. 

Research on text summarization began with the work of Luhn (1958) 
on the automatic generation of abstracts. A collection of papers on text sum­
marization can be found in Hovy and Radev (1998). 

An important extension of the vector space model known as Latent 
Semantic Indexing (LSI) (Deerwester et al., 1990) uses the singular value 
decomposition method as means of reducing the dimensionality of vector 
models with the intent of discovering higher-order regularities in the original 
term-by-document matrix. Berry et al. (1999) present a useful review of 
numerical methods for dimensionality reduction in vector models. Although 
LSI began life as a retrieval method, it has been applied to a wide variety of 
applications including models of lexical acquisition (Landauer and Dumais, 
1997), question answering (Jones, 1997), and most recently, essay grading 
(Landauer et al., 1997). 

663 

PROBABILISTIC 
MODEL 

LATENT 
SEMANTIC 
INDEXING 

339



664 Chapter 17. Word Sense Disambiguation and Information Retrieval 

Baeza-Yates and Ribeiro-Neto (1999) is a comprehensive text cover­
ing many of newest advances and trends in information retrieval. Frakes and 

' Baeza-Yates (1992) is a more nuts and bolts text which includes a consider-
able amount of useful C code. Older classic texts include Salton and McGill 
(1983) and van Rijsbergen (1975). Many of the classic papers in the field can 
be found in Sparck Jones and Willett (1997). Current work is published in 
the annual proceedings of the ACM Special Interest Group on Information 
Retrieval (SIGIR). The periodic TREC conference proceedings contain re­
sults from standardized evaluations organized by the U.S. government. The 
primary journals in the field are the Journal of the American Society of In­
formation Sciences, ACM Transactions on Information Systems, Information 
Processing and Management, and Information Retrieval. 

EXERCISES 

17.1 Collect a small corpus of example sentences of varying lengths from 
any newspaper or magazine. Using WordNet, or any standard dictionary, 
determine how many senses there are for each of the open-class words in 
each sentence. How many distinct combinations of senses are there for each 
sentence? How does this number seem to vary with sentence length? 

17.2 Using WordNet, or a standard reference dictionary, tag each open­
class word in your corpus with its correct tag. Was choosing the correct 
sense always a straightforward task. Report on any difficulties you encoun­
tered. 

17.3 Using the same corpus, isolate the words taking parr in all the verb­
subject and verb-object relations. How often does it appear to be the case 
that the words taking parr in these relations could be disambiguated using 
only information about the words in the relation? 

17.4 Between the words eat and find which would you expect to be more 
effective in selectional restriction-based sense disambiguation? Why? 

17.5 Implement and experiment with a decision-list sense disambiguation 
system. As a model, use the kinds of features shown in Figure 17. I. For 
more details on decision-list learning see Russell and Norvig (1995). To fa­
cilitate evaluation of your system, you should obtain one of the freely avail­
able sense-tagged corpora. 

340



Section 17.5. Summary 

17.6 Using your favorite dictionary, simulate the word overlap disambigua­
tion algorithm described on page 645 on the phrase Time flies like an arrow. 
Assume that the words are to be disambiguated one at a time, from left to 
right. and that the results from earlier decisions are used later in the pro­
cess. 

17.7 Formulate a set of detailed queries from a domain you are familiar 
with, and submit them to a number of popular search engines. Using a series 
of fixed cutoffs, assess the precision of each of these search engines. 

17.8 For each of the returned documents that you judged not relevant in 
Exercise 17.7, come up with an account as to why it might have been re­
turned. 

17.9 Consider the relevant documents that were returned by some. but not 
all, of the search engines in Exercise 17.7. For the search engines that failed 
to retrieve a relevant document: 

a. Determine if the search engine contains the relevant document. 

b. If it does, then come up with an account for why it did not return it (or 
did not rank it highly). 

17.10 Investigate five of the more popular search engines and determine 
which, if any, are employing some kind of morphological analysis. 

17.11 Expand the queries used in Exercise 17.7 to include all of the mor­
phological variants of each query word. Submit these expanded queries to 
your original set of search engines. Does such morphological processing 
seem warranted? 

17.12 Using WordNet, expand your queries to include all the synonyms of 
all the terms in the original query. Report on the results of submitting the 
expanded queries to a set of search engines. 

17.13 Using WordNet, expand your queries to include only those syn­
onyms that are appropriate for each of the terms in the original query. In 
other words, only include synonyms for the senses of terms you intended in 
the original query. Submit these expanded queries to a set of search engines, 
and compare the results to those you achieved in the previous exercise. 

17.14 Word sense disambiguation seems to have little effect on retrieval 
performance in settings where long queries are used. Suggest reasons for 
why this might be the case. 

665 

341



666 Chapter 17. Word Sense Disambiguation and Information Retrieval 

17.15 Find, or create, a collection of documents fhat have been separated 
into distinct topical categories. E-mail messages that have been manually 
placed into distinct folders are a good source for such a collection. Using 
fhis collection, implement and evaluate a naive Bayes approach to text clas­
sification. 

342


	Delete




