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“This book is an absolute necessity for instructors at all levels, as well as an indjspensibl'(:::
reference for researchers. Introducing NLP, computational linguistics, and speech recognition -

comprehensively in a single book is an ambitions enterprise. The authors have managed it
- ‘admirably, paying careful attention to traditional foundations, relating recent developments and. -

trends to those foundations, and tying it all together with insight and humor. Remarkable.” "~
— Philip Resnik, University of Maryland

“...ideal for . . .linguists who want to learn more about computational modeling and techniq'u'es; :
. in language processing; computer scientists building language applications who want to learii -
. more about the linguistic underpinnings of the field; speech technologists who want to learn:

. more about language understanding, semantics and discourse; and all those wanting to learn

- more about speech processing. For instructors . . . this book is a dream. Tt covers virtually every-

.. : - aspect of NLP... What’s truly astounding is that the book covers such a broad range of topics‘,'.’::': :
* while giving the reader the depth to understand and make use of the concepts, algorithms and -

techniques that are presented. . . ideal as a course textbook for advanced undergraduates, as well .
as graduate students and researchers in the field. '
— Johanna Moore, University of Edinburgh

. “Speech and Language Processing is a comprehensive, reader-friendly, and up-to-date guide to ®
- computational linguistics, covering both statistical and symbolic methods and their application:

e It will appeal both to senior undergraduate students, who will find it neither too technical nor E

too simplistic, and to researchers, who will find it to be a helpful guide to the newly estabhshed .
techniques of a rapidly growing research field.”
— Graeme Hirst, University of Toronto

“The field of human language processing encompasses a diverse array of discipiines, and as

such is an incredibly challenging field to master. This book does a wonderful job of bringing =
together this vast body of knowledge in a form that is both accessible and comprehensive. Its

encyclopedic coverage makes 1t a must-have for people already in the field, while the clear
presentation style and many examples make it an ideal textbook.” '
— Eric Brill, Microsoft Research

This is quite simply the most complete introduction to natural language and speech technology
ever written. Virtually:évery topic in the field is covered, in a prose style that is both clear :
and engaging. The: discussion is linguistically informed, and strikes a nice balance between
theoretical computationsl models, and practical applications. Tt is an extremely impressive
achievement, L

— Richard Sproat, AT'&T Labs — Research
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Foreword

Linguistics has a hundred-year history as a scientific discipline, and compu-
tational linguistics has a forty-year history as a part of computer science. But
it is only in the last five years that language understanding has emerged as an
mdustry reaching millions of people, with information retneval and machine
translation available on the internet, and speech recogmtlon becoming pop-
ular on desktop computers. This 1ndustry has been enabled by theoretical
advances in the representatron and processmg of language information.
e Speeck and Language Pmcessmg is the first book to thoroughly cover
. language technology, at all levels and with all modern technolog1es It com-
_bmes deep lmgmstlc analysis with robust statistical methods From the point
. of view of levels, the book starts with the word and its components moving
‘up to the way words, ﬁt together for syntax) to the meaning (or selriantics)
of words, phrases and sentences, and’ concluding with i issues- of coherent
- texts, dlalog, and translation. - Frorn the: point of view of teehnolog1es the
book covers: regular expressmns mforrnatlon retrieval, context free gram-
- mars, unification; first-order pred1cate caleulus, hidden Markov-and other
' "probablhsuc models, rhetorical structure theory, and others Prevmusly you
":would need two or three books to get tlns kind of coverage Speech and Lan-

R guage ‘Processing covers the full range in one book, but more 1mportantly, it

o relates the technologles to each other, giving ‘the reader a sense of how each
§ ;_'-'one 1is best. used, and how: they can be used: together It does all this with
an engagmg style that keeps the reader s interest and motlvates the technical
- _'deta.rls in'a way that is thorough but not dry Whether you te mterested in the

L field from the scientific or the. 1ndustna1 point. of view, t}ns book serves as

i - anideal mtroductron reference, and gnrde to future study of thrs faqcmatmg
s ﬁeld - : -

-Peter Norvig & Stuart Russell Echtors
~ Prentice Hall Senes 1n Al‘tlﬁCla] Intelhgence

XX
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“This is an exciting time to be working in speech and language processing.
- '-'Historically distinct fields (natural language processing, speech recognition,
computanonal linguistics, computational psycholinguistics) have begun to
" merge. The commercial availability of speech recognition and the need for
- Web-based language techniques have provided an important impetus for de-
velopment of real systems. The availability of very large on-line corpora has
© enabled statistical models of language at every level, from phonetics to dis-
”coutse We have tried to draw on this ernergmg state of the art in the design
. of thlS pedagog1ca1 and reference work S

1 Coverage - "
. In attempting to describe a umﬁed v1s1on of speeeh and language pro-
cessing; we cover areas that trad1t1ona11y are taught in different courses
~in d1fferent departments speech recogmtlon in electrical engineering;
S parsmg, semantlc 1nterpretat1on, and pragmatlcs in natural language
_ _processmg courses in computer science departments; and computa-
tional 1 morpho]ogy and phonology in computanonal 1mgu1st1cs courses
Cin llngmsneq departments The book introduces the fundamental al-
gonthms of each of these fields, whether orlgmally proposed for spo-
ken or written 1anguage whether 1og1ca1 or statistical in origin, and
attempts {0 tie together the descnptlons of algorithms from different
. domains. We have also inciuded coverage of applications 1ike spelling-
- cheekmg and information retrieval and extraction as well as areas like
- cognitive modeling. A potent1a1 problem with this broad-coverage ap-
- “'proach is that it required us to include introductory material for each
field; thus linguists may want to skip our description of articulatory
- phonetics, computer scientists may want to skip such sections as reg-
- ular expressions, and electrical engineers skip the sections on signal
. processing. Of course, even in a book this long, we didn’t have room
 for everything.  Thus this book should not be considered a substitute
- for important relevant courses in linguistics, automata and formal lan-
. guage theory, or, especially, statistics and mformatlon theory

2.: Emphasis on practical applications

::'-It is- important to show how language- related algorithms and tech-
- niques (from- HMMs to- unification, - from the lambda caleulus to
fransforiation-based learning) can be applied to important real-world
problems:' ‘'spelling checking, text document search; speech: recogni-
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Preface

':_::"_";':'_:schemes (such as the Penn’ Treebank, CLAWS C5 and C7, and the
_:'_::- :.-_'::ARPAbet) butéo & r_nev:ttably got left out. Furthermore rather than
S 1nclude references to URLs for ‘many resources duectly in:the text-

o 'dergraduate course or sequence Because of its comprehensive. coverage and
i the large number of algonthms the ‘book: is- also useful as. a reference for
-Students and professronals in any of the areas of speech and language pro-

: Overwew of the Book

The book is d1v1ded mto four parts in addltron to an 1ntroductron and end
- matter.: Part I “Words” introduces. concepts related to the processmg of
- words: phonettcs phonology, morphology, and algorithms used: to:process
;them ﬁmte automata ﬁmte transducers welghted transducers ‘N-grams,

tion, Web-page processing, part-of-speech tagging, machine transla-
tion, and spoken-language dialogue agents. We have attempted to do
this by integrating the description of language processing applications
into each chapter. The advantage of this approach is that as the relevant
11ngu1stlc knowledge is introduced, the student has the background to
understand and model a partlcular domam '

3. Emphaszs on scientific evaluanon i -
_ The recent prevalence of statlstical algorrthms in language process—
. ing and the growth of orgamzed evaluatrons of speech and language
processmg systems has led. to; a new ernpha31s on evaluation. We
have, therefore, tried to accompany most of our problem domains Wrth
B Methodology Box descnbmg how systems are eva]uated (e.g.,
-'cludmg such concepts as trarmng and test sets, cross—vahdatron and
mformatlon theoretrc evaluatlou metrlcs hke perplexrty)
o 4'."'Descnptzon of wrdely avarlable Ianguage processmg resources ‘.
o l‘*,Modem Speech and- ianguage processing 'is heavily based on com-
Inon resources raw Speech and text corpora annotated corpora and

= f;_;_._the Bmwn’f_swchboard callhome, ATIS, TREC, MUC, and BNC cor-
“o pora) and provrde complete lrstmgs of many “useful tagsets and coding

book we have placed_them'on the book’s Web srte where they can

'The book is prrmarﬂy mtended for use in a graduate or: advanced un-

.__.._2_1. o
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and Hidden Markov Models. Part II, “Syntax”, introduces parts-of-speech
and phrase structure grammars for English and gives essential algorithms for
processing word classes and structured relationships among words: part-of-
speech taggers based on HMMs and transformation-based learning, the CYK
nd:Earley algorithms for parsing, unification and typed feature structures,
lexicalized and probabilistic parsing, and analytical tools like the Chomsky
‘hierarchy and the pumping lemma. Part II, “Semantics”, introduces first
rder predicate calculus and other ways of representing meaning, several
-ép'proaches to compositional semantic analysis, along with applications to
mformatlon retrieval, information extraction, speech understanding, and ma-
hine translation: Part IV, “Pragmatics”, covers reference resolution and dis-
outse structure and coherence, spoken dialogue phenomena like dialogue
and speech act modeling, dialogue structure and coherence, and dialogue
anagers, as well as a comprehensive treatment of natural language genera-
fion"and of machine translation. .. .

Using thls Book

iThe book prov1des énough material to be used for a fu]l—year sequence in
'speech and Janguage processing. It is also designed so that it can be used for
'_a number of different useful one-term courses:

NLP .. NLP Speech+ NLP Comp. Linguistics
. 1quarter . " 1sémester - [ 1 sémester 1 quarter
. Intro 1. Intro. . 1. Infro 1 1. Intro
‘2. Regex, FSA 2. Régex, FSA 2. Regex, FSA 2. Regex, FSA
. 8. POS tagging | 3. Morph,, FST 3. Morph., FST - | 3. Morph,, FST
9.-CFGs ..~ 6. N-grams 4. Comp. Phonol.| 4. Comp. Phonol.
. Parsing . 8. POS tagging 5. Prob. Pronun. |10. Parsing
t.. Unification ~ | 9. CFGs - .. { 6. N-grams | 11. Unification
4. Semantics 10. Parsing 7. HMMs & ASR | 13. Complexity
. Sem. Analysis|11. Unification. . | 8. POS tagging |16. Lex. Semantics
Discourse . {12, Prob. Parsing | 9. CFGs . | 18. Discourse
- ‘Géneration -~ |14, Semantics . 10, Parsing . |19. Dialogue
S 15, Sem. Analysis | 12. Prob, Parsing | :
“+ [ 16. Lex. Semantics| 14. Semantics -
0117, WSD and IR ' 15. Sem: Analysis
18. Discourse” - . [19. Dialogue . -
20." Generation | 21.. Mach. Transl.
21.'_ Mach. Transl ' '

: Selected chapters from the book could also bé used to allgment courses
m mﬁcml Intelligence, Cogmuve Science, or Information Retrieval.
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1 ~ INTRODUCTION

*“ Dave Bowman: Open the pod bay doors, HAL.
HAL: I'm sorry Dave, I'm afraid I can’t do that.
Stanley Kubrick and Arthur C. Clarke,
screenplay of 2001 A Space Odyssey

- The HAL 9000 computer in Stanley Kubrick’s film 2001: A Space
'-'O_dySsey- is one of the most recognizable  characters in: twentieth-century
cinema.HAL.is- an artificial: agent: capable of such advanced language-
:"p:r'"ci(:essing. behavior as speaking and understanding English, and at a crucial
~moment in the plot, even reading lips. Tt is now clear that HAL’s creator
rthur C. Clarke was a little optimistic in predicting when an artificial agent
h-as HAL would be available. But just how far off was he? What would
it take to create at least the language-related parts of HAL? Minimally, such
an agent would have to be capable of interacting with humans via language,
“which includes understanding humans via speech recognition and natural
. language understanding (and, of course, lip-reading), and of communicat-
1g" with humans via natural language generation and speech synthesis.
-HAL would also need to be able to do information retrieval (finding out
W_here needed textual resources reside), information extraction {extracting
“pertinent facts from those textual resources) and inference (drawing con-
“clusions based on known facts)." .
- Although these problems are far from completely so]ved much of the
languagé-related technology that HAL needs is currently being developed,
ith- some of it already. available commercially... Solving these problems,
-and bt_hérs5 like them, is the main concern of the fields known as Natural
guage: Processing, Computational Linguistics, and Speech Recognition
d: Synthesis, which together. we call Speech and Language Processing.
' 'goal of this book:is' to descrlbe the state of the art of this technology
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2 Chapter 1. Introduction

at the start of the twenty-first century. The applications  we will conside_r
are all of those needed for agents like HAL as well as other valuable areas
of language processing such as spelling correction, grammar checking,
information retrieval, and machine translation.

1.1 KNOWLEDGE IN SPEECH AND LANGUAGE PROCESSING

By speech and language processing, we have in mind those computational
techniques that process spoken and written human language, as language.
As we will see, this is an inclusive definition that encompasses everything
from mundane applications such as word counting and automatic hyphen-
atior, to cuttmg edge apphcatlons such as aufomated question answenng on
the Web and real-time spoken language translation. '
: What d;stmgmshes these language processing apphcatlons from other
S data processmg systems is theit use of knowledge of language. Consider the
L Unix e program ‘which is used to count the tota) mumber of bytes words,
and hnes in a text file: When used to count bytes and lines; wc'is an ordinary
-'__data processmg apphcahon However, when it is used to count the ‘words
CUinvafileit requires knowledge about what it means to: be a: word and thus
o '3_ becomes a fangirage processing system. : : AR
L - Of course, wo is an extremely simple system Wlth an extremely lim-
o .'1ted and 1mpovenshed knowledge of language More-sophisticated language
- agents’ such ‘as HAL: require’much broader and déeper: knowledge of lan-
o guage. - To get a feelmg for the scope and kind: of k:nowledge required . in
1 mores sophlsncated apphcauons consider some of what HAL would need to
know to engage in the'dialogue that begins this chapter. -
“To determme What Dave is'saying, HAL must be: capable of analyzmg
Bt '_an mcommg audio mgna] and recovering the exact sequence of words Dave
o used to: produce that s1gna] Simiilarly, in generating its: response, HAL must
" beable to take a'sequence of words and generate an audio signal that Dave
o 3"'5_:_ can’ recogmze Both of these tasks require knowledge about phonetics and
i o phonology, WhiCh can help model how words are pronounced in colloqmal
e speech (Chapters 4:and:5). o :
Ui Note also that unlike: Star Trek’s Commander Data HAL IS capab]e
S of producmg contractions: like' I’m and can’t. Producmg and: recognizing
o+ theseand other variations of individual words (e. g, recognizing that doors is
L plural) requ1res knowledge about morphelogy, which captures 1nformatton
- about the shape and behavior of words in' context (Chapters 2 and 3). -




Section 1.1. Knowledge in Speech and Language Processing

" Moving beyond individual words, HAL must know how to analyze the

structure underlying Dave’s request. Such an analysis is necessary among

( fhér reasons for HAL to determine that Dave’s utterance is a request for

action; as opposed to a simple statement about the world or a question about
"door as in the following variations of his original staternent.

HAL the pod bay door is open.
HAL is the pod bay door open?

] adchuon HAL must use similar structural knowledge to properly string
fo _ether the words that constitute its response. For example, HAL must
wi that the following sequence of words will not make sense to Dave,
esplte the fact that it contains precisely the same set of Words as the original.

'ml do sorry that afraid Dave I’m can’t.

The nowledge needed to order and group words togethér comes under the
heading of synfax. : : :
~Of course, simply k’nowing the words and the syntactic structure of
_hat Dave said does not tell HAL much about the nature of his request.
To know that Dave’s command is actually about opening the pod bay door,
ather than an inquiry about the day’s lunch menu, requires knowledge of
the ‘meanings of the component words, the domain of lexical semantics,
knowledge of how these components combme to form larger meamngs
posmonal semantics.
. Next, despite its bad behavior, HAL knows enough to be polite to
ave:. It could, for example, have simply replied No or No, I won’t open
the door. Tnstead, it first embellishes its response with the phrases I'm sorry
Al '_’m-aﬁ‘aid,'and then only indirectly signals its refusal by saying I can’t,
er than the more direct (and truthful) 7 won ’t.! The appropriate use of this
d of polite and indirect language comes under the heading of pragmatics.
Finally, rather than simply ignoring Dave’s command and leaving the
closed; HAL chooses to- engage in a structured conversation relevant
'Vé"s i'riit'ial' request HAL’S' correct use of the‘ word that in its answer
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Phonetics and Phonology — The study of linguistic sounds -

Morphology — The study of the meaningful components of words-

Syntax — The study of the structural relationships between words

Serhantics — The study of meaning
Pragmatics — The study of how language is used to accomplish goals

Discourse — The study of linguistic units latger than a single utterance

1.2 AMBIGU_ITY.___-

AMBIGUITY

A perhaps surpnsmg fact about the six categones of 11ngu1st1c knowledge is
ihat most or all tasks in speech and language processmg can be v1ewed as
resolving amblgmty at one of these levels. We say some 1nput is amblguous
if there are multiple alternative linguistic structures than can be built for it.
Consnder the. spoken sentence I iade her duck. Here’s five. dlﬂ’erent mean-

1ngs this sentence could have (there are more), each of whlch exemphﬁes an

L amb1gu1ty at.some level. .

(L 1) 1§ cooked waterfowl: for her

(1. 2) I cooked waterfow! belongmg' to her.

B (1 3) T created the' (plaster‘?) duck shé owns.
g (1 4) I cansed her to qmckly lower her head or body N
' (1. 5) I Waved my magtc wand and turned her 1nt0 undlfferentlated '

. W aterfowl

: These different rneanmgs are caused by a nurnber of amblgumes Flrst the

5 Words duck and her are morphologically or syntactlcally amblguous in their
part 0f~speech Duck can-be a verb or 4 noun; Whﬂe her: can ‘be: a dative
'pronoun Or-a possessive pronoun. - Second, the Word: make is semaitically
ar_nblgnous it can mean create or cook. Finally, the verb: fnake is’ syntacti-

cally ambiguous in a different way. Make can be transitive, that is, taking

" single direct object (1:2); or it can be-ditransitive; that is; taking two. ob-
- jects (1.5); meaning that the first object (her) got made into the second object
- (duck). Finally, make can take 4 ditect object and-a verb (1.4), meaning that

- the object (her) got caused fo perform the verbal action (dick): Furthermore,
Cina spoken senitence, there: is an even deeper kind of- amb1gu1ty, the ﬁrst '

word could have Beeni eye or the second: word migid. S
~We wﬂl often 1ntr0duce the models and al gonthms we present through—

- out the book as ways ‘to resolve: or disambiguate thesé ambiguities. - For
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Section 1.3. Models and Algorithms

example deciding whether duck is a verb or a noun can be solved by part-
f-speech tagging. Deciding whether make means. “create” or “cook™ can
be solved by word sense disambiguation. Resolution of part-of-speech and
-word sense ambiguities are two important kinds of lexical disambiguation.
“A wide variety of tasks can be framed as lexical disambiguation problems.
For example, a text-to-speech synthesis system reading the word lead needs
“to: decide whether it should be pronounced as in lead pipe or as in lead me
“on. By contrast, deciding whether her and duck are part of the same entity
(as in (1.1) or (1.4)) or are different entity (as in (1.2)} is an example of
'syntactlc disambiguation and can be addressed by probabilistic parsing.
_"Amblgulties that don’t arise in this particular example (like whether a given
‘sentence is a statement or a question) will also.be resolved, for example by
.speech act interpretation. : :

1.3 MODELS AND ALGORITHMS

Orie of the key insights of the last 50 years of research in language process-
ing is that the various kinds of knowledge described in the last sections can
‘be-captured through the use of a small number of formal models; or theo-
Ties. Fortunately, these models and theories are all drawn from the standard
‘toolkits of Computer Sciénce, Mathematics, and Linguistics and should be
generally familiar to those trained in those fields. Among the most important
‘elements in this toolkit are state machines, formal rule systems, logic, as
well as probability theory and other machine learning tools. These mod-
‘els, in tiun, lend themselves to a small number of algorithms from well-
“known' computationat paradigms. Among the most important. of these are
_ tate"sp'ac_e search algorithms and dynamic programming algorithms.:
i - I their simplest formulation, state machines are formal models that
consist of states, transitions among states, and an input representation. Some
f the variations of this basic model that we will consider are determinis-
¢ and'non'adeterministic--ﬁnite_-state automata, finite-state transducers,
vhich ¢an write to an output device, weighted automata, Markov models,
‘and hidden Markov models;, which have a probabilistic component.
- Closely related: to these somewhat procedural models are their declar-
ative counterparts: formal rule Systems. Among the more important ones we
ill consider are regular grammars and regular relations, context-free
ammars, featiire-augmented grammars, as well as probabilistic. vari-
s of them all. State machineés-and formal rule systems are the main tools
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used when dealing with knowledge of phonology, morphology, and syntax.
The algorithms associated with both state-machines and formal rule
systems typically involve a search through a space of states representing hy- -
potheses about an input. Representative tasks include searching through a
space ‘of phonological sequences for a likely input word in speech recog-
nition, or searching through a space of trees for the correct syntactic parse
of an input sentence. Among the algorithms that are often used for these
tasks are well-known graph algorithms such as depth-first search, as well
as heuristic variants such as best-first, and A* search. The dynamic pro- '
gramming paradigm is critical to the computational tractability of many of
these approaches by ensuring that redundant computations are avoided.
““The third model that. plays. a critical role in capturing knowledge of =
language is logrc ‘'We will discuss first order logic, also know as the pred-
‘icate calculus, as well as such related formalisms as feature-structures, se-
_ maiitic networks, and conceptual dependency. These logical representations

i ‘have traditionally been the tool of choice when dealing with knowledge of

' '_semanttcs pragmatics; and discourse (although, as we will see, applications
- in these areas dre: increasingly relymg on the sunp]er mechanisms used in

. phonology, morphology, and syntax)

B Probabrhty theory is the final element n our set of techmques for cap-
' turmg hngulsuc knowiedge Each of the other models (state machines, for- .

o “mal rule systems and: logrc) canibe augmented with probabilities: One major
use of probablhty theory is to solve the many kinds of ambiguity problems
Nt :_'that we discussed earlier; almost any. speech and language processing prob-

- lem can be recast as:’ grven N chorces for some ambiguous 1nput choose

- ': the most probable one”

_ Another major. advantage of probabrhstle models is that they are one of
Ca class of machme learmng models; Machine Iearning research has focused
Com ways to’ automaucally Jeatn the various representations desenbed above;
automata Tule systems, searoh heuristics, classifiers. These systems can be

R tramed o large corpora.and: can be used as a powerful modeling techmque

SR .'espema]ly in places where we don’t yet have good causal rnodels Machine -
L _1eammg algonthms W1ll be deserrbed throughout the book '

To many, the abﬂrty of computers to process Ianguage as skﬂlfully as we do
: WIH srgnal the armval of truly mte]hgent machmes The basis of this belief is :
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ection 1.4. Language, Thought, and Understanding

fact that the effective use of language is intertwined with our general cog-
.mitive abilities. Among the first to consider the computational implications
of this intimate conmection was Alan Turing (1950). In this famous paper,
‘Turing introduced what has come to be known as the Turing Test. Turing
‘began with the thesis that the question of what it would mean for a machine
to think was essentially unanswerable due to the inherent imprecision in the
rms machine and think. Instead, he suggested an empirical test, a game,
which a computer’s use of language would form the basis for determin-

if 1t could think - Tf the machine could win the game it would be judged

T w1n ‘the intefrogator must determine which of the other two part1c1pants
is the inachine by asking a series of questions via a teletype. The task of the
nachine is to fool the interrogator into believing it is a person by responding
.as'a person would to the interrogator’s questions. The task of the second
_"an partlmpant is to convince the interrogator that the other participant is
{he'machine, and that they are human.
The followmg mteractlon from Turmg s paper illustrates the kind of
ctions he had i in mind. Clearly a convincing simulation of humanity
oesn 't require bemg an expert mn all domains:

Q: Please write me a sonnet on the topic of the Forth Bridge. -
A: Count me out on this one. I never could write poetry

- Add 34957 to 70764.
A (Pause about 30 seconds and then give answer as) 105621

ur g predlcted that roughly by the end of the twentleth century a machine

h 10 gigabytes of memory would have around a 30% chance of fooling a

‘Human interrogator after 5 minutes of questioning. Given the fact that you

:'can ool some of the people all the time, it is not clear how rigorous this

amc_ ar’ standard is. Nevertheless, the critical issue for Turing was that

language as humans do is sufficient, by itself, as an operauonal test for
intelligence. :

rpnsmgly, many of the issues raised by Turing became relevant as

: -1966 in the context of the ELIZA program (Weizenbaum, 1966).

was an early natural language processmg system capab]e of carry—

TURING TEST
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User;:  You are like my father in some ways.

ELIZA;: WHAT RESEMBLANCE DO YOU SEE o
Userz:  You are not very aggressive but [ think you don’t want me to notice that.
ELIZA;: WHAT MAKES YOU THINK T AM NOT AGGRESSIVE

Users:  You don't argue with me.

ELIZA3: WHY DO YOU 'I‘HTN KI DON T ARGUE WITH YOU

Users: - You are afraid of me.~

ELIZA4: DOES IT PLEASE YOU TO BELIEVE L AM AFRAID OF YOU

As'we will discuss in more detail in Chapter 2, ELIZA is a remarkably sim-
ple program ‘that makes use of pattern-matching to process thé input and
translate it into suitable outputs. The success of this sitple technique in this
domain is dne to the fact that ELIZA doesn’t actually need to know anything
10 mimic a Rogerran psychotheraprst As Werzenbaum notes th1s is one of

the few d1alogue genres Where the hstener can act as 1f they know nothmg of
' the world :

_ ELIZA’ deep relevance to Turlng s 1deas is that many peOple who in-
'teracted with ELIZA came to believe that it really un.derstood them and their
: problems Indeed; Weizenbaum (1976) riotes that many of these people con-

. tinued to beheve inELIZA’s abthtres even after the’ program g operatron was

k 'explamed to- them: In more recent years Weizenbaum’ s mformal reports
- .;have been repeated in'a somewhat more controlled settmg Smce 1991 an -
event known as thie Loebner Prize competition has attempted (e put Various

B : computer programs o the. Turmg test. Although these contests have proven

to have little screntrﬁc mterest a consrstent result.over the years has been
that even the crudest’ programs can fool some of the ]udges some of the time
_(ShJeber 1994). Not. surpnsrngly, these results have done nothmg to quell

S : ': the ongomg debate over the smtablhty of the Tunng test asa test for intelli-
S gence dmong phllosophers and’ Al fésearchers (Searle, 1980)

Forrunately, forthe purposes of this book, the relevance of these results '
X does not hmge on whether or not computers will ever be 1nte111gent or un-
3 derstand natural language. Far more 1mportant is recent related research in .
“the social SClences that has conﬁrmed another of Turmg s predlctrons from :

: -".:the samepaper

o :'_ Nevertheless I belreve that at the end of the centu.ry the use of
o words and educated opinion. will have altered so much that we

N Wl]l be able to Speal( of machmes thmktng wrthout expectmg to-
: be contradrcted

: It is now cléar that regardless of what people beheve of k?now about the in-
©oonér Workmgs of computers; they talk about them and interact with them as’ '
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social entities. People act toward computers as if they were people; they are
polite to them, treat them as team members, and expect among other things
that computers should be able to understand their needs. and be capable of
.1n_téracting with them naturally. For example, Reeves and Nass (1996) found
that when a computer asked a human to evaluate how well the computer had
bé’en'doing, the human gives more positive responses than when a different
omputer asks the same questions. People seemed to be afraid of being im-
poiite; In a different experiment; Reeves and Nass found that people also
sive computers higher performance ratings if the computer has recently said
mething flattering to the human. Given these predispositions, speech and
ﬁguage—based systems may provide many users with the most natural inter-
ce for many applications. This fact has led to a long-term focus in the field
on the design of conversational agents, artificial entities that communicate
conversationally.

1.5 THE STATE OF THE ART AND THE NEAR-TERM
FUTUREj

'We can only se¢ a short dlstance ahead but We can See plenty there
that needs to be done : : .

Alan Turmg

B ThlS 18 an excmng time for the ﬁeld of speech and 1anguage processing,
he recent commercialization of robust speech recognition systems, and the
se of the Web, have placed speech and langnage processing applications in
e spotlight, and have pointed out a plethora of exciting possible applica-
ons: The following scenarios serve to illustrate some current apphcatlons
and near-term possibilities.

% A Canadian computer program accepts daily weather data and gener-
‘ates weather reports that are passed along unedited to the pubhc in English
‘and French (Chandioux, 1976).

- The Babel Fish translation system from Systran handles over 1 000 000
slation requests a day from the AltaVista search engine site. -
coAcvisitor-to Cambridge; Massachusetts, asks a computer about places
to.eat using only spoken language: The system returns relevant information
ff_r‘éfri a database of facts about the-local restaurant scene (Zue et al., 1991),

- These scenarios represent just a few: of applications possible given cur-
technology. The following; somewhat more speculative scenarios, give
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some feeling for applications currently being explored at research and devel-
opment labs around the world.
A computer reads hundreds of typed student essays and grades them

in a manner that is indistinguishable from human graders (Landauer et al., -
1997). N
An automated reading tutor helps i 1mprove hteracy by having children .
read stories and using a speech recognizer to intervene when the reader asks
for reading help or makes mistakes (Mostow and Aist, 1999).

A computer equipped with a vision system watches a short video clip
Of a soccer match and provides an automated natural language report on the -

'gamc (Wahiater 1989)

- A computer predlcts upcommg Words or expands telegraphlc speech to

' a531st pe()plc with a speech or communication dlsablhty (Newell et al., 1998; -
: McCoy ét al.; 1998). )

1.6 sOME B—_msrm_smm- B

o . Hlstorlcal}y, speech and language processmg has been treated Vcry d1ffer~
-~ ently in. computer science, electrical engmecrmg, hngmstlcs ‘and psychol-

ogy/cogmtlve science. Because of this diversity; speech and language pro- '

- cessing encompasses a numbér of different but overlapping fields in these

" different departments: computational linguistics in linguistics, natural lan-

. . guage processing in computer science; speech recogmtwn in clectrical en-
- _gmeermg, computatlonal psycholinguistics in: psychology This section
- summarizes the different hlstoncal threads which have given.rise to the field .
of speech and langnage- processmg ‘This section will: prov1de only a sketch;

L -_'-'see the 1nd1v1dual chapters for more detail on each area and its: termmology

- Foundatmnal InSIghts 1940s and 19505

o The earheqt roots of the ﬁeid date to the mteilectually fertﬂe perlod just af—
- ter World War 1I that gave rise to the computer itself.- This period from the -
" 1940s through the end of the 1950s saw intense work on two foundational

‘ paradigms:’ the automaton and probahlllstlc ‘o mformatlon-theoretlc

models IR :
“The’ automaton arose in: the 19505 out of Turmg ) (1936) model of al-

: gonthmi_c computation, considered by many to be the foundation:of modern
- computer: science: - Turing’s work led first to the. McCulloch-Pitts neuron

(McCulloch and Pitts, 19439, a simplified model of the neuron as a kind of |
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':'c'b'mputing element that could be described in terms of propositional logic,
id then to the work of Kleene (1951) and (1956) on finite automata and reg-
ular expressions. Shannon (1948) applied probabilistic models of discrete
‘Markov processes to automata for language. Drawing the idea of a finite-
‘'state Markov process from Shannon’s work, Chomsky (1956) first consid-
ered finite-state machines as a way to characterize a grammar, and defined
‘finite-state language as a language generated by a finite-state grammar.
hese early models led to the field of formal language theory, which used
gebra and set theory.to define formal languages as sequences of symbols.
his includes the context-free grammar, first defined by Chomsky (1956) for
atural languages but independently discovered by Backus (1959) and Naur
‘et al. (1960) in their descriptions of the ALGOL programming language.

. The second foundational insight of this period was the development of
robabilistic algorithms for speech and language processing, which dates to
_Shannon’s: other contribution: - the metaphor of the noisy channel and de-
coding for the transmission of language through media like communication
hannels and speech acoustics.. Shannon also borrowed the concept of en-
‘tropy from thermodynamics as a way of measuring the information capacity
-of ‘a-channel,: or the: information content: of a language, and performed the
first measure of the entropy: of English using probabilistic techniques.

v It was also: during: this early: period. that the sound spectrograph was
fdeveloped (Koenig-éet al., 1946), and foundational research was done in in-
trumental phonetics that laid the groundwork for later work in speech recog-
nition. This led to the first machine speech recognizers in the early 1950s. In
21952, researchers at Bell Labs built a statistical system that could recognize
y of the 10 digits from a single speaker (Davis et al.,. 1952). The system
ad 10 speaker-dependent stored patterns roughly representing the first two
owel formants in the digits. They achieved 97-99% accuracy by choos-
ing the pattern 'which had the highest relative correlation coefficient with the

. The Two Camps: 1957-1970
:"By the end of the 19503 and the eaﬂy 1960s, speech and language processing
“had split very cleanly into two paradigms: symbolic and stochastic.

2. The symbolic paradigm took off from two lines of research. The first
: was' the work of Chomsky and others on formal language theory and genera-
: t:we syntax throughout the late 19505 and early to mid 1960s, and the work of
many linguistics and computer SCleIltIStS on parsmg ‘algorithms, 1mt1a]ly top-
: down and bottom—up and then v1a dynam:ac programming. One of the earliest
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complete parsing systems was Zelig Harris’s Transformations and Discourse
Analysis. Project (TDAP), which was implemented between June 1958 and
July 1959 at the University of Pennsylvania (Harris, 1962).% The second line
of research was the new field of artificial intelligence. In the summer of 1956
John McCarthy, Marvin Minsky, Claude Shannon, and Nathaniel Rochester
brought together a group of researchers for a two-month workshop on what
they decided to call artificial intelligence (AI). Although AT always included
a minority of researchers focusing on stochastic and statistical algorithms
(include probabilistic models and neural nets), the major. focus of the new
field was the work on reasoning and logic typified by Newell and Simon’s
work on the Logic Theorist and the General Problem Solver.. At this point
carly. natural language understanding systems were built,- These were sim-

ple systems. that worked in single domains mainly by a comb1nat10n of pat-

tern matching and-keyword search with simple heuristics: for reasoning and

o questlon answenng By the late 1960s more fonnal loglcal systems were
developed 5 IRHE :

 The stochastic’ paradlgm took hoId mamiy in departments of statistics

- and of elecmcal engineering. By thelate 1950s the: Bayes,lan method was be- -
. gmmng to be apphed to the problem of optical character: recogmtlon Bled-

soe and: Brownmg (1959) built a Bayesian system for text-recognition. that

“used a large. dict1onary and computed the. Tikelihood of each observed letter

sequence: given each word in the’ dictionary by multiplying the. likeliioods
for each letter. . Mosteller. and: Wallace (1964} applied Bayesian methods to
the probiem of authorshlp attribution on The Federalist papers.. .

.. The 1960s also. saw the rise of the first serious testable psychologzcal

'models of hurman language: processing based on transformatmnal grammar,

~ -as well as the first on-line ¢ ‘corpora; the Brown corpus: of Amencan English,
cal ‘million: word collection of samples from 500 written texts from different

genres. (newspaper novels, non-fiction, academic, etc.), which was assem-

- bléd at Brown University in 1963-64 (KuCera and Francis, 1967; Francis,

" 1979; Francis and Ku&era, 1982), and William S. Y. Wang 51967 DOC (Dic-

tlonary_ on Computer), an on-line Chinese dialect dictionary. - .

Four Paradlgms 197 0—1983

: 'The next penod saw an exploston in research in speech and language pro-

cessing ‘and the’ development of a number of research paradlgms that still -
dommate the ﬁeld : S L

2 This system was relmplemented recentIy and is described by Joshi and HOpely (1999) '
and Karttunen (1999), who note that tha parser was essentially implemented as a cascade of .
finite-state transducers.”

..._37.: :
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:The stochastic paradigm piayed a huge role in the development of
sp éch recognifion algorithms in this pertod, particularly the use of the Hid-
“den-Markov Model and the metaphors of the noisy channel and decoding,
He’velioped independently by Jelinek, Bahl, Mercer, and colleagues at IBM's
‘Thomas J. Watson Research Center, and by Baker at Carnegie Mellon Uni-
e éity, who was influenced by the work of Baum and colleagues at the In-
itute for Defense Analyses in Princeton. AT&T’s Bell Laboratories was
-also‘a center for work on speech recognition and synthesis; see Rabiner and
ang (1993) for descriptions of the wide range of this work.

L The logic-based paradigm was begun by the work of Colmerauer
Tis. colleagues on Q-systems and metamorphosis grammars (Colmer-
, 1970, 1975), the forerunners of Prolog, and Definite Clause Grammars
‘(Pereira and Warren, 1980). Independently, Kay’s (1979) work on functional
grammar' and shortly later, Bresnan and Kaplan’s (1982) work on LFG, es-
‘tablished the importance of feature structure unification.

-~ The natural language understanding field took off durmg this pe-
-riod, 'begmmng with Terry Winograd’s SHRDLU system, which simulated a
ot embedded i in a world of toy blocks (Winograd, 1972a). The program
able to accept natural language téxt commands (Move 1he red block on
'of the smalier green one) of a hitherto unséen complexity and sophisti-
_cation. His system was also the first to attempt to build an extensive (for the
e) grammar of English, based on Halliday’s systemic grammar. Wino-
s model madé it clear that the problem of parsing was well-enough
‘undefstood to’ béegin fo focus on semantics and discourse models. Roger
chank and his colleagues and students (in what was often referred to as
Yale School) built a series of language understanding programs that fo-
-cused on human conceptual knowledge such as scripts, plans and goals and
ian mermory organization (Schank and Albelson, 1977; Schank and Ries-
k; 1981; Cullingford, 1981; Wilensky, 1983; Lehnert, 1977). This work
0 tised network-based semantics (Quillian, 1968; Norman and Rumel-
, 1975; Schank; 1972; Wilks, 1975¢, 1975b; Kintsch, 1974) and began
ncorporate Fillmore’s notion of case roles (Fillmore, 1968) into their rep—
'resentatlons (Simmons, 1973).. v : :

" The loglc—based and natural- language understandmg paradlgms were
nified on systems that used predicate logic as a semantic representation,
h-as the LUNAR question-answering system (Woods, 1967, 1973).

The discourse modeling paradigm: focused on. four key areas in dis-
. Grosz and ber colleagues. introduced. the study of substructure in
urse, and of discourse focus (Grosz 1977a; Sidner; 1983}, a number of
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researchers began to work on automatic reference resolution (Hohbs, 1978),
and the BDI (Belief-Desire-Intention) framework for logic-based work on-
speech acts was developed (Perrault and Allen, 1980; Cohen and Perrault,
1979).

Empiricism a.n.d Fi'n'iteSt.ate Models Redux: 1983;1993 : |

This next decade saw the return of two classes of models which had Jost
popularlty in the late 1950s and ecarly 1960s partially due to theoretical
arguments against them such as Chomsky’s influential review of Skinner’s
Verbal Behavror (Chomsky 1959b) The first class was ﬁmte—state models,

_whlch began to receive attention again after work on finite- state phonology
'and morphology by Kaplan and Kay (1981) and finite-state' models of syn-
_tax by Church (1980). A large body of WOI‘k on ﬁmte—state models w111 be
descrlbed throughout the book,

The second trend in this peuod was what has been called the ‘return of

. empmcnsm most notably here was the rise of probablhstrc models through—

_ '_'_'out speech’ and language processmg, mﬂuenced strongly by the work at the
L :_IBM Thomas J. Watson Research Center on probabrhstrc models of speech
L recogmtlon These probablhstrc methods and other such data drlven ap-
o fproaches spread into part of—speech tagging, parsing and attachment ambr—

' gu1tles and connectlomst approaches from speech recogmtlon to semantrcs

ThlS penod a'lso saw con31derab1e work on natural Ianguage generation.

- The Fleld Comes Together 1994-1999

K By the last ﬁve years of the mﬂlenmum it was clear that the ﬁeld was Vastly
; ':changmg First, probabilistic and data-driven models had become quite stan-

- *-dard throughout natural language processing. Algorithms for parsing, part-
of~speech taggmg, reférénce tesolution, and discourse processing all began
to 1ncorporate probabilities; and employ evaluation methodologies borrowed
from speech recognition and information retrieval. Second, the increases in
~the speed and:memory of computers had allowed commercial exploitation
.. of :a-number- of subareas of speech and language processing, in particular
~ speech recognition and spelling and grammar checking: Speech and: lan-

guage processing algorithms. began to be applied to-Augmentative and Al-
térnative Communication (AAC). Finally, the rise of the Web emphasized the

- . need for language-based information retrieval-and information extraction.
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Oﬂ M ) lfiple Discoveries

: all ISCICntlﬁC dlscovenes arein pr1n01ple multlples lncludmg those
that on the Surface appear to be Slngletons -

M course there are many well- known cases of multlple dlscovery or inven-
Just a few examples from an extensive list in Ogburn and Thomas

22) include the multiple invention of the calculus by Leibnitz and by
ton, the multiple development of the theory of natural selection by Wal-
ace and by Darwin, and the muluple invention ‘of the telephone by Gray
ind Bell.> But Merton gives an further artay of evidence for the hypothesis
tha mulmple discovery is the rule rather than the exception, including many
_ of putatlve smgletons that tum out be a redlscovery of prev10usly un-

this Idca as been multlply discovcred ‘¢citing sources from the 19th (.entury and earlier!
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- goal of speech recognition systems, for- example, is to perform exactly the
' task that human court reporters: perform every day: transcribe’ spoken dia-

; 'systems is for human-coruputer interaction, it makes sense to copy a solution
' that behaves the Way people are accustomed to. »

A Final Brief Note on Psychology

Many of the chapters in this book include short summaries of psychological -
research on human processing. Of course, understanding human language
processing is an important scientific goal in its own right and is part of the -
general field of cognitive science. However, an understanding of human lan- -
guage processing can often be helpful in building better machine models -
of language. This seems contrary to the popular wisdom, which holds that -
direct mimicry. of nature’s algorithms is rarcly useful in engihieering appli-
cations. For examiple, the argument is often made that if we copied nature

exactly, aitplanes would flap their wings; yet airplanes with fixed wings are a '_
more successful engmeermg solution. But language is not aeronautics. Crib-
bing from nature is sometimes useful for aeronautics (after all, airplanes do
have wings}, but it is part1cularly useful when we are trying to solve human-
centered tasks. Alrplane ﬂ1ght has different goals than bird flight; but the

log:: Since people aIready do this well, we can learn from nature’s prevmus
solution. ‘Since an important application of speech and language processmg

ThIS chapter mtroduces the ﬁeld of speech and language processmg The '
followmg are some of the-highlights of this chapter. .- - :

Se A good way o understand the concerns of speech and language pro-
" cessing research is to ‘consider what it would take to create an 1ntell1-
. gentagent like HAL from 2001: A Space Odyssey o
o "Speeoh and language technology relies- on formal models or repre—
sentations, of knowledge of language at the levels of phonology and
S phonet1cs morphology, syntax semantics; pragmatics and discourse.
‘A small number of formal models' including state ‘machings; ‘formal
Crule systems logic, and. probabﬂﬂy theory are used to ‘capture th15_
- knowledge. . . R el
- S'The foundations of speech and language teehno]ogy lie in computer :
science, hngmsncs mathematics, electrical engineering and psychol—
-: ogy A small number of algonthms fiom standard frameworks are used

TR
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-+ throughout speech and language processing,

/o The critical connection between language and thought has placed speech

“and language processing technology at the center of debate over intel-

-+ “ligent machines. Furthermore, research on how people interact with
" complex media indicates that speech and langnage processing technol-

g " ogy will be critical in the development of future technologies.

: ;e Revolutionary applications of speech and language processing are cur-

- - rently in use around the world. Recent advances in speech recognition

- and the creation of the World-Wide Web will lead to many more appli-

"o cations.

~ BIBLIOGRAPHICAL AND HISTORICAL NOTES

- Résearch in the various subareas of speech and language processing is spread
across a wide number of conference proceedings and journals. The con-
 ferenices and journals most centrally concerned with computational linguis-
- tics and natural language processing are associated with the Association for
 Computational Linguistics (ACL), its European counterpart (EACL), and the
. International Conference on Computational Linguistics (COLING). The an-
-_'r__n‘ual'. proceedings of ACL and EACL, and the biennial COLING conference
are the primary forums for work in this area. Related conferences include
the biennial conference on Applied Natural Language Processing (ANLP)
and the conference on Empirical Methods in Natural Language Processing
" (EMNLaP). The journal Computational Linguistics is the premier publica-
tion in the field, although it has a decidedly theoretical and linguistic ‘ori-
éntation.:-The journal Natural Language Engineering covers more practical
-~ applications of speech and language research. :
. Research on speech recognition, understanding, and synthesis is pre-
sented: at the biennial International Conference on Spoken Language Pro-
~-cessing (ICSLP) which alternates with the European Conference on Speech
" Communication and Technology (EUROSPEECH). The IEEE International
‘Conference on Acoustics, Speech, and Signal Processing (IEEE ICASSP)
“is held annually, as is the meeting of the Acoustical Society of America.
“Speech journals include Speech Communication, Computer Speech and Lan-
uage, and the IEEE Transactions on Pattern Analysis and Machine Intelli-
igence. ..
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Work on language processing from an Artificial Intelligence perspec-
tive can be found in the annual meetings of the American Association for -
Artificial Intelligence (AAAI), as well as the biennial International Joint -
Conference on Artificial Intelligence (IJCAI) meetings. The following arfi-
ficial intelligence publications petriodically feature work on speech and lan- .
guage processing: Artificial Intelligence, Computational Intelligence, IEEE
Transactions on Intelligent Systems, and the Journal ofAff{ﬁcial Intelligence
Research. Work on cognitive modelmg of language can be found at the an-
nual meetmg of the Cognitive Science Socwty, as well as its journal Cogni-
tive Science. An influential series of invitation-only workshops was held by
ARPA, ¢alled variously the DARPA Speech and Natural Language Process-

-ing Workshop or the ARPA Workshop on Human Langiageé Technology.

" There are a fair number of textbooks available covering various aspects

- of speech and language processing. Manning and Schiitze (1999) (Founda-
- fions: of Statistical Language Processing) focuses on stattstlcal models of
-"tagglng, parsing, disambiguation, collocations, and other areas “Charniak
. (1993) (Statzst:cal Language Learning) is an: accesmbie, though older and

'_ .t less extensive, introduction to-similar material:- ‘Allen (1995) (Natuml Lan-

S guage Understandmg) provides exferisive coverage’ of: Ianguage processmg -
'from thc AI perspective. Gazdar and Mellish (1989) (Natuml Language Pro- -

cessing’ in Lisp/Prolog) covers especially automata; parsmg, features, and -
unification. Pereira and Shieber (1987) gives a Prolog-based introduction to .

".';-"pa__rsmg and interpretation: - Russell and Norvig (1995} is an introduction to -

- artificial intelligence that includes chapters on natural languiage processing.

. Partee’et al. (1990) has a very broad coverage of mathématical linguistics.

o ‘Cole! (1997) is a volume of survey papers covering the entire field of speech -

- and language processitig; - A’ somewhat dated but: still tremendously useful

: :-collectlon of foundational papefs can be found in Grosz et. al ( 1986) (Read-
'mgs in Natural Language Processing). SRS

- Of course, a wide-variety of speech and 1anguage processmg resources -

" are now available on the. World-Wide Web. - Pointers. to! these resources are
B mamtamed on:the home-page for this book at: '

. .h_i_:t_p._/_/www..cs.colorado.edu/ “martin/slp.html. -
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WORDS

Words are the fundamental building block of langnage. Every human
language, spoken, signed, or written, is composed of words. Every
ea of speech and language processing, from speech recognition to
achine translation to information retrieval on the Web, requires ex-
nsive knowledge about words. Psycholinguistic models of human
anguage processing and models from generative linguistics are also
heavily based on lexical knowledge.

... The six chapters in this part introduce computational models
of the spelling, pronunciation, and morphology of words and cover
ree important real-world tasks that rely on lexical knowledge: auto-
matic speech recognition (ASR), tex(-to-speech synthesis (TTS), and
t_h :'correctlon of spelling errors. Finally, these chapters define per-
haps. the. most important computational model for speech and lan-
guage processing: the automaton.. Four kinds of automata are cov-
ered: finite-state automata (FSAs) and regular expressions, finite-state
tramducers (FSTs), weighted transducers, and the Hidden Markov
M del (HMM) as well as the N- gram model of word sequences.
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REGULAR EXPRESSIONS
AND AUTOMATA

In-the old days, if you wanted to impeach a witness vou had to go
ack and fumble through endless transcripts. Now it’s on a screen
mewhere or on a disk and I can search for a particular word —

say every time the witess used the word glove — and then quickly
sk a question about what he sa:d vears ago. Rzghr awdy you see

Iohnme L. Cochran Jr attomey, New York Tr,mes 9/28/97

'Irr'lagine'that you hd{fe-béébine a passibnate fari of Wobdchu'ck's. De-
ring more information-on this celebrated woodland creature, you turn to
-your favorite Web browser and type in woodchuck. Your browser returns
ja"few sites.” You have a flash of inspiration and type in woeodchucks. This
.tlme you discover “interesting links to woodchucks and lemurs™ and “all
bout Vermont’s unique, endangered species”. Instead of having to do this
carch twice, you would have rather typed one search command specifying
something like woodchuck with an-optional final s.- Furthermore, you might
/ant io find a site whether or not it spelled woodchucks with a capital W
{(Woodchuck). Or perhaps you might want to search for all the prices in some
docoment; you might want to see all strings that look like $199 or $25 or
:$24.99. Tn this chapter we introduce the regular expression, the standard
'I'lbtation' for characterizing text sequences. The regular expression is used
or specifying text strings in situations like this Web-search example, and in
‘other information retrieval applications, but also: plays an important role in
word-processing (in PC; Mac, or UNIX apphcatlons) computatlon of fre-

“quencies from corpora, and other such tasks.
. After we have defined regular expressions, we show how they can be
-_1mplemented via the finite-state automaton. The finite-state automaton is
it only the mathematical device used o implement regular expressions, but
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also one of the most significant tools of computational linguistics. Variations
of automata such as finite-state transducers, Hidden Markov Models, and:

© N-gram grammars are important components of the speech recognition and'

synthesis, spell-checking, and information-extraction applications that we-
will introduce in later chapters. '

REGULAR EXPRESSIONS

SIR ANDREW:  Her C’s, her U’s and her T’s: why that?
Shakespeare Twelﬁh Night

- One of the unsung successes in standardlzatlon in computer science
has been the regular expression (RE), a language for specrfymg text search

: strmgs The regular expression languages used for Searchmg texts in UNIX'

© *(vi; Perl, Emacs, grep), Microsoft Word (version 6 and beyond) and Word-

Perfect are almost identical, and many RE features exrst in the various Web

L search engines. Besides this practical use, the regular expressron is an im-

STRINGS, .

portant theoretical tool throughout computer science and linguistics.
- Aregular expression (first developed by Kleene (1956} but see the His--

-'tory section for.more details) is a formula in a special language that is used

for spec1fy1ng simple classes of strings. A string is a sequence of symbols;

- f_or the purpose of miost text-based search techniques, a string is any sequence’

of alphanumeric characters (letters, numbers, spaces, tabs, and punctuation).

: _For these purposes a space is just a character like any other and we represent :
At w1th the symbol ., : ST -

~: Formally, a regular expression is an algebratc notatlon for characterlz

2 mg a set of strinigs. Thus they can be used to specify search strings as well as

to define a language in a formal way. We will begin by talking about regular
expressions: as a way of specifying searches in texts, and proceed to other

uses. Section 2.3 shows that the use of just three regular expression opera-:

tors is sufficient to characterize strings, but we use the more convenient and-

- commonly-used regular expression syntax-of the Per] language throughout.

this'section.. Since common fext-processing programs agree on most of the
syntax of regilar expressions, most of what we say extends to all UNIX; Mi
crosoft Word, and WordPerfect regular expressions. Appendix A shows the

- few areas where these programs differ from the Perl syntax.:

* CORPUS

./ Regular expression search requires-a pattern. that we want to searc

* for, and a corpus of texts to-search through. - A regular expression search:
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unction will search through the corpus returning all texts that contain the
attern. In an information retrieval (IR} system such as a Web search engine,
the texts might be entire documents or Web pages. In a word-processor, the
exts might be individual words, or lines of a document. In the rest of this
'éhapter we will use this last paradigm. Thus when we give a search pattern,
¢ will assume that the search engine returns the line of the document re-
tumed This is what the UNIX grep command does. We will underiine the
xact part of the pattern that matches the regular expression. A search can be
si gned to return all maiches to a regular expression or only the first match.
We w111 show only the first match.

_c' Regular Expression Patterris.

The simplest kind of regular expression is a sequence of simple characters.
ot example; to search for woodchuck, we type /woodchuck/. So the reg-
ular expression /Buttercup/ matches any string containing the substring
ttercup, for example the line I'm called little Buttercup) (vecall that we
are assuming a search application that returns entire lings).  From here on
ve will put slashes around each regular expression to make it clear what is
a tegular expression and what is a pattern. We use the slash since this is the
notation used by Pexl, but the slashes are not part of the regular expressions.
G The search string can consist of a single letter (like / ! /) or a sequence
»f letters (like /urgl/); The first instance of each match to the regular ex-
_pression is underlined below (although a given application might choose to
eturn more than just the first instance):

Example Patterns Matched
“interesting links to woodchucks and 1emurs
“Mary Ann stopped by Mona’s” -
“Dagmar, my gift please Claire says
"| “all our pretty songs™ : :
“You ve left the burglar behmd agam’” sa.ld Norl

'-"Regular expressions are case sensmve 1owercasc /s/ is dlstlnct from
uppercase/ S/ (/ s/ matches 4 lower case s but not an uppercase S). This
ns that the pattern. /woodchucks / will not match the string Wood-
chucks. We can solve this problem with the use of the square braces [ and ].
he string of characters inside the braces specify a disjunction of characters
o match. For example Figure 2.1 shows that the pattem / Lwi} / matches
pa ms: contalmng either w or W.'
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RANGE

'spec1ﬁes one of the characters b c, d e, f or g Some other examples

RE DAY _. Match___ o _ Examp]e Pattems Matched

' ter cannot be, by use of the caret ~. If the caret ™ is'the first symbol after

o pattern / [~a}/ matcliés any single character (including special characters)
. “except a.” This is only. trug when the caret is the-first symbol after the open

. ure 2, 3 shows somie examples

Chapter 2. Regular Expressions and Automata
RE . Match. Example Patterns
/ Tww]loodchuck/ | Woodchuck or woodchuck “Woodchuck™
/labcl/ ‘a’, ‘b, or ¢’ “In womini, in.soldati”
/1123455678501 /| any digit . | “plenty of 7to 57

" Figare 2.1 - The use of the brackets [ ] to specify a disjunction of characters.

. ... The regular expression / [1234567890] / specified any single digit.
Wh11e classes of characters like digits or letters are important building blocks
in expressions, they can get awkward {e.g., it’s inconvenient to specify

/ {ABCDEFGHIJKLMNOPQRST VWXYZ]/

to mean “any cap1tal letter”). In these casés the brackets can be ‘used with
the dash (- ) to spec1fy any one character in a range. The. pattern /12~
5 1./ specifies any one of the characters 2, 3,4, or 5. The pattern / [b-gl/

VALA- Z] an uppercase letter | ““we should call it ‘Drenched Blossoms
. / [a= z] / 2 lowercase letter “my beans were 1mpat1ent to be hoed!”
/ [O 91/{a smgle d1g1t ““Chapter 1: Down the Rabblt Hole”

Flgure 2 2 The use of the brackets il plus the dash - to specrfy a range

O The "square'braces c'an“ als'o' be us'ecl tc sp'eci'fy'Wha't a single charac-

tbe open square brace [; the resulting pattern is négated. For example, the

square brace. If it occurs anywhere else, it usually stands for a caret; Flg—

' RE L : ._:.Match (smgle characters) ; 'Example Pattems .Matche.d

:[7A-Z]-" not-an uppercase letter .. |- “Oyin pripetchik” L
'i7se1-| neither ‘S’ mor “s’ o 1 1 have no exquisite reason for’t”
[N+ ot aperiod R “our resident Djinn”" -
|ferl | either fetor f77 - b “look up 2 now”
‘a®bii oo the patterni ‘a®b’ o |- “look up a” b now”
.- Figure 2.3 " Uses of the caret ~ for negation or just to mean ~ .
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The use of square braces solves our capitalization problem for wood-

hicks. - But we still haven’t answered our original question; how do we
specify both woodchuck and woodchucks? We can’t use the square brack-
ets, because while they allow us to say “s or S, they don’t allow us to say
i nothing”. For this we use the question-mark /?/, which means “the
preceding character or nothing”, as shown in Figure 2.4,

‘RE. -~ . - Match - - | Example Patterns Matched
 woedchucks? | woodchuek or woodchucks “woodchuck™
‘colou?r color or colour “colour”

Figure 24  The quéstion-miark ? marks optionality of the previous expres-

- We can think of the question-mark as meanirig “zero or one instances
of the previous character”. That is, it’s a way of specifying how many of
methmg that we want. So far we haven’t neédn’t to specify that we want
more than one of somel;hmg But sometimes we need regular expressions
that allow repetitions of things. For example, consider the language of (cer-
ta_in)f sheep, which consists of strings that look like the following:

' baa!

~ baaal!

" baaaa!

baaaaa!

* baaaaaal

o ThlS 1anguage consists of smngs w1th ab, followed by at least two as,
-followed by an exclamation pomt The set of operators that allow us to say
thmgs like “some number of as” are based on the asterisk or *, commonly
called the Kleene * (pronounced “cleany star”).. The Kleene star means
: '_Ier'oz or more occurrences. of the immediately previous character or regular
cXprésSiOn” So /a*/ means-“any string of zero or more as”. This will
match a or: aaaaaa but- it will also match Off Minor, since the string Off
Minor has zero as. So the regular expression for matching one or more @ is
a*/, meaning one a followed by zero or more as. More complex patterns
] _al"so be repeated. So./ [ab] */ means “zero or more as or bs” {not “zero
more right square braces”). This will match strings like aaaa or ababab
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Chapter 2. Regular Expressions and Automata-

We now know enough o specify part of our regular expression for
prices: multiple digits. Recall that the regular expression for an individual’
digit was / [0-91/. So the regular expression for an integer (a string of
digitsyis / [0-9] [0-9]*/. (Whyisn'titjust / [0-9] */)? _

. Sometimes it’s annoying to have to write the regular expression for dig-
its twice, so there is a shorter way to specify “at least one”” of some character.
This is the Kleene +. which means “one or more of the previocus character”.
Thus the expression / [ 0-91 +/ is the normal way to specify “a sequence of
digits”.. There are thus two ways to specify the sheep language: /baaa*! /
or /baas! /) L

" One very 1mportant specral character is the period (/. /, a wildcard

' expressron that matches any smgle characte:r (except a carnage return)

'RE . | Match ' : Example Patterns
-/beg.n/ | any character between beg and n | “begin, beg n, begun

Eﬁg'ur_e__Z.S The ilce ef the period to specify any character

| s The wildcard is cfter_l-'ﬁsed together'With the Kle'er'ie's'tat:_t:e mean “any’
string of characters™. For examiple suppose we want to find any line in which-
a particular word; for example aardvark, appears twice. We ¢an specify this

: w1th the regular expression. /aardvark. *aardvark/.

Anchors are special characters that anchor regular expressmns to par-

~ ticular places in a string. The most common anchors are the caret * and the

dollar-sign $. The caret ~ matches the start of a line. The pattern /“The /
matches the word The only at the start of a line. Thus there are three uses
of. the caret ~: to match the start of a line, as a negation inside: o_f square
brackets, and just to mean a-caret. (What are the contexts that alow Perl to
know which function a given caret is supposed to have?). The dollar sign $
matches the end of a line: So the pattern _$ is a useful pattern for matching

a space at the end of a line, and /*The dog\ .5/ matchesa line that con-

tains only the phrase The dog. (We have to use the backslash here since we
want the . tomean “period” and not the wildcard). - L
. There are also two other anchors: \b matches a word boundary, whxle;

- .'\'B matches a non-boundary.: Thus /\bthe\b/ matches the word the but

not: the word other. More technically, Perl defines a word as any sequence’
of digits; underscores- or letters; this is based on:the definition of “words”:

-in programming languages like. Perl or C. For example, /\b%9/ will match

- _ the strmg 99 in There are 99 bottles of beer on the wall (because 99 follows
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a space) but not 99 in There are 299 bottles of beer on the wall (since 99
Tlows a number). But it will match 99 in $99 (since 99 follows a dollar
sign ($), which is not a digit, underscore, or letter).

isjunction, Grouping, and Precedence -

i Suppose we need to search for texts about pets; perhaps we are particularly
. interested in cats and dogs. In such a case we might want to search for either
“the string cat or the string dog. Since we can’t use the square-brackets o
search for “cat or dog” (why not?) we need a new operator, the disjunction
operator also called the plpe symbol |. The pattern /cat | dog/ matches
ﬁ:_elther the string ca't or the string dog.
Sometimes we need to use this disjunction operator in the midst of
“alarger sequence. For example, suppose I want to search for information
~-about pet fish for my cousin David. How can I specify both guppy and
- guppies? We cannot simply say /guppy | ies/, because that would match
- only the strings guppy and ies. This is because sequences like guppy take
- precedence over the disjunction operator |..In order to make the disjunction
-operator apply only to a specific pattern, we need to use the parenthesis
operators { and ). Enclosing a pattern in parentheses makes it act like a
single character for the purposes of neighboring operators like the pipe |
and the Kleene*. So the pattern /gupp (v ies) / would specify that we
;"'_meant the disjunciion only to apply to the suffixes v and ies.
-+ The parenthesis operator ( is also useful when we are using counters
like the Kleene*. Unlike the | operator, the Kleene* operator applies by
- default only to a single character, not a whole sequence. Suppose we want
to, match repeated instances of a string. Perhaps we have a line that has
~column labels of the form Column I Column 2 Column 3. The expression
/Column,_ [0-9]1+_*/ will not match any column, instead, it will match
~a column followed by any number of spaces! The star here applies only to
. .the' space _, that precedes it, not the whole sequence. With the parentheses,
" we could write the expression / (Column_[0-91+_*)*/ to match the
Word Column, followed by a number and optional spaces, the whole pattern
re ated any number of times: :
“ This idea that one operator may take precedence over another requir-
_.-_m us to sometimes use parentheses to specify what we rean, is formalized
by the operator precedence hierarchy for regular expressions. The follow-
ing table gives the order of RE operator precedence, from highest precedence
'west precedence: . T :
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GREEDY

Parenthesis ()

Counters * o ? {}
Sequences and anchors the "my end$
Disjunction \

Thus, because counters have a higher precedence than sequences
/the*/ matches theeeee but not thethe. Because sequences have a higher
precedence than disjunction, / the | any/ matches the or any but not theny

" Patterns can be ambiguous in another way. Consider the expression
/ {a=z7*/ whén matching against the text once upon a time. Since / [a-
'z 1*/ matches zero or more letters, this expression could match nothing, or.-
just the first 1étter o; or on, or o#e, or once. In these cases regular expressions.
always match the largest string they can; we say that pattems are greedy

expandmg to cover s much of a string as they can.

_ A Slmple Example

S .Suppose we Wanted to Wﬂte a RE to finid cases of the Enghsh aItlcle the. A =
B snnple (but mcorrect) pattem might be _ : IO N

,;h;/the/

One problem is that ﬂ‘llS pattem W111 miss the Word When it begms '

E Sentence and hence xs capitalized (1 e, The) ThlS might lead us to the
i fo]lowmg pattem '

'fff/[tT]he/

But we wﬂl still mcorrectly return texts W1th the embedded in other. .

By Words (e.g., other or theology). So we need to specify that we want instance
f-w1th i word boundary on both sides:

.”;h/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/? We mlgh

: want thlS since / \Ii/ won’t freat undeiscores and numbers as word bound
©aTies; but we mlght want to find fhie in some context where it might also have'
“underlines of numbers nearby (the. or the25). We need to specify that we .

Want 1nstances m wluch there are no alphabetlc letters on elther side of th
the:

/"[-%a'.zA—z]' 1 tﬁhé'tfa?zzavm- ;o
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_ But there is still one more problem with this pattern:- it won’t find the
word the when it begins a line. This is because the regular expression ["a-
“za-771, which we used to avoid embedded thes, implies that there must be
" some single (although non-alphabetic) character before the the. We can
~ avoid this by specifying that before the the we require either the beginning-
of-line or a non-alphabetic character:

/{1 ["a-zA-Z]) [tT]hel"a-z2A-Z1/

| A More Complex Example

Let’s try out a more significant example of the power of REs. Suppose we
want to build an application to help a user buy a computer on the Web. The
user might want “any PC with more than 500 MHz and 32 Gb of disk space
for less than $1000”. In order to do this kind of retrieval we will first need
to be able to look for expressions like 500 MHz or 32 Gb or Compag or Mac
or $999.99. In the rest of this section we’ll work out some simple regular
'expressmns for this task: :

: First, let’s complete our regular expressmn for prices. Here’s a regular
éxpressmn for a dollar sign followed by a string of digits. Note that Perl is
smart enough to reahze that $ here doesn’t mean end-of-line; how might it

know that?
-_/$ T0-9] +/

Now we Just need to deal w1th fractions of dollars. We'll add a decimal
_'pomt and two d1g1ts afterwards:

_/$[0 9]+\ [0 9][0 9]/

ThlS pattem only allows $199. 99 but not $1 99. We need to make the
ents optional, and make sure we’re at a word boundary:

-\b$[0 9]+( [C~ 9][0 91)’7\10/

= B How about Spec1ﬁcat1ons for processor speed (m megahertz =MHz or
gahertz = GHz)? Here's a pattern for that: L

2t b.[O 9] +' * (MHzt [Mm] egahertz GHzI [Gg] 1gahertz) \b/

Note that we use /; */ to mean “zero or more: spaces ‘since there
o ght always be extra spaces lying around. Dealing with disk space (in Gb
- gigabytes), or memory size (in Mb = megabytes or Gb = gigabytes), we
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NEWLINE

._'RE_._'Expansion.. R . Match Exemﬂe Patterns

S \'s_' [,_,_\r\t\n_\fl -1 . whitespace (space, tab)
coodNsborsasl. o0 | Non-whitespace. - .- .. | in; Concord

need to allow for optional gigabyte fractions again (5.5 Gb). Note the use o
? for making the final s optional:

/ABL0-9]1+_* (Mbi [Mm]egabytes?) \b/
ABI0-9](\.[0-9)+)7?_*(Cbl| [Ggligabytes?)\b/

Finally, we might want some simple patterns to specify operating sys—_f
tems and vendors: -

AN (Win95 IWIino8 I WinNT | Windowsa * (NT[9519812000)2)\b/
/A\b(MaciMacinteosh!Apple) \b/

Advanced Operators

Nd b [0-970 .| anydigit ... .. | Party_of 5
\D| [70-97. - any non-digit- . ., - | Blue_moon
\w | [a-zA- ZO 9 L1| any alphanumeric or space ‘Daiya
NWITNwls I anon-alphanumeric. * .| -'1!!!"_':“. g

o Fig'u're 2'.6._ * Aliases for common séts of charaetefé._." -

“There are also some useful advanced regular expressmn operators. Fig-.

o ure 2.6 shows some useful aliases for common’ ranges, which can be used
{;_mamly to save typing. Besides the Kleene * and Kleene +; we can also use
o exphclt numbers as counters, by enclosing them in curly brackets The reg-
Cular expressmn / {3 %/ means “exactly 3 occurrénces of the previous char-
T acter or expression™. So /a\.{24}z/ will match ¢ followed by 24 dots
: followed by : z (but not a followed by 23 or 25 dots followed by & z).

A range of numbers can also be specified; so / {r, m} / specifies from

R | tom occurrences of the previous ‘char or expression, while / {n, } / means
~“atleast n occirences of the prev1ous expresswn RES for countmg are sum-

marlzed in Flgure 2.7, : :
Fmally, certain spec1a1 characters are referred fo by spec:1al notatlon
based on the’ backslash (\). The most common of these are the newline

character \1r1 and the tab character \ t. To refer to characters that are spec1a1

themselves, (hke ", {,and \) precede them with a backslash, (i.e., /\ . /;

¥ -/\*/ /\[/ and/\\/)
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Match _ :

Zero Or more occurrences of the previous char or expression

one or more occurrences of the previous char or expression
exactly zero or one occurrence of the previous char or expression
n occurrences of the previous char or expression

from » to m occurrences of the previous char or expression

at least » occurrences of the previous char or expression

- Figare 2.7 Regular expression operators for counting.

‘RE Match Example Patterns Matched
A an asterisk “*” “KAFPFL*A*NT -
i\ | - dperod“” “Dr. Livingston, T présume”
[ \7? a question mark “Would you light my candle?”
\n a newline
A\ E a tab

- Some characters that need to be backslashed.

Figure 2.8

" The reader should consult Appendix A for further defails of regular
§ expressmns and especially for the differences between regular expressmns
in Perl UNIX and Microsoft Word

f ;Regul'ar Expréssidn s'ubsﬁtuﬁon, Memory, and ELIZA
An important use of regular expressions is in substitutions. For example, the
Perl substitution operator 5/ regexpl /regexp? / allows a string charac-

terized by one regular expresswn 1o he replaced by a string characterized by
i a different regular expression:

s/colour/color/
Tt is often useful to be able to refer toa pamcular subpart of the string

"-matchmg the first pattern. For example, suppose we wanted to put angle

_ oxes We'd llke a way to refer back to the mteger we've found so that we
: _:can easﬂy add the brackets. ‘To do this, we put parentheses ( and ) around
- the first’ pattern and’ use the number operator \lin the second pattern to
refer back Here s how it look‘;

s ¢ {0.79]-+')-/<\l>/_-
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REGISTERS

The parenthesis and number operators can also be used to specify that -
a certain string or expression must occur twice in the text. For example,:
suppose we are looking for the pattern “the Xer they were, the Xer they will -
be”, where we want to constrain the two X’s to be the same strihg. We do -
this by surrounding the first X with the parenthesis operator, and replacing -
the second X with the number operator \ 1, as follows:

/the {.*)er they were, the \ler they will be/

Here the 1 will be replaced by whatever string matched the first item in-
parentheses. So this will match The bigger they were, the bigger they will be
but not The bigger they were, the faster they will be. .

The number operator can be used with other numbers: if you match
two different sets of parenthesis, 2 means whatever rnatched the second
set. For example :

/the (.*Yer they (.*), the \1er they \2/

‘will match The bigger they were; the bigger they were bt not The bigger they -
‘were, the bigger they will be. These numbered memories are calléd registers.
" (e.g. register 1, register 2, register 3, ‘etc). This memory: featm’e is not part :

L of every regular expression language and 15 often consxdered an. extended”- :

: _'.feature of fegular expressions.

* Substitations using memofy are very usefui in 1mplement1ng a simple -

: "natural -language understandmg program like ELIZA (Weizenbaum, 1966).

Recall that ELIZA simulated a Rogerian psycho]oglst and could carry on

- conversations with the user like'the followmg

’ 'that each'matched | some part of the mput lines and changed them. The first:

i UserI Men are all ahke

e _ELI_Z_Al "IN WHAT WAY -

T USCI'Q_ '. ’I‘hey e always bugg]ng uS E]bOUt somethmg Or Other

. ELIZAj: CAN YOU THINK OF A SPECIFIC EXAMPLE

L User3 Well, my boyfriend made me come here.
X _ELIZA3 "YOUR BOYFRIEND MADE YOU COME HERE
i o Usem - He says I'm depressed much of the time:
' -ELIZA;; I AM SORRY TO I-]EAR YOU ARE DEPRESSED

Ehza worked by havmg # cascade of regular expressmn substitutions

substitutions changed all instances of my to YOUR, and I'm to YOU ARE; .

‘and so on. The next set of substititions looked for relevant patterns in the -

input and created an appropriate output; here are some examples: -

/% YOU ARE: (depreéssedisad) .*/I AM SORRY TO HEAR YOU ARE \1/
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- 8/.%* YOU ARE (depressed|sad) .*/WHY DO YOU  THINK YOU ARE \1/
g/.% all .*/IN WHAT WAY/
s/ * always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

_ Since multiple substitutions could apply to a given input, substitutions
. were assigned a rank and were applied in order. Creation of such patterns is
addressed in Exercise 2.2.

':.'2.2 FINITE-STATE AUTOMATA

* The regular expression is more than just a convenient metalanguage for text
searching. First, a regular expression is one way of describing a finite-state
. automaton (FSA). Finite-state automata are the theoretical foundation of a

. good deal of the computational work we will describe in this book. Any
. regular expression can be implemented as a finite-state automaton {except
: regular expressions that use the memory feature; more on this later). Sym-
" metrically, any finite-state automaton can be described with a regular expres-
“:sion. Second, a regular expression is one way of characterizing a particular
kind of formal language called a regular language. Both regular expres-
sions and finite-state automata can be used to described regular languages.
- The relation among these three theoretical constructions is sketched out in

Figwre29. .. -
regular
expressions
A
A
PN
AN
S N
! N
. P \
finite =~ ==~==—==- ~  regular
automata . languages
. Figuré 2.9 The relationship between finite automata, regular expressions,
- and regular languages; figure suggested by Martin Kay.

.. This section will begin by introducing finite-state automata for some of
" the regular expressions from the last section, and then suggest how the map-
_ping from regular expressions. to automata proceeds in general. - Although
we begin with their use for implementing regular expressions, FSAs have a
wide variety of other uses that we will explore in this chapter and the next.
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Using an FSA to Recognize Sheeptalk

After a while, with the parrot’s help, the Doctor got to learn the lan-

guage of the animals so well that he could talk to them himself and

understand ‘everything they said. :
" Hugh Loftmg, The Story of Doctor Dolittle

Let s begin with the “sheep language” we dlscussed previously. Recall
that we defined the sheep language as any string from the following (infinite)

- baal - -
baaal
" baaaal .
- baaadal
© 0 baaamaal

. Figure 2.10-- - A finite-staté automaton for talking gheep.

5 - The regular expressmn for thaﬂ; kmd of “shcepta]k is /baa+!/. Fig-
" AUTOMATON “ure 2. 10 shows an automaton for modeling this regular expression. The
' ' -automaton (i.e., machine, also calléd finite automaton, ﬁmte-state automa-
ton, or FSA) recognizes a set of strings, in this case the strings characterizing
sheep talk, in the same way that a regular expression does, We represent the
autoraton’ds a directed graph a finite set of vertices (also called nodes),
~ together with a set of directed links between pairs  of vertices called arcs.
- We'll represent vertices with circles and ‘arcs with arrows. The automaton
swe - has five states, which are represented by nodes in the graph. State 0 is the
sATSTATE . . start state which we represent by the incoming arrow:: State 4-is the final.
- state or accepting state; which we represent by the double- cu:cle It also has_'
‘four transitions; which we represent by arcs in'the graph. - _
- The FSA can be used for recognizing (we also say: acceptlng) strmgs.-
in the folIowmg way First, think of the input as being written on along tape:
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broken up into cells, with one symbol written in each cell of the tape, as in

Figure 2.11.
i a(b| a

Figure 2,11 A tape with cells.

=2
NIV

The machine starts in the start state (gp), and iterates the following
‘process: Check the next letter of the input. If it matches the symbol on
an arc leaving the current state, then cross that arc, move to the next state,
and also advance one symbol in the input. If we are in the accepting state
. {g4) when we run out of input, the machine has successfully recognized an
instance of sheeptalk. If the machine never gets to the final state, either
because it runs out of input, or it gets some input that doesn’t match an arc
(as in Figure 2.11), or if it just happens to get stuck in some non-final state,
we say the machine rejects or fails to accept an input.

_ We can also reépresent an automaton with a state-transition table. As
“in’ the graph notation, the state-transition table represents the start state, the
accepting states; and what transitions leave each state with which symbols.
Here’s the state-transition table for the FSA of Figure 2.10.

.|l Input

Statel|b a !
10
02
b3
93
0

Flgure 2. 12 “The staie-transition table for the FSA of F1gu1‘e 2.10.

o We ve marked state 4 w1th a colon to mdlcate that it’s a ﬁnal state (you
“can have as many final states as you want), and the 0 indicates an illegal or
- missing transition. We can read the first row as “if we’re in state 0 and we

ee the input b we must go to state 1. If we’re in state 0 and we see the input
-aor' we fail”. .

59

REJECTS
STATE-
TRANSITION
TABLE




36

Chapter 2. Regular Expressions and Automata’

DETERMINIS- -
TG _

More formally, a finite automaton is defined by the following five pa-
rameters: .
e (: afinite set of N states ¢o,q1,...,9n

¢ 2 a finite input alphabet of symbols

e go: the start state

F': the set of final states, F C

8(g,i): the tramsition function of transition matrix between states

Given a state g & @ and an input symbol i € X, 8(g,i) returns a new
state ¢' € . dis thus a relation from Q x X to Q

For the sheeptalk automaton in Figure 2.10, Q = {qe,ql,qg,Q3,Q4} _
L={a,b,'}, F ={qga}, and S(q, i) is deﬁned by the transnlon table in Fig-.
e Flgure 2.13 presents an a]gorlthm for recogmzmg a stnng usmg a state—
transition table. The algorithm is called D-RECOGNIZE for “‘deterministic
recognizer’’. A deterministic algorithm is one that has no choice points;

" the algonthm always knows what to- do-for’ any input. The next section will
: mtroduce non- determmlsnc automata that must make decmmns about which
o states to move to. ..

L2 D- RECOGNIZE takes as 111put a tape and an automaton It returns ac-

w :_cepr if the string. it is pomtmg to on the tape is accepted by: the automaton, .
o and: reject otherwise. Note that since D-RECOGNIZE assuines it is already

' 'pomtmg at. the stnng to be checked, its task is only a subpart of the general_
_ __problem ihat we often use regular expressions. for, ﬁndmg a strmg in a cor-.
- pus (The general problem is left as an exercise to the Teader in Exercise 2.9.)

- D-RECOGNIZE begins by initializing the variable index the beginning.

Cof the tape and current-state to the machine’s initial state. D-RECOGNIZE
. then-ehters a loop that drives the rest of the algorlthm It tirst checks whether.
it has reachcd the-end of its input. If so, it either accepts. the input (if the
- current state is an accept state) or rejects the input (if not).

If there is input left on the tape, D-RECOGNIZE Iooks at the transition:

- table: to demde which state to move to: The variable currént-state indicates:
- “which row of the table to consult, while the current symbol on the tape indi:
- cates whlch column of the tablé to consult. The resulting transition-table cell
*is used to update the variable current-state and index is incremented to move
' forward on the tape:: If the' transition-table cell is- empty then the machine:

has‘nowhere to-go-and must reject the input. - =
- Figure 2:14 traces the execution of ﬂ']JS algonthm on the sheep lan
guage FSA gwen the sample input string baaal. .
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function D-RECOGNIZE(fape, machine) returns accept or reject

index < Beginning of tape
current-state +— Initial state of machine
loop
if End of input has been reached then.
if current-state is an accept state then:
- return accept
Celse .
. return reject
- elsif transition-tablef, current- state, rape[ mdex]] is empty then
return reject
else
current-state < transition-table{current-state tapefindex]]
index<+—index + 1
end

* Figure 2.13 An algorithm for deterministic recognition of FSAs. This al-
gorithm returns accept if the entire string it is pointing at is in the language
defined by the FSA, and reject if the string is not in the language.

3

" Figure 2.14 . Tracing the execution of FSA #1 on some sheeptalk.

.o Before examining the beginning of the tape, the machine is in state go.
~:Finding: a b on input tape, it changes to state ¢, as indicated by the contents
“'of transition-table[qy.b] in Figure 2.12 on page 35. It then finds an a and
;'_:_'Z'sWitches to state g, another & puts it in state g3, a third a leaves it in state g3,
where it reads the “!”, and switches to state g4. Since there is no more input,
the End of -input condition at the beginning of the loop is satisfied for
+ the first time and the machine halts in g4. State g4 is an accepting state,
and so the machine has accepted thc string baaa! as a sentence in the sheep
1anguage
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The algorithm will fail whenever there is no legal transition for a given
combination of state and input. The input abc will fail to be recognized since
there is no legal transition out of state gy on the input &, (i.e., this entry of
the transition table in Figure 2.12 on page 35 has a 0). Even if the automaton
had allowed an initial ¢ it would have certainly failed on ¢, since ¢ isn’t even
in the sheeptalk alphabet!. We can think of these “empty” elements in the
table as if they all pointed at one “empty” state, which we might call the fail

rasie state or sink state. In a sense then, we could view any machine with empty
transitions as if we had augmented it with a fail state, and drawn in all the
extra arcs, so we always had somewhere to go from any state on any possible
input. Just for completeness, Flgurc 2.15 shows the FSA from Flgure 2.10
with the fail state gy filled in. - =

Figure 2.15  Adding a fail state to Figure 2.10. - L B

Formai Languages

' We can use; the same graph in Figure 2 1Grasan automaton for GENERATING
sheeptalk. If we do, we would say that the automaton starts at state gg, and|
crogses: arcs to hew: states, printing out the symbols that label each arc it-

 follows. .When the automaton gets to the final state it stops. Notice that at
state: 3, the automaton has to chose between printing out ‘a ! and going to:

‘staté 4, or printing out an a and retarning: to state 3. Let’s say for now that.
we don’t. care how the machine makes this decision; maybe it flips a coin:
For now, we don’t care which exact string of sheeptalk we generate, as long:
as it’s a string captured by the regular expression for sheeptalk above.. .-
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.-'I_.(:ey Concept #1. Formal Langunage: A model which can both gener-
ate and recognize all and only the strings of a formal language acts as
‘a definition of the formal language.

f_'A formal language is a set of strings, each string composed of symbols
from a finite symbol-set called an alphabet (the same alphabet used above
fining an automaton!). The alphabet for the sheep language is the set
{a,b;'}. Given a model m (such as a particular FSA), we can use L(m)
; n “the formal language characterized by m”. So the formal language
ef ed by our sheepta]k automaton m in Figure 2.10 (and Figure 2.12) is the

) = {baa!;b'aa'a'!,baaa&!,baaada!,baaaaaa!,;.'.} B ¢
le usefulness of an automaton for defining a language is that it can
Xp ess an infinite set’ (such as this one above) in a closed form. Formal
guages are not the same as natural languages, which are the kind of
anguages that real people speak In fact a formal language ‘may bear no

e prévious examples our formal alphabet consisted of letters; but we
1'also have a higher level alphabet consisting of words. In this way we
i write finite-state automata that model facts about word combinations.
For example, suppose we wanted to build an FSA that modeled the subpart
of 'Enghsh dealing with amounts of money. Such a formal language would
model the: subset of Enghsh consisting of phrases like fen cents, three dol-
rs; one dollar thirty-five cents and so on.-

We might break this down by. first building just the autornaton to ac-
sount for the numbers from 1 (o 99, since we’ll need them to deal with cents.
- Figure 2.16 shows this. e

‘We: could now- add. cents and dollars to our automaton Flgure 2.17
‘sj a'simple version: of this, where we just made two copies of the au-
ton‘in Figure 2.16 and appended the words cents and dollars. .
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one six “ten - sixty - eleven sixteen

two seven twenty seventy twelve  seventeen
three eight  thirty eighty thirteen eighteen
four nine forty minety fourteen  nineteen.

five fifty fifteen

one

twenty surty two  seven
thirty ~ seventy three eight

forty  eighty four' nine
fifty . ninety five

Figure 2.16 ~ An ESA for the words for English numbers 1-99.

one  six  ted sixty  eleven  sixteen
two  seven TWENLY seventy twelve sevenleen
theee eighe thitty  eighty  thirteen eighteen
four pine forty ninety fonrteen winoteen
five fifty fifteen .

ont  SiX - ren - osixgy  eleven  sixteen
twe  SeVen  iwenty seventy twelve  seventeen
three  eight - thirty  eighty  thitteen  eighteen
four nime  forty  ninety  fourteen  nineteen
fifty fiftcen. cents,

twenty. sixly ane’ six tiventy * sixty one  six
thirty * sevenry two' seven thirty” se\ﬁﬂt)' WO . seven
forty "~ eighty’ theee cight forty * eighty three eight!

four nins fity mnety four  nine

fifty:  ninery .
Dl five, s : fve:

Figure 2.17 ~ FSA for the simple dollars and cents,

We Would now need to add in the grammar for d1fferent amounts of :-f

. dollars, mcludmg higher numbers like hundred, thousand. We’d also need to
make sure that the nouns like cents and dollars are singular when appropriate -
(one cent, one dollar), and plural when appropriate (fen cents, two dollars). -
This is left as an exercise for the reader (Exercise 2.3). We can think of the
.FSAsin Figure 2.16 and Figure 2.17 as simple grammars of parts of English. -
We will réturn to grammar—bmldmg in Part IT of this book, partlcularly in

' Chapter 9 '

- Non Deternnnlstlc FSAS

Let S extend or discussion now to another class of FSAS non-determlmstlc:
FSAs (or NFSAs). Consider the sheeptalk automaton in Frgure 2.18, which:
is rnuch like our first antomaton in Figure 2.10: _ : '

-The- only: difference between this automaton and the previous one. is.’
that here 1n Figure 2:18 the self-loop 13 on state 2-instead of state 3. Con-
‘sider using this network as an automaton for recognizing sheeptalk. When :
we: get to- stafe-2,:if we see an a we don’t:know whether to remain in state:
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" Figure 218 A non-deterministic finite-state automaton for talking sheep
(NESA #1). Compare with the deterministic antomaton in Figure 2.10.

2 or go on fo state 3. Automata with decision points like this are called
“non-deterministic FSAs (or NFSAs). Recall by contrast that Figure 2,10
specified a deterministic automaton, i.e., one whose behavior during recog-
.:muon is fully determined by the state it is in and the symbol it is looking at.
'A deterministic automaton can be referred to as a DFSA. That is not true for
the machine in Figure 2.18 (NFSA #1). . N
_ There is another common type of non- deterrmmsm caused by arcs
that have no symbols on them (called e-transitions ). The. automaton in
- Figure 2.19 defines the exact same.language as the last one, or our first one,
but it does it with an e-transition. ...

Figure 2.19 - Another NFSA for the sheep language (NFSA #2) It dlffers
- from NFSA #1 in Fxgure 2.181in havmg an g-transition.

CWe interpret this new arc as follows: If we are in state 3, we are al-
: Iowed to move to state 2 without looking at the input, or advancing our input
pomter 'So this introducés another kind of non-determinism — we might not
know Whether to follow the £- transmon or the ! arc.

Usmg an NFSA to Accept Strings o

f we ‘want to know whether a string is an 1nstance of sheeptalk or not, and
if we use a non-deterministic- machine to recognize it, we might follow the
‘wrong arc and reject it when we should have accepted it. That is, since there
is more than: one choice at some point, we might take the wrong choice. This
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problem of choice in non-deterministic models will come up again and again
as we build computational models; particularly for parsing.
There are three standard solutions to this problem:

» Backup: Whenever we come to a choice point, we could put a marker
to mark where we were in the input, and what state the automaton was
in. Then if it turns out that we took the wrong choice, we could baek
up and try another path. -

e Look-ahead: We could [ook ahead in the i mput to help us dec1de Wthh
path to take.

e Parallelism: Whenever we come to a choice point, we could look at

L every: alternatlve path in parallel.

We wﬂ] focus here on the backup approach and defer discussion of the

look-ahead anid parallelism approaches to later chapters.

The backup approach suggests that we should blithely make choices

that rmght lead t6 deadends, knowmg that' we can always return to unex-
R plored alternatwe ‘choices.: "There ‘are” two keys to this approach:  we need
. to remember all the alternatives for each choice point, and we néed to store
S sufﬁc:1ent 1nformat1on about edch alternative so that we can return to it when
©L . necessary. When a backup algorithm reaches a point in its processing where
~omo’ progress can. be made’ (because it runs out of input, or has no legal tran-
- sitions), it returns to'a prevrous choice point, selects one of the unexplored
o alternatives; and_ contlnues_ from there.. Applying this notion to our non-
' deterministic recognizer, we need only remember two things for each choice
‘point: “the state; or node, of the machine that we can go to and the corre-
‘'sponding position on the tape. We will call the combination of the node and
.po‘sitic')n_ the search-state of the recognition algorithm.. Fo avoid confusion,
~we will refer to the state of the automaton (25-opposed to the state of the

search) as a node or a machine-state. Figure 2.21 presents a recognlnon
algorlthm based on thls approach L

... Before going on to descnbe the main part of this algonthm we should
note two changes to the transmon table that drives it. First, in order to rep-

- resent nodes that have outgoing e-transitions, we add a new &-column to the

transition table. If a iode has an e-transition, we list the destination node in

- the e-column for that node’s row. The second addition is needed to account
. for multiple transitions to different nodes from the same input symbol. We .

let-cach cell ¢ntry consist-of: a list of destination nodes rather than a single
node. Flgure 2.2(y shows the transition table for the machine in Figure 2.138
(NFSA #1) Whﬂe at has no e~transitions; it does show that in machine-state
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Input
Statelb a ! €
0 106 00
i 02 00
2 2300
3 @0 40
4 00 00

Figure 2.20  The transition table from NFSA #1 in Figure 2.18.

¢ the input a can lead back to g> or on to g3.

g Figure 2.21 shows the algorithm for using a non-deterministic FSA
“to.recognize an input string. The function ND-RECOGNIZE uses the variable
* agenda to keep track of all the currently unexplored choices generated during
the course of processing. Each choice (search state) is a tuple consisting of a
~node (state) of the machine and a position on the tape. The variable current-
search-state represents the branch choice being currently explored,

. ND-RECOGNIZE begins by creating an initial search-state and placing
on the agenda. For now we don’t specify what order the search-states are
placed on the agenda. This search-state consists of the initial machine-state
f the machine and a pointer to the beginning of the tape, The function NEXT
is then called to retrieve an item from the agenda and assign it to the variable
current-search-state.

: As with D-RECOGNIZE, the ﬁrst task of the main loop is to determme
if the entire contents of the tape have been successfully recognized. This
is done via a call to ACCEPT-STATE?, which returns accept if the current
:"search—state contaifis both an accepting machine-state and a pointer to the
:'end of the tape. If we’re not done; the machine generates a set of possible
next steps by calling GENERATE-NEW- STATES, which creates search-states
‘for any e-transitions and any normal input-symbol transitions from the tran-
sition table. All of these search-state tuples are then added to the current
gcnda

1f the agenda is empty we've run out of options and have to reject the input.
Otherw1se an unexplored option is selected and the loop continues. .

2 It is important to understand why ND-RECOGNIZE returns a value of
e]ect only when the agenda is found to be empty. Unlike D-RECOGNIZE, it
-does not return reject when it reaches the end of the tape in an non-accept
-'machme state or when it ﬁnds 1tself nable to advance the tape from some
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machine-state. This is because, in the non-deterministic case, such road-
blocks only indicate failure down a given path, not overall failure. We can

only be sure we can reject a string when al possible choices have been ex-
amined and found lacking. '

function ND-RECOGNIZE(tape, machine) returns accept or reject

agenda < {(Initial state of machine, beginning of tape)}
current-search-state +— NEX T(agenda)
locp
if ACCEPT-STATE Ncurrent-search-state) returns true then
. return accept
else
- agenda&agenda U GENERATE- NEW~STATES(current—search-state)
if agenda is empty then A
return reject
else o . A . .
“current-search-state < NEXT(agenda)
"."end:- B _ TR _
functlon GENERATE- NEW STATEs(current-smte) returns: a set of search— :
."gta[cs . . IR

- Currénr'-no'deFth'e niode the current search-state is in’
1 irdex «+ the point on the ‘tape the current search-state is looking at”
“ Teturn a list of search states from transition table as follows:

- {transition-table[current-node,g], index) .

 (transition-table[current-node, tape{index]], index + I)
R function ACCEPT-STATE?(sedrch-state) returns true or false -
" cibrrent-node < the hode search-state is in

“index < the point on the tape search-state is looking at :
~if index is at the end of the tape and current-node is an accept statc of machme :
- then S . RIS .
- Teturn true
celse oo
|, _.return false.
- Figure 2.21 = An algonthm for NFSA recognmon The word node mears
- a state of the FSA while state or search-staie means “the state of the search
process le,a combmatlon of node and tape—posmon
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: Flgure 222 Tracing the ‘execution of NESA #1 (Figure 2.18) on some
Ssheepale, SRR

* Figure 2.22 illustrates the progress of ND-RECOGNIZE as it attempts to
handle the input baaa ! . Each strip illustrates the state of the algorithm at
- agiven point in its processing. The current-search-state variable is captured
by the solid bubbles representing the machine-state along with the arrow rep-
; fes‘enting progress on the tape. Each strip lower down in the figure represents
-progress from one current-search-state 1o the next.

Little of interest happens until the algorithm finds 1tself in state g
:-whﬂ_e looking at the second: a on the tape. An examination of the entry
for:transition-table[g; ,a] returns both g; and g3. Search states are created
L éac_h. of these choices and placed on the agenda. Unfortunately, our al-
gorithm chooses to move {o state g3, a move that results in neither an accept
s_tétég nor any new states since the entry for transition-table[qs, a] is empty.
t this point, the algorithm simply asks the agenda for a new state to pursue.
Since the choice of returning to ¢, from g3 is the only unexamined choice on
the agenda it is returned with the tape pointer advanced to the next a. Some-

69




46

- STATESPACE
SEARCH -

Chapter 2. Regular Expressions and Automata

what diabolically, ND-RECOGNIZE finds itself faced with the same choice.
The entry for transition-table[g;.a] still indicates that looping back to gy or
advancing to g3 are valid choices. As before, states representing both are
placed on the agenda. These search states are not the same as the previous
ones since their tape index values have advanced. This time the agenda pro-
vides the move to g3 as the next move. The mave to g4, and success, is then
uniquely determined by the tape and the transition-table.

Recognition as Search

ND-RECOGNIZE accomplishes the task of recognizing strings in a regular -
language by providing a way to systematically explore all the possible paths
through a machine. If this exploration yields a path ending in an accept
state, it accepts the string, otherwise it rejects it. This systematic exploration
is made possible by the agenda mechanism, which on each iteration selects a .

- partial path to explore and keeps track of any remammg, as yet unexplored, .
'partlal paths:’ o .
~Algorithms such as ND-RECOGNIZE, which operate by systematically -

o s"earchmg for solutions, are known as state-space search algorithms. In -

;'such algonthms the problem definition creates a space of possible solu-
tions; the goal is to explore this space, returning an answer when one is
found or rejectmg the input When the space has been exhaustively explored.

. In ND-RECOGNIZE; search states consist of pairings of machine-states w1th';_'

positions on the input tape. The state-space consists of all the pairings of -

- “machine-state and tape positions that are possible given the machine in ques-
“tion. The goal of the search is to navigate through this space from one state to -
- another tooking for a pairing of an accept state with-an end of tape position. -

The key to'the effectiveness of such programs is often the order in.

" which the states in the space are considered. A poor ordering of states may

lead to the examination of a latge number of unfruitful states before a suc-

cessful' solution is discovered: Unfortunately, it is typically not possible to" -

tell a good- choice fromia bad one; and often the best we can do is to insure .-

: :that each pussible sclution is eventually considered.

- Careful readers may have noticed that the ordermg of states in ND-
_' RECOGNIZE has been left unspecified: We know only that unexplored states
are added o the agenda as they are created and that. the (undefined) func-
tion NEXT returns’ an unexplored state from the agenda when asked. How
should the function NEXT be defined? Consider an ordering strategy where
the states that are considered next are the most recently created ones. Such
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‘a policy can be implemented by placing newly created states at the front
:of the agenda and having NEXT return the state at the front of the agenda
“when called. Thus the agenda is implemented by a stack. This is commonly
‘referred to as a depth-first search or Last In First Out (LIFO) strategy.

~ Such a strategy dives into the search space following newly developed
ads as they are generated. Tt will only return to consider earlier options
hen progress along a current lead has been blocked. The trace of the ex-
cution of ND-RECOGNIZE on the string baaa! as shown in Figure 2.22
illastrates a depth-first search. The algorithm hits the first choice point after
'seeing ba when it has to decide whether to stay in ¢» or advance to state
4. At this point, it chooses one alternative and follows it until it is sure it’s
‘wrong. The atgorithm then backs up and tries another oider alternative.

.-~ Depth first strategies have one major pitfall: under certain circum-
"'stances they can enter an infinite loop. This is possible either if the search
pace happens to be set up in such a way that a search-state can be acciden-
tally re-visited, or if there are an infinite number of search states. We will
revisit this question when we turn to more complicated search problems in

arsing in Chapter 10.

i The second way to order the states in the search space is to con51der
_-states in the order in which they are created. Such a policy can be imple-
‘mented by placmg. newly created states at the back of the agenda and still
‘have NEXT return the state at the front of the agenda. Thus the agenda is
implemented via a'qﬁeile; This is commonly referred to as a breadth-first
earch or First In First Out (FIFO) strategy. Consider a different trace
f the execution of ND-RECOGNIZE on the string baaa! as shown in Fig-
tire 2.23. Again, the algorithm hits its. first choice point after seeing ba when
“had to decide whether to stay in: ¢z or advance to state ¢5. But now rather
‘than picking one choice and following it up, we imagine examining all pos-
‘sible choices, expanding one ply of the search tree at a time. . :

: - Like depih-first search, breadth-first search has its pitfalls. As with
epth-first if the state-space is infinite, the search may never terminate. More
importantly, due to. growth in the size of the agenda if the state-space is
even moderately large, the search may require an impractically large amount
‘of ‘memory. . For small problems, either depth-first or breadth-first search
ategies may be adequate, although depth-first is normally preferred.for its
more. efficient use of memory. For larger problems, more complex scarch
hniques such as dynamic programming or A* must be used, as we will
ee in Chapters 7 and 10.
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: = Relatlng Determmlstlc and Non-Determmlstlc Automata

- St may seem that allowmg NFSAS to have non—determnustlc features like e-
B trans1t10ns would make them more powerful than DFSAs. In fact this is not

o the case; for any NFSA there is an exactly equivalent DFSA. In fact there is
i a simiple algorithm for convertirig an NFSA to anequivalent DFSA, although:
the number of states int this equivalent deterministic automaton may be much
 larger: See Lewis and-Papadimitriou (1981) or. Hopcroft anid Ullman (1979).

- for the proof of the'correspondence. The basic intuition of the proof is worth

~ ‘mentioning, however, and builds on the way NFSAs parse their input.. Recall
that the d]fference between NFSAs and DFSAs is:that in an NFSA a state i
may have more than one possible next state given an input i (for example ¢,
~and g). “The. algorithm in Figure. 2.21 dealt with this problem by choosin

o ‘either! g, or gy and then backtracking if the choice turned out to be wron
o We mentioned that a parallel version of the algoritium- would follow. both.
SR paths (toward g and gp) simultaneously.. - = .
o - The ‘algorithm for converting a NFSA toa DFSA is hke this parallel
Sial gonthm we build an automaton that hag a deterministic path for every path:
" - our parallel recognizer might have followed in the secarch space. We imagine:
following both paths simultaneously, and group together into an equjvalennie';.

~ class all the states we reach on the same input symbol (i.e:; g, and gp). We'
now give a new state label to this new equivalence class state (for examp '




49

‘Section 2.3. Regular Languages and FSAs

Gap)- We continue doing this for every possible input for every possible group
of states. The resulting DFSA can have as many states as there are distinct
‘'sefs of states in the original NFSA. The number of different subsets of a set
“with N elements is 2V, hence the new DFSA can have as many as 2¥ states.

'3 REGULAR LANGUAGES AND FSAS

s we suggested above, the class of languages that are definable by regular
xpressions is exactly the same as the class of languages that are character-
‘{zable by finite-state automata (whether deterministic or non-deterministic).
Because of this, we call these languages the regular languages. In order to
ive a formal definition of the class of regular languages, we need to refer
‘back to two eatlier concepts: the alphabet X, which is the set of all symbols in
'e language, and the empty string €, which is conventionally not incladed in
:In addition, we make reference to the empty set @ (which is distinct from
Y. The class of regular languages (or regular sets) over X is then formally
defined as follows Lo

_ _1 @ is aregula.r language _ S
5:2 Ya € ZUs; {a} is a regular language L
3. If L; and L, are regular langnages, then so are:

“i(a) Ly - Ly = {xy|x € L1,y € Ly}, the concatenation of L; ansz
(b) L ULy, the union or disjunction of L;andL;
(¢) L7, the Kleene closure of L;

All and only the sets of languages which meet the above properties
‘are regular languages. Since the regular languages are the set of languages
haracterizable by regular expressions, it must be the case that all the regu-
‘lar expression operators introduced in this chapter (except memory) can be
mplemented by the three operations which define regular languages: con-
‘catenation, disjunction/union (also called “™; and Kleene closure. For ex-
‘ample all the counters (*,+, {n, m}) are just a special case of repetition plus
Klgene *." All the anchors can be thought of as individual special symbols.
he square braces [ ] are akind of disjunction (i.e., [ab? means “a or b”, ot
the disjunction of @ and ). Thus it is true that any regular expression can be
turned into a (perhaps larger) expression which only makes use of the three
rimitive operations: TR

: Followmg van Santen’ and Sproat (1998) Kaplan and Kay (1994) and Lewis and Pa-
“padimitrion (1981 o -
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Regular languages are also closed under the following operations (X*
means the infinite set of all possible strings formed from the alphabet X):

e intersection: if ) and L; are regular languages, then so is L1 M Ly, the
language consisting of the set of strings that are in both L; and I;.

o difference; if L; and L; are regular languages, then so is £ — L, the
language consisting of the set of strings that are in L but not Lj.

e complementation: If L, is a regular language, then so is £* — L, the
set of all possible strings that aren’t in L;.

o reversal: If Li is a regular language; then so is L&, the language con-
: s1st1ng of the set of reversals of all the strmgs in L1

. The proof that regular expressmns are equwalent to ﬁmte state au-
tomata can be found in Hopcroft and Ullman (1979) and has two parts

' Showmg that an automaton can. be built for each regular language and con-
-'Versely that a regular language can be bu1lt for each automaton We won’t

R 'g1ve the proof but we give the mtumon by showmg how to do the first part:
“take any regular expressron “and build an automaton from’ it. The intuition is

s mducmve for the base case we build an automaton to. correspond to regular

i " _expressrons of a single c;ymbol (e.g. ‘the expressmn a) by crealing an initial
"-'state and an acceptmg ﬁnal state, with an arc between them Tabeled a. For.
e _-__"the inductive step, we shiow that each of the pnmmve operations of & regular
aS :expressmn (concatenahon umon closure) canbe imitatcd by an automaton:

s ‘. concatenatlon We just: stnng two. FSAs next to each other by con-
nectmg all the final states. of FSA1 to the 1n1t1al state of FSA2 by an
-transmon : s i

| Figure 224 The concatenation of two FSAs.

.” closure: We connect all the final states of the FSA: back to the initial
‘states by £-transitions, (this implements the repetition part of the Kleene
*) and then put d1rect links between' the: injtial and final states by &:
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transitions (this implements the possibly of having zero occurrences).
We'd leave out this last part to implement Kleene-plus instead.

Figure 2.25 ' The closure (Kleene.*) of an FSA.

-e union: We add a single new initial state ¢{,, and add new transitions
- from it to all the former initial states of the two machines to be joined.

Figure2.26  The union (|) of two FSAs.

2:4 " SUMMARY -

. This chapter introduced the most important fundamental concept in language

- processing, the finite automaton, and the practical tool based on automaton,
. the regular expressmn Here sa summary of the miain pomts we covered
~about these 1deas '

o The regular expresswn Ianguage isa powerful tool for pattern—match—
L ing. . . o _

e Basic operations in- reguiar expressicns in’clude concatenation of sym-

bols;: disjunction: of symbols: (f}; I, and..), counters (*, +, and
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e Any NFSA cin be converted to a DFSA
e The order in whrch a NFSA chooses the next state to explore on the

BIBLIOGRAPHICAL AND HISTORICAL NOTES

:'control and an mput/output tape. In one move, the Turing machine could
read a symbol on the tape ‘write a different symbol on the tape, charige staf
‘and 1 move left or nght (Thus the Turing machine differs from a ﬁmte stat

' automaton mainly in its ability to change the symbols on its tape).

© MECULLOCH-
PITTS
NELRON

- Any regular expression can be automatrcally compiled into a NFS

{n,m}), anchors (", $) and precedence operators ({,) ).
» Any regular expression can be realized as a finite state automaton
(FSA). : '
o Memory (\1 together with () ) is an advanced operation that is often
considered part of regular expressions, but which cannot be realized as
a finite automaton.
e Anautomaton 1mphcrtly deﬁnes a formal language as the set of strings '
the automaton accepts
¢ An automalon can use any set of symbols for its vocabulary, including
letters, words or even graphrc images.
o The behavmr of & determ;msﬁc automaton (DFSA) is fully deter-
= mmed by the state itis in." TR
-A non-determnmstlc automaton (NFSA) sometlmes has to make a
- choice between rnultlple paths to take g1ven the same current state and
i‘next input.. R

' _.'__.-:agenda definis its Search strategy The depth-ﬁrst search or LIFO
-;':’.-__strategy corresponds o the agenda-as-stack; the breadth—ﬁrst search:
- or FIFO strategy corresponds to the agenda-as-quieue.

' 'and hence 1nto a FSA

Fmrte automata arose in the 1950s out of Tunng ) (1936) model of algo—'-.
rithmic computation, considered by many to be the foundation of modern
computer science: The Turing machine was an abstract machine with a finite’

* Tnspired by Turing’s work, McCulloch and Pitts  built an automata-lik
model of the neuron (see von Neumann, 1963, p.- 319). Their model, whjch’:
is now usually-called the McCulloch-Pitts nearon (McCulloch and Pitts,
1943), was a simplified model of the neuron as a kind of “computing cle-
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nt” that could be described in terms of propositional logic. The model
8 a binary device, at any point either active or not, which took excitatory
and inhibitatory input from other neurons and fired if its activation passed
me fixed threshold. Based on the MicCulloch-Pitts neuron, Kleene (1951)
and (1956) defined the finite automaton and regular expressions, and proved
heir equivalence. Non-deterministic automata were introduced by Rabin
: -and Scott (1959), who also proved them equivalent to deterministic ones.

U Ken Thompson was one of the first to build regular expressions compil-
ers into editors for text searching (Thompson, 1968). His editor ed included
ornmand “g/regular expression/p”, or Global Regular Expression Print,
which later became the UNIX grep utility,

" There are many general-purpose introductions to the mathematics un-
derlymg automata theory; such as Hopcroft and Ullman (1979) and Lewis
and Papad1m1tnou (1981). These cover the mathematical foundations the
snnple automata of this: chaptcr as well as the finite-state transducers of
apter 3, the context-free grammars of Chapter 9, and the Chomsky hier-
chy ‘of Chapter 13. Friedl (1997) is a very useful comprehenswe gmde to
 the advanced usé of regular expressions. =~

“The metaphor of problem-solving as search is basxc to Artlﬁc:lal Intel-
igence (AL); more details on search can be found in any Al textbook such as

Ssell and Norvig (1995).

EXERCISES

‘Wiite regular expressions for the following languages: You may use
either Perl notation or the minimal “algebraic” notation of Section 2.3, but
ake sure to say which one you are using. By “word”, we mean an alpha-
; ti_mg separated from other words by white space, any relevant punctu-
ation, line breaks, and so for(h, :

a. the set of all alphabetic strings..
: he set of all lowercase alphabeﬂc stnngs endmg ina b

ie sét of all strings with two consecutive repeated words. (e.g;, * Hum—
ért Humbert™ and “the the” but not “the bug’ or. “the big bug”). .
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R 2.7 (Due to Paulme Welby, thzs problem probably requ1res the ab111ty to_'_
I ; 'kmt) Write a regular expression {of draw an FSA) which matches all knit
- ting patterns for scarves with the following specification: 32 stitches wide
-KIPI ribbing on both ends, stockinette stitch body, exactly two raised stripes.
Al knitting patterns must include a cast-ori row (fo put the correct nitmber o

e _._back

o 2 3 Complete the FSA for Enghsh money expressmns in F1gure 2. 16 as’ :
:suggested in the text followmg the figure.- You should handle amounts up.
0 10:$100,000, and make sure that “cent” and “dollar” have the proper plural
 cndings when appropriate. - SRR

2.4 Des;gn an FSA that recogmzes S1mple date expressions like March 15
L the 22nd of November, “Christmas. You should try to include all such “abso

e “before yesterday) Each edge of the graph should have a word or a set of
. words on it. “You should use some sort of shorthand for classes of words to:
' avmd drawmg too many arcs (e.g., funuture =¥ desk, cha1r table) :

- tomorrow; ‘a week: from tomorrow, the day before yesterday, Sunday, next .
'_'Monday, three Weeks from Sarurday : - :

= 2 6 Wnte an. FSA for t1me of- day expressmns like eleven o’clock, twelve
o thlrty, mtdmght or a quarter to ten and others o :

d. the set of all strings from the alphabet a, b such that each a is immedi-
ately preceded and immediately followed by a b, :
e. all strings which start at the beginning of the line with an integer (i.e.,-
1,2,3,...,10,..,10000,...) and which end at the end of the line with a..
word. . ot . _ '
“f. all'strings whichhave both the word grotto and the word raven in them. -
(but not, for example words like grotros that merely confain the word:
grotto). .

g write a pattem wh1ch places the first Word of an Enghsh sentence in a-._
register Deal with punctuauon

2. 2 Implement an ELIZA 11ke program usmg subsntuﬂons such as those
described on page 32 You may choose a diffetent domain than a Rogerian .

psycholog1st if. you w1sh although keep in mind. that you would need a
domam m wh1ch your program can legmmately do a lot of s1mp}e repeatmg :

lute™ dates, (. g- not “deictic” ones relative to the current day like the day -

2 5 N ow extend your date FSA to handle deictic cxpressmns like vesterday
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. -Cast on 32 stitches. cast on,; puts stitches on needle
“K1:P1 across row (i.e. do (K1 P1) 16 times). KIPI ribbing
Repeat instruction 2 seven more times. adds length
K32, P32. stockinette stitch
epeat instruction 4 an additional 13 times. adds length
P32, P32. raised stripe stitch
K32, P32. stockinette stitch
.’Repeat instruction 7 an additional 251 times. adds length
P32, P32. raised stripe stitch
K32, P32. stockinette stitch
Répeat instruction 10 an additional 13 times. adds length
K1 P1 across row. K1P] ribbing
Repeat instruction 12 an additional 7 times.  adds length
14. Bind off 32 stitches. binds off row: ends pattern

Figﬁre 2.27 A mystery Ianguage.

2.9 Currently the function D-RECOGNIZE in Figure 2.13 only solves a sub-
-part:of the important problem of finding a string in some text. Extend the
algorithm to solve the following two deficiencies: (1) D-RECOGNIZE cur-
tly assumes that it is already pointing at the string to be checked, and (2)

Knit and purl are two different types of stitches. The notation Kr means do r knit stitches.
“Similarly for purl stitches. Ribbing has a striped texture—most sweaters have ribbing at the
:sleeves, bottom, and neck. Stockinette stitch is a series of knit and purl rows that produces 2
- plain pattern— socks or steckings are knit with this basic pattern, hence the name.
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D-RECOGNIZE fails if the string it is pointing includes as a propér substring
a legal string for the FSA. That is, D-RECOGNIZE fails if there is an extra
character at the end of the string.

210 Give an algorithm for negating a deterministic FSA. The negatidn
of an FSA accepts exactly the set of strings that the original FSA rejects
(over the same alphabet), and rejects all the strings that the original FSA
accepts.

2.11 Why doesn’t your previous algorithm work with NFSAs? Now extend
your algorithm to negate an NFSA.




e MORPHOLOGY AND
3 FINITE-STATE
- 'TRANSDUCERS

A writer is someone who writes, and a stinger is something that
:siin'g;v' But fingers don’t fing, grocers don’t groce, haberdash-
ers don thaberdach hammers don rham and humdmgers don’t
umdmg
: ' Richard Lederer, Crazy English

“Chapter 2 introduced the regular expression, showing for example how
-single sedrch string could helpa web search engitie find both woodchuck
d woodchucks. Hunting for singular or plural woodchucks was easy; the
uril just tacks an's on to the end. But suppose we were looking for another
cmatmg woodland creatures; let’s say a:fox, and a fish, that surly peccary
sethaps a Canadian wild geose. Hunting for the plurals of these animals
takes more than just tacking on an s. The plural of fox is foxes; of peccary,
eccaries; and of goose, geese. To confuse matters further, fish don’t usually
] 'angé'their'form when they are plural (as Dr, Seuss points out: one fish two
“fish, ved fish, blue fish). _

Ak It takes two kinds of k:nowledge to correctly search for singulars and
phurals of these forms. Spelling rules tell us that English words ending in -y
‘pluralized by changing the -y to-i- and adding an -es. Morphological
rules tell us that fish has a null plural, and that the plural of goose is formed
changing the vowel.

" The problem of recognizing that foxes breaks down into the two moz-
e'm'es Jox and -es is called morphological parsing,

Key Concept#2 Parsmg means takmg an input and producmg some
Sort of structure for 1t

I“'We Wlll use the term parsing very broadly throughout this book, including
Ina._ny kinds of structures that might be prodiiced; morphological, syntactic,
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semantic, pragmatic; in the form of a string, or a tree, or a network. In:
the information retrieval domain, the similar (but not identical) problem o'f'_
sewving  Imapping from foxes to fox is called stemming. Morphological parsing or
stemming applies to many affixes other than plurals; for example we might
need to take any English verb form ending in -ing (going, talking, 'éongra_t
ulating) and parse it into its verbal stem plus the -ing morpheme. So given
SURFACE the surface or input form going, we might want to produce the parsed form :
' " VERB-go + GERUND-ing. This chapter will survey the kinds of mor-
phological knowledge that needs to be represented in different languages and'_-
introduce the main component of an important algorithm. for morphological
parsing: the finite-state transducer. :
Why don twe ]ust lﬂt all the plural forms of Enghsh nouns, and all the:-:

PRODUCTNE 1S @ productlve sufﬁx by this we mean that it apphes to every verb. Simi-
larly -s applies to almost every noun. So the idea of listing every noun and:

'verb can be qmte inefficient. Furthermore, productive suffixes even apply to.

" new: words (so the new word fax automatically can be used in the -ing form:
faxmg) Since new words (partlcu}arly acronyms. ‘and proper nouns} are cre :
S0 ated cvery day, the class, of nouns in Enghsh increases: constantly, and we.
IR need to be able to add the plural morpheme -5 to each of these.” Additionally, :
_ fthe p]ural form of these new Mnouns depends on ‘the spelhng/pronunmatlo
S of the smgular form for example if the noiin ends in -z then the plural
';_ form i is -es rather than -5, We'll need to encode these rules somewhere. Fi-
'nally, we certamly cannot hst all the morphologmal vanants of every word in”
morphologlcally complex languages like Turkish, wh1ch has words like the
followmg :

' '(3 1) uygar1a§t1ramad1klanrmzdanrmg s1mzcasma .

. .uygar +lag- - +tzr +ama . .+dtk +lar rimiz
. -.__'c1v1hzed +BEC +CAUS +NEGABLE +PPART +PL. +P1PL
o ddan. g vsiuzo tcasing

- +ABL +PAST +2PL +AsIf _ _

= (behavmg) as if you are among those whorn we could not .

I Clwhze/cause to become civilized”

The varlous p1eces of this word (the morphemes) have these meanings:

+BEC -~ ©  is “become” in English
. +CAUS .. . is the causative voice marker on a verb
 +NEGABLE is “not able” in English
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marks a past participle form
is 1st person pl possessive agreement
is 2nd person pl
is the ablative (from/among) case marker
is a derivational marker that forms an adverb from a finite verb form

1 not counting derivational suffixes; adding derivational suffixes allows
: oreticaily infinite number of words. This is true because, for exam-
“ple; ‘any verb can be “cansativized” like the example above, and multiple
fistances of causativization can be embedded in a single word (You cause X
to canse Y to ...do W). Not all Turkish words look like this; Oflazer finds
that the average Turkish word has about three morphemes (a root plus two
_ ﬁxés)- ‘Even so, the fact that such words are possible means that it will be
difficult to store all possible Turkish words in advance.
Morphologmal parsing is pecessary for more than just mformatlon re-
tn'e'val We wilt ficed it in"'machiné translation to realize that the French
ords va and allei should both translate to forms of the English verb go.
We will also need it in spell checking; as we will see, it is: morphological
wiledge that will tell s that misclam and antiundoggingly are not words.
_'The next sections will summarize morphological facts about English
and then 1ni1‘0duce the ﬁmte-state transducer.,

1 _s__'URV:EYﬁ OF (MOSTLY) ENGLISH MORPHOLOGY

rphiology is the study of the way words are built up from smaller meaning-
aring units, morphemes.. A morpheme is often defined as the minimal sorpHEUES
“meaning-bearing unit in a language. So for example the word fox consists of
‘single morpheme (the morpheme fox) while the word cats consists of two:
the morpheme car and the morpheme -s.

©.- As this example. suggests, it is often useful to chstmgul‘;h two broad
-of morphemes:: stems and affixes. The exact details of the distinc-  stems
g vary from language to language, but intuitively, the stem is the “main”™  arrixes
rpheme of the word, supplying the main meaning, while the affixes add
‘additional” meanings of various kinds.
~Affixes are further divided into prefixes, suffixes, infixes, and circum-
: Prefixes precede the stem;. suffixes follow- the stem, circumfixes do
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L ‘non-concatenative : morphology is" called templatlc morphology or-root-
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both, and infixes are inserted inside the stem. For example, the word eats is
composed of a stem eat and the suffix -s. The word unbuckle is composed of
a stem buckle and the prefix un-. English doesn’t have any good examples
of circumfixes, but many other languages do. In German, for example, the
past participle of some verbs formed by adding ge- to the beginning of the
stem and -f to the end; so the past participle of the verb sagen (to say) is
gesagt (said). Infixes, in which a morpheme is inserted in the middle of a
word, occur very commonly for example in the Philipine language Tagalog:
For example the affix um, which marks the agent of an action, is infixed to
the Tagalog stem hingi-“borrow” to produce humingi. There is one infix that
occurs in some dialects of English in which taboo morpheme like “f**king”
or “bl**dy’" or others like it are inserted in the middle:of other words (“Man-
f**hng—hattan” “abso-bl**dy- -lutely”!y (McCawley, 1978).
- Prefixes and suffixes are often called concatenative morphology since

number of languages have: extensive non-concatenative -morphology; in
which morphemes are combined in more complex Ways. . ‘The Tigalog in-
fixation example- above: is’ one. example of non-concatenatwe morphology;
o sinee two morphemes. (hingi and um) are mtermmgled Another kind of

.' 'and-pattern morphology This: is* very common in Arab1c Hebrew, and
- other Semitic languages “In Hebrew; for example a verb i is constructed us-
ing two components: a root, consisting usually. of three consonants (CCC)
and carrying the basic meaning, and a template;, Whlch g1ves the ordering of
consonants and vowels and 3pe01ﬁes more: semanttc mformauon about the
resulting verb, such as the semantic voice (¢.g., active, passwe rn_tddle) For
example the. Hebiew tri- consonantal root Imid, meaning ‘learn’- or ‘study’;’
can be combined with the active voicé CaCaC template to produce the word.
lamad; ‘he: studied’; ‘or the. intensive CiCeC template to ‘produce. the word
limed; ‘he taught ‘or the: mtenswe passwe template CuCaC to produce the
- word lumad,: ‘he was taught’:. S
' A'word can have more than one afﬁx For example the word rewrites
‘has the' prefix re-, the stem write, and the suffix -s.. The word unbelievably
‘has:a. stem (belzeve) plus three afﬁxes (un-; -able; and:-ly).- While English
“doesn’t tend to stack more ‘than four or five: affixes; languages like Turk-
18h can have worcis ‘with nine or ten affixes, as we saw above. Languages

. ¥ Alan Jay. Lerner; the Tyricist of My Fair Tady, bowdlerized ihe Tatter (0 abso- bloomm’lurelyg
‘in'the lync to. “Wouldn’t Tt Be Loverly?” (Lerner, 1978, p. 60). :
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“that tend to string affixes together like Turkish does are called agglutinative
languages.

There are two broad (and partially overlapplng) classes of ways to form
-words from morphemes: inflection and derivation. Inflection is the combi-
ation of a word stem with a grammatical morpheme; usually resulting in a
“word of the same class as the original stemn, and usually filling some syntac-
tic fanction like agreement. For example, English has the inflectional mor-
pheme -s for marking the plural on nouns, and the inflectional morpheme
-ed for marking the past tense on verbs. Derivation is the combination of a
ord stem with a grammatical morpheme, usually resulting in a word of a
different class, often with a meaning hard to predict exactly. For example the
:-Verb'ccimputeﬁze can take the derivational suffix -ation to produce the noun
_computerization. '

Enghsh has a relatwely snnp}e 1nﬂect10na1 system only nouns verbs, and
ometimes adjectives can be inflected, and the number of possible inflec-
tional affixes is quite small.

.. English nouns have only two klnds of inflection: an afﬁx that marks
: plural and an afﬁx that ma:rks possesswe For example many (but not all)
:Enghsh nouns can cither appear in the bare stem or singular form, or take a
“plural suffix, Here are examples of the regular plural suffix -s, the alternative
"_spelhng -es, and irregular plurals:

L ﬁegular Nouns H Irregular Nouns l

Singular | cat |thrush mouse | 0X
Plural _|[cats|thrushes [mice [oxen

" While the regular plural is spelled -5 after most nouns, it is spelled -es
- after words ending in -5 (ibis/ibises) , -z, (waltz/waltzes) -sh, (thrush/thrushes)
=ch,’ (finch/finches) and sometimes -x (box/boxes). Nouns ending in -y pre-
“ceded by a consonant change the -y to -i (butterfly/butterflies).
.- The possessive suffix is realized by apostrophe + -s for regular singular
::__nouns (llama’sy and plural nouns not ending in--s (children’s) and often by a
one apostrophe after regular plural nouns (llamas’) and some names ending
(in-s or -z (Euripides” comedies).

- English verbal inflection is more complicated than nominal inflection.
: FII‘St English has three kinds of Verbs main verbs, (eat, sleep, impeach),
_odal verbs (can, will, shouldy, and pnmary verbs (be,; have;, do) (using
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the terms of Quirk et al., 1985). In this chapter we will mostly be concerned
with the main and primary verbs, because it is these that have inflectional
REGLLAR endings. Of these verbs a large class are regular, that is to say all verbs of:
this class have the same endings marking the same functions. These regular:
verbs (e.g. walk, or inspect), have four morphological forms, as follow: .

" "Morphological Form Classes | Regularly Inflected Verbs

stem o walk |merge |try |map

sform walks |merges |tries |maps

-ing paticiple || walking | merging | trying | mapping |
Past form or’ ed particrp]e walked |merged |tried | mapped

_ .. These verbs are called regular because just by'ldicjwihg‘ the stem we.

cart predict the other forms, by adding one of three predlctable endings, and

- ‘making some regular spelling changes (and as we will see in Chapter 4, reg-"

“ular pronum:latlon changes). These regular verbs and forms are significant in’

the morphology of English first because they cover a majom:y of the verbs,:

~and Second because the regular class is. productlve As d1scussed earlier, a

- product;ve class is one that automatically includes any new words that entet

- ‘thé language: For example the recently-created verb fax (My mioin faxed me

the riote from cousin Everett), takes the regular én’dings “ed, -ing, -es. (Note:

that the -s form is spelled faxes rather than faxs we: w11i discuss spel]mg:f

rules below). : s SRR '

Vhgar - The Irregular verbs are those that have some more or less 1dlosyn--'

- eralic forms of mﬂectlon Inegular verbs in Enghsh often have five differenit

forms, but can have as many ascight (¢.g.; the veib be) or as few as three (c.g;

“cut or hif). While constituting a much smaller class of verbs (Quirk et al..

- (1985) estimate there are only about 250 irregular verbs, not counting auxil '

iaries); this class includes most of the very frequent verbs of the language.

R The table below. shows some sample irregular forms, Note that an irregul

" PRETERTE - verb can. 1nﬂect in: the past form (also: called the preterite) by changing its.

L vowel (ear/are) or its; yowel and some consonants (catch/caught) or with no:
enchng at all. (cut/cut) : - -

2 In general, the more frequent a word form, the mote likely it is to have idiosyncrat
. properties; this'is due to a fact about langnage change; very fréquent words présérve the
" - form even if other Words around them are changing so as to become more regular. '
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“Section 3.1. Survey of (Mostly) English Morphology

Morphological Form Classes || Irregularly Inflected Verbs
stem eat |catch ' | jcut
-s form eats |cafches |cuts
-ing participle eating | catching | cutting
Past form ate caught |cut
-ed participle eaten |caught |cut

©. The way these forms are used in a sentence will be discussed in Chap-
ters 8—12 but is worth a brief mention here. The -s form is used in the “habit-
12! present” form to distinguish the third-person singular ending (She jogs
“every Tuesday) from the other choices of person and number (Iyowwe/they
jog every Tuesday). The stem form is used in the infinitive form, and also
“after certain otheér verbs (I'd rather walk home, I want to walk home). The
-ing participle is used when the verb is treated as a noun; this particular
kind of nominal use of a verb is called a gerund use: Fishing is fine if you
“live niear water. The -ed participle is used in the perfect construction (He's
eaten lunch already) or the pas‘éive construction (The verdict was overturned
: 'esterday) S -

-+ In addition to noting Wthh sufﬁxes can be attached to which stems,
: we need to capture the fact that a number of regular spelling changes occur
“at thesé morpheme boundaries. For example, a single consonant letter is
doubled before adding the -ing and -ed suffixes (beg/begging/begged). 1f the
nal letter is “c”, the doubling is spelled “ck” (picnic/picnicking/picnicked).
If the base ends in a silent -¢, it is deleted before adding -ing and ~ed (merge/-
_r'ﬁerging/merged) Just as for nouns, the -5 ending is spelled -es after verb
‘stems ending in -s (foss/tosses) , -z, (waltz/waltzes) -sh, (wash/washes) -ch,
:-'(catch/catches) and sometimes -x (tax/taxes) -Also like nouns, verbs ending
in-y preceded by a consonant change the -y to -i (tfry/iries).
The English verbal system is much simpler than for example the Eu-
opean Spanish system, which has as many as fifty distinet verb forms for
ach regular verb, Figure 3.1 shows just a few of the examples for the verb
'famar ‘to Tove”. Other languages can have even more forms than this Spanish

Derlvatlonal Morphology o
Whﬂe Enghsh inflection is relatively sunple compared to other languages,
etivation in English i$ quite: complex.- Recall that derivation-is the combi-
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NOMINALIZATION ©

Present {Imperfect | Famre | Preterite/ Present | Conditionalf Imperfect | Future
Indicative] Indicative _ Suhjnct. Subjnct. |Subijnct,

amo amaba amaré amé ame amaria amara amare
amas amabas |amards |amaste james amarias amaras = |amares

amiaba arnard amé ame amaria amara amareme
amdbamos| amaremos| amamos| amemos| amariamos | amaramos; amaremos|
amabais |amaréis |amasteis|améis |amarfais |amarais |amareis

arian ¢ - 0 [ainabar - |amardn | amaron i amaran | amaren

Figufe 31 To love in Spanish.

nation: of a Word stem with a grammatlcal morphemo usually resultmg in
word of a different class, often with a meanin g hard to predict éxactly.
A very common kind of derivation in Englishi is the formation of new:.

‘nouns; often from verbs or adjectives. This process.is called nominalization
- For example; the suffix -ation produces nouns from verbs eriding often in the -
- suffix “ize (computerize <+ compiterization).” Here aIe ‘examples of some:
- paﬂ:lcuia:ly producnve Enghsh nonnnahzmg sufﬁxes

rSufﬁx H Base Verb/Ad_]ectlve fDerwed Noun - | '

" | -ation || computerize (V)-- computenzatlon o
~e¢ " |lappoint (V) ' appomtee
ser’ ClKUVY T [Killer
"-néss- fuzzy (A) 3 -fuzziness-'_-

Ad]ectwes can also be denved from 1 nouns and Verbs Here are exarm:
ples of a few sufﬁxes denvmg adJectlves from nouns or verbs '

[Sufﬁx || Base Nouanerb |Dor1ved Ad]ecnve |
"-"—al': : -computatlon (N) | computational
| -able || embrace (V) *  embraceable’

less cluc Ny = |clueless

S ‘Derivation in Eng]jsh' i Tnore complex than inflection for a number of
reasons, One is that it is generally less productive; even a nominalizing suf:

- fix like -ation, which can be added to almost any verb ending in -ize, cannio
. beé added to absolutely every verb. Thus we can 't say _*eatanon or *spell
_ tion. (we use: an asterisk (*) to mark “non- examples” ‘of English).: Anothe

is that thére aré subtle and complex meaning differences’ among nominaliz-
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ing suffixes. For example sincerity has a subtle difference in meaning from
sincereness.

2 FINITE-STATE MORPHOLOGICAL PARSING

Let’s now proceed to the problem of parsing English morphology. Consider

a simple example: parsing just the productive nominal plural (-s) and the

‘verbal progressive (-ing). Our goal will be to take input forms like those in

the first column below and produce output forms like those in the second
olumn.

. | Input

s cats
cat . .
~lcities
geese
goose

- g00Ses
merging
caught -

Morphological Parsed Output

cat +N +PL

cat <N +SG

city +N +PL

goose +N +PL

(goose +N +8G) or (goose +V)

goose +V +38G

merge +V +PRES-PART

{(catch +V +PAST-PART) or (catch +V: +PAST)

" The second column contains the stem of each word as well as assorted
morphelogical features. These features specify additional information about
_the stem. For example the feature +N means that the word is a noun; +SG
"eans it is singular, +PL that it is plural. We will discuss features in Chap-
'ter 11; for now, consider +SG to be a primitive unit that means “singular”.
ote that some of the input forms (like caughr or goose) wﬂl be amb1guous
1 etween different morphological parses.”

©7 In order to bulld a morphologmal parser, we’ll need at least the
-fo lowmg

lemcon' the list of stems and afﬁxes together w1th basic information
. about them (whether a stem is a Noun stem or a Verb stem, etc.).
-morphotactlcs. the model. of morpherne ordering that explains which
“classes of morphemes can follow other classes of morphemes inside a
. “word. For example, the rule that the Enghsh plural morpheme follows
- the noun rather than preceding it. :

'orthographlc rules: these spellmg rules arcused to rnodel the changes
~that occur in a wotd, usually when two morphemes combine (e.g., the
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These are the vast majority of English riouns: since for now we will ign_ofe

Chapter 3.  Morphology and Finite-State Transducers

¥ — ie spelling rule discussed above that changes city + -5 1o cities.
rather than citys). :

The next part of this section will discuss how to represent a simple ver-
sion of the lexicon just for the sub-problem of morphological recognition,
including how to use FSAs to model morphotactic knowledge. We will then
introduce the finite-state transducer (FST) as a way of modeling morpholog
ical features in the lexicon, and addressing morphological parsing. Finally, -
we show how to use FSTs to model orthographic rules. -
The Lexicon and Morphotactics
A lexicon is a repository for words. The simplest possible lexicon would
consist of an explicit list of every word of the language (every word, i.e.,
including abbreviations ("AAA”) and proper names (“Jane” or “Beijing™) as
follows: .~ : R
RN a_: R

CLAAAC
.. Aachen .. -
" aardvark
. aardwolf
~aba’

- abaca
aback

o _'S'_ihce_"i't__ will often be inconvenient Qr_'impos_s'_ib_l'e,_'f'or the various rea-
sons we discussed above, to list every word in the language, computational
lexicons are usually structured with a list of each of the stems and affixes of
the language together with a representation of the morphotactics that tells us.
how they can fit together. There are many ways to model morphotactics; one
of the most common is the finite-state antomaton, A very simple finite-state:
model for English nominal inflection might look like Figure 3.2. _

- The FSAin Tigure 3.2 assumes that the lexicon includes regular no
(reg-noun): that- take the regular -5 plural (e.g:; cat, dog, fox; aardvark

the fact that' the plural of words like fox have an inserted. e: foxes. T

lexicon also includes: irregular noun-fonns_-_that._dc)n’;_takez -5, both singul__
irreg-sg-noun (goose, mouse) and pliral irreg-pl-noun (geese, mice)..
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reg-noun plural (=s)

irreg-pl-noun

irreg-sg—noun

‘Figure3.2 A finite-statc automaton for English nominal inflection.

'.eg-.noun | irreg-pl-noun | " irreg-sg-noun pluoral |

geese goose C-8
sheep : sheep

mice mouse

A similar model for English verbal mﬂectlon ‘might ook like Fig-
ure 3 3

irreg—past-verb-form -

preterite (-ed)

.. lrregmverb—stem 3-sing (-s)

Figu_re 3;3' A ﬁnite—staté automatoﬁ for English verbal inflection

ThlS lexicon has three stem classes (reg-verb-stem,  irreég-verb-stermn,
any ‘irreg-past-verb-formy, plus four more affix classes (-ed past -ed part1c1-
' _-mg partlclple and third smgular -8)r
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reg-verb- | irreg-verb- | irreg-past- | past| past-part| pres-part| 3sg
stem stem verb '
walk cut caught -ed | -ed -ing , -8
fry speak ate '
talk sinig eaten
impeach | sang S

' spoken

Enghsh derivational morphology is significantly more complex than"_-_
English inflectional morphology, and so automata for modeling English deri-
vation tend to be quite complex. Some models of English derivation, in fact
“are based on the more complex context-free grammars of Chapter 9 (Sproat_ .
1993 Orgun 1995). - '

“As a’preliminary example though of the kmd of ana_lys1s it woul
' '-reqmre we present a small part of the morphotact:lcs of English adjectives;
“taken from Antworth (1990). Antworth offers the followmg data on Englis
ad]ecmves

hlg, bigger, biggest

" cool, cooler, coolest, coolly

" ored; redder, reddest

- ‘clear, clearer, clearest, clearly, unclear, unclearly
‘happy, happier, happzest happily. .
unhappy, unhappiet, unhappiest, unhappﬂy

N real, unreal, really

.Au m1t1a1 hypothes1s mlght be that ad;ectlves can have an opﬂonal pre
ﬁx (un-), an: obhgatory root (big, cool ete) and an opt1onal sufﬁx (-ex, -est
or ly) Tms mlght suggest the the FSA in. F1gure 3 4

- —er —est

) ad]-—root '

. :"_;'_Flgure 34 _ An FSA for a fragment of Enghsh ad}ectlve morphology
e -'Antworth E Proposal #1 '
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Alas, while this FSA will recognize all the adjectives in the table above,
will also recognize ungrammatical forms like unbig, redly, and realest.
We need to set up classes of roots and specify which can occur with which
suffixes. So adj-root; would include adjectives that can occur with un- and
; (clear, happy, and real) while adj-root; will include adjectives that can’t

adj-root,

--_Flgﬁré 3.5 - An ESA for a fragment of English adjective morphology:
Antworth’s Proposal #2.

: ThlS glves an 1dea of the complexity to be expected from English
denvatlon For a further example, we give in Figure 3.6 another fragment
~of an FSA for English nominal and verbal derivational morphology, based
on Sproat (1993), Bauer (1983), and Porter (1980). This FSA models a
ber of denvatlonal facts such as the well known generahzatlon that any

in exercise for the reader (Exercise 3.2) to discover some of the indi-
‘exceptions to many of these constraints, and also to give examples of
some of the various noun and verbclasses. .

We can now use these FSAs to solve the problem of morphologlcal
recognition; that is; of determining whether an input string of letters makes
up a legitimate English word or not: We do this. by taking the morphotactic
BSAs, and plugging in each “sub-léxicon” into the FSA. That is, we expand
each arc: (e.g:, the reg-noun-stem arc) with all the morphemes that make up
the set of reg-noun~stem The resultmg FSA carrthen be defined at the level
of the individual ]etter
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‘moun;  -ize/V  —ation/N

|- Figure 3.6 An FSA for another fragment of English derivational morphol- -
L OgY.. T

" Figure 3.7~ Compiled FSA for a few English nouns with their inflection.
““Note that this automaton will incorrectly accept the input foxs.” We will see -
. | beginning on page 76 how‘toc_or‘rectiy deal with the inserted e in foxes. e

- Figure 3.7 shows the. noun-recognition FSA produded by expanding
" the Nominal Inflection FSA of Figure 3.2 with sample regular and irregular
~nouns for each class. We cari use Figure 3.7 to recognize strings like aard
- Varks by simply starting at the initial state; and comparing the input lette;
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\ ': letter with each word on each outgoing arc, and 50 on; just as we saw in
Chapter 2.

-"-qup_hologic_al Parsing with Finite-State T.r_a.h.sﬂuéers

Now that we’ve seeri how to use FSAs to represent the léxicon and inciden-
tally do morphological recognition, let’s move on to morphological parsing.
'Fdr example, given the input cazs, we’d like to output cat +N +PL, telling
us:that cat is a plural noun. We will do this via a version of two-level mor-
ology, first proposed by Koskenniemi (1983).. Two-level morphology rep-
‘fesents a word as a correspondence between a lexical level, which represents
3. 51mple concatenation of morphemes making up a word, and the surface
evel, ‘which represents the actual spelhng of the final word. Morphological
sarsing is implemented by building mapping rules that map letter sequences
C cars on the surface level into morpheme and features sequences like
4N +PL on the lexical level. Figure 3.8 shows these two levels for the
word cats. Note that the lexical level has the stem for a word, followed by

¢ morphological information +N_ +PL which tells us that cats is a plural

Lexical $ | Clalt [+N[+PU | | 3

Surfaceé c lalt iS | | | | é

Flng'e 3.8 . Example of the lexical and surfice tapes.

. The automaton that we use for performmg the mapping between these
© levcls is the finite-state transducer or FST. A transducer maps between
- set of symbols and another; a finite-state transducer does this via a fi-
iite automaton. Thus we usually visualize an FST as a two-tape automaton
which recognizes or generates pairs of strings. The FST thus has a more
i neral function than an FSA; where an FSA defines a formal language by

defining a set.of strings, an FST defines a relation between sets of strings.
1is Telates to another view. of an FST; as a machine that reads one string
and generates another. Here’s'a summary of this four-fold- way of thinking
- 'about transducers: i e : - . :
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MEALY
MAGHNE

FEASIBLE -
FAIRS

REGULAR -
RELATIONS

'symbols such as the alphabet of our sheep language '
“an FST accepts a language stated over parrs of symbols as in:

In two—level morphology, the palrs of symbols in Z are’ also called feasible
' palrs :

-'phxc to regular relations. Regular relations :are sets' of pairs: of stnng
- natural extension: of the regular. languages, which: are sets of strings. - Lik

- under these operat:tons in general FSTs that are not augmented with: the

» FST as recognizer: a transducer that takes a pair of strings as 1nput _

and outputs accept if the string-pair is in the string-pair language and
a reject if it 18 not.

FST as generator: a machine that outputs pairs of strings of the lan
guage. Thus the output is a'yes or no, and a pair of output strings.
FST as translator: a machine that reads a string and outputs anothe;
string

'FST as set relater_:' a'machi_ne that computes relations between sets

" An FST can'be formally defined in a number of ways; we will rely -
ont" the followmg definition, based on what is called the Mealy machme
extensmn toa snnple FSA: : :

B . Q a ﬁmte set ofN states Q{),ql, ,qN

. E 4 finite: alphabet of complex symbols Each complex symbol is
' composed of an input- output. pair i : 0; one symbol i from an input
alphabet I and one symbol o from an output alphabet O, thus £ C
IxOT and 0 may each also 1nclude the epsrlon symbol e

. ® gy} the start state
e Fi the set of ﬁnal states; F co -

e d(g,i: ) the transition funct1on or transrtlon matrix between states.
Given a state g &€ @ and complex symbol i1 0 € Z, 8(q,i: 0} returns
new state q 6 Q. & is thus a relation from OxXto Q.

Where an FSA accepts a language stated over afinite alphabet of sing

= {b a; '}
Z{aabb 'a'aee'}
Where FSAs are 1somorph1c to regular languages FSTS are isomio

FSAs and regular languages, FSTs and: regular: relations are closed uride
union; although in general they are not closed: under difference, complerne
tation and 1ntersect10n (although some useful’ subclasses of FSTs are close
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are more likely to have such closure properties). Besides union, FSTs have
; addltlonal closure properties that turn out to be extremely useful:

- inversion: The inversion of a transducer 7' (7 ~!) simply switches the
input and output labels. Thus if 7 maps from the input alphabet 7 to
the output alphabet @, T~ maps from O to I.

‘composition: If 71 is a transducer from /; to O; and T; a transducer
from /> to (F, then 77 o T> maps from {; to O;.

“Thwversion is useful because it makes it easy to convert a FST-as-parser
n FST-as-generator. Composition is useful because it allows us to take
. aﬁSducers' that run in series and replace them with one more complex
transducer ' Composition works as in algebra; applying TioT; to an input
sequence S is identical to applying 77 to S and then T, to the result; thus
T5(S) = T (T1(S)). We will see examples of composition below.
-+ 'We mentioned that for two-level morphology it’s convenient to view
an FST as having two tapes. The upper or lexical tape, is composed from
haracters from the left side of the a : b pairs; the lower or surface tape,
S oinposed of characters from the right side of the @ : b pairs. Thus each
5y 'bol E_l 1hi in the transducer aIphabet Z ‘expresses how the symbol a from

FWiC dlo'x_iel morphology we call pairs like @ : a defanlt pairs, and just refer to
them by the single letter a.

. "We are now ready to build an EST morphological parser out of our
carlier morphotactic FSAs and lexica by adding an extra “lexical” tape and
appropriate morphological features. Figure 3.9 shows an augmentation
of Figure 3.2 with the nominal morphological features (+ 3G and +PI.) that
coﬁé’spmd to each morpheme. - Note that these features map: to the empty
1#°€ o the word/morpheme boundary symbol # since there is no segment
responding to them on the output tape. . :

- Ini order to useé Figure 3.9 as a morphological 1 noun parser; 1t needs to be
; e_pted with all the individual regular and irregular noun stems, replacing
the Iabels regular-noun-stem etc. In order to do this we need to update the
; n: for this transducer; so that irregular plurals like geese will parse into
orrect stem goose +N +PL. We do this by ailowmg the lexicon to
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|- dog _ ___'_m01u£sce 1. . mouse

reg-noun-stem

irreg-sg-noun—form

irreg-pl-noun-form

Flgure 3. 9 A tranbducer for Enghsh nominal number inflection Thagm. .

Since both qr1 and g, are accepting states, regular nouns can have the plural

suffix or not. The morpheme-boundary symbol and word boundary marker
# w111 be discussed below.

Slmpler the two- Ievel entry for fox will now. be il d 0" x:x”, but by
relying on the orthographic convention that £ stands for £1f and so on, we:

- can snnply ‘refer to it as fox and the form: for geese as g o:e o:€ s

Thus the 1ex1con will look only shghtly more compiex

- r@:g-noun o irre'g-pl-noun' [ irreg-sg-moun

[ fox |  goeoese | goose
ccat, - - 1. . shep | .. sheep

;:'_ aardvark

7 Our prbﬁ_o'sed morphological parser needs to map from surface form:

" like geese to lexical forms like goose +N''+SG. We could do this by cas

cading; the lexicon above with the singular/plural autornaton of Figure 3.9
Cascading two automata means running them in- series with the output of:
the first feeding the input to the second. We would first represent the le

con '(_)f-stem'sf in the above table as the EST Tgem, of Figure 3,10, This FST
‘maps e.g. dog to reg-noun-stent. In-order to allow: possible suffixes, Tienis

in Piguré 3.10 allows the forms to be followed by the wildcard @ symbol

o r@: @ stands for “any feasible pair”. A'pair of the form @: x, for example will*
| 'mean ‘any feasible pair-which has % on the surface level”, and- correspond:

E 'mgly for the form x @ The output of this FST would then feed the numb
‘automaton T

- Instead of cascadmg the two transducers We can, compOSe them usin:

o 'the ‘¢omposition operator defined above. - Composing. is a way of taking
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~ascade of transducers with many different levels of inputs and outputs and
onverting them into a single “two-level” transducer with one input tape and
one output tape. The aigorithm for composition bears some resemblance to
the algorithm for determinization of FSAs from page 48; given two automata
i and 5 with state sets Q7 and Q; and transition functions &; and d;, we
create a new possible state (x,y) for every pair of states x € O and y € Q.
Then the new automaton has the transition function:

83((xa1ya)ai : 0) = (xb:yb) if
de st 81{xgic) =x
and &, (y,,c: 0} =y, (3.4)

- The resulting composed automaton, T, = Tum © Tstems, is shown in
“Figure 3.11 (compare this with the FSA lexicon in Figure 3.7 on page 70).3
_ Note that the final automaton still has two levels separated by the : . Because
He 0010n was reserved for these levels, we had to use the | symbol in Tyrems
1gure 3.10 to separate the upper and lower tapes.

reg-poun—stem ' aardvark

reg-noun—stem. l dog .

reg-noun—stem | cat

Feg-noun-stepm E f 00X .

irreg-sg—noun—form | goose

irreg—sg-noun—form | sheep -

e _[tTeg-sg-noun—form i mouse
irreg-pl-noun-form | goieo:ese

ol irreg—pi—noun—form. Il sheép.

' irreg-pi-noun—-form | moduies:ice

'Fi'gilre 3.10  The transducer Tyems, which maps roots to their root-class. 1

. This transducer will map plural nouns into the stem plus the morpho-
oglcal marker +PL, and singular nouns into the stem plus the morpheme
SG Thus a surface cats Wlll map tocat +N +PL as tollows:

C:'C' dra t:t- +N: & '+PL::- a¥#

_Thatls c maps to 1tself as do a and t, while the morphological feature
N (recall that this means “poun’ )_ maps to nothing (€), and the feature +PL,

ote that for the purposes of clear e_:xpoSitidn, Figure 3.11 has not been minimized in the
way that Figure 3.7 has. .-, - :
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“ TFigure 3.41° A fléshed-out English nominal inflection FST Tjg, = Trum 0.
- Tstems. RS e TR S

o (meamng p]ura " maps to . The symbol ~indicites a morpheme bound

YOSTHENE - ary, while the symbol # indicates a word boundary, Figure 3.12 refers
o tapes with these morpheme boundary markers a$ intermediate tapes;
© woRn v next section Will show how the'boundary ma'rker'is remov'ed.

_Lexzcaz% lf10!XI+NI+PLI 113

-Intermedmre% |f|o|x|A|Sl#1 |3

T

: Fig_u'r_e 312 All e_‘Xample of the lexica_l and _interme_diate t_apes.

Orthographic Rules and Flmte-State Transducers

The method descnbed in the prev10us secmon will successfully recogn

words like aardvarks and mice. But just concatenating the morphemes won

work for cases where there is a spelling change; it would incorrectly Teje

an mput like foxes and accept an input like foxs. We need to deal with th

: ~ fact that Enghsh often requires spelling changes at morpheme botndaries b
e Ciptrodincing spelling rules (or orthographlc rules), This section introduce

© @ number of notations for writing such niles and shows how to 1mp]emen

the rules as transducers. Somé of these spe}hng tules:
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] _.:Name | Description of Rule ..: | Example L
Consonant 1-letter consonant doubled before -ing/-ed | beg/begging

E deletion Silent e dropped before -ing and -ed .. . | make/making
E insertion e added after -s,-z,-x,-ch, -sh before -5 watch/watches
replacement |-y changes to -ie before -3, -i before -ed | try/tries

K insertion verbs ending with vowel + -c add -k panic/panicked

We can think of these spelling changes as taking as input a simple
oncatenation of morphemes (the “intermediate output” of the lexical trans-
ducer in FFigure 3.11) and producing as output a slightly-modified, {correctly-
':_::_s'pélled) concatenation of morphemes. Figure 3.13 shows the three levels we
are talking about: lexical, intermediate, and surface. So for example we
~could write an E-insertion rule that performs the mapping from the interme-
g _ate' to surface levels shown in Flgure 3.13: Such a rule n‘ught say some-

Lexical i—rf rOJ L+N J+PT , rj

Inrermedzate% lfloixl’\is!#l l %

Surface in TO [ Xle [S l T rj

Figure 3.13  An example of the lexical, intermediate, and surface tapes.
Between each pair of tapes is a two-level transducer; the lexical transducer of
Figure 3.11 between the lexical and intermediate levels, and the E-ingertion
spelling ruig between the intermediate and surface levels: The E-insertion
“spelling Tule inserts an e on the surface tape when the intermediate tape has a
morpheme boundary " followed by the morpheme -s.

thing like “insert an ¢ on the surface tape just when the lexical tape has a

‘morpheme ending in x (or z, etc) and theé next morpheme is -s”. ‘Here’s a
__rmahzat:lon of the rule :

':Thls is thc rule notation: of Chomsky and Halle (1968) a rule of the

form a —» blci: d means “rewrite @ as b when. it occurs between ¢ and
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d”. Since the symbol € means an empty transition, replacing it means in--
serting something. The symbol " indicates a morpheme boundary. These
boundaries are deleted by including the symbol ":€ in the default pairs for-
the transducer; thus morpheme boundary markers are deleted on the surface

level by default. (Recall that the colon is used to separate symbols on the in- ;
termediate and surface forms). The # symbol is a special symbol that marks
a word boundary. Thus (3.5} means “insert an e after a morpheme-final x,::
s, or z, and before the morpheme 7. Figure 3.14 shows an automaton that.
corresponds to this rule. :

) 7 other' o

Figure 3.14 - The transducé_r for the E-insertion rule of (3.5), extended from
a sirnilar transducer in AhtWofth (1990).:

“'The 1dea in bmldlng a transducer for a parncular rule is to express only :
' the constralnts necessary for that rule, alIowmg any other string of symbol:
to- pass through unchanged This rule is used to insure that we can only-.
-~ sec the ere pair if we are- in the proper context. So state gg, which models:
" having seen only default pairs unrelated to the rule, is an accepting state, _
as is gy, which models havmg seen a z, 5, or x. gy models having seen the:
morpheme boundary after the z, 5, or x, and again is an accepting state. State :
g3 models havmg Jjust seen the E —1nsert10n it is not an accepting state, since:.
the insertion is only allowed if it is followed by the s morpheme and then th
end-of-word symbol # - .
. The other symbol is used in Flgure 3 14 to Safely pass through any'_
'parts of words that'don’t play a role in the E-insertion rule. other mea
“any feasible pair that is not in this transducer”; it is thus a version of @
which is context-dependent in a transducer-by-transducer way. So for exam
‘ple when leaving ‘state go, We g0 to g; on the z; 5, or x symbols, rather tha
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slfowing the other arc and staying in ¢g. The semantics of other depends
‘on, what symbols are on other arcs; since # is mentioned on some arcs, it
by definition) not included in other, and thus, for example, is exphcnly
mentioned on the arc from g3 to gq.

-+ A transducer needs to correctly reject a string that applies the rule when
uldn’t, One possible bad string would have the correct environment for
E-insertion, but have no insertion. State gs is used to insure that the e
is lways inserted whenever the environment is appropriate; the transducer
™© chés g5 only when it has seen an s after an appropriate morpheme bound-
ary.. If the machine is in state gs and the next symbol is #, the machine rejects
th strmg (because there is no legal transition on # from ¢s). Figore 3.15
Eshows the transition table for the rule which makes the illegal transitions
explicit with the “~” symbol. '

f Stéte'\lnput  s:8 Z:T ~e|  e:e
& o 1 o 0 -
1 1 2 -
5. ol b0 -3
4 FE S -
s ot L G- N
- F_iguj'_g 3.15 The state-transition table for E-insertion rule of Figure 3.14,
-extended from a similar transducer in Antworth (1990).

;The next section will show a trace of this E-insertion transducer run-
ning on'a sample input string.

3 :'_i_'?'_'C'o'MBINING' FST LEXICON AND RULES

e iow ready to combine our lexicon and rule transducers for parsing
nd generating.: Figure 3.16 shows the architecture of a two-level morphol-
‘ogy system, whether used for parsing or generating.- The lexicon transducer
naps between the lexical level, with its stems and morphological features,
and an intermediate level that Tepresents a simple concatenation of mor-
phemes. Then a host of transducers, each representing a single spelling rule
constraint; all run in parallel so as to map between this intermediate level and
:th surface level.: Putting all the spelling rules in parailel is a design choice;
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" Recall that a cascade is a set of transducers in series; in ‘which the output -

- we will produce the same surface tape;

we could also have chosen to run all the spelling rules in series (as a lon
cascade), if we slightly changed each rule. :

[f._-: Lexical 4 ‘] [13[ X {+NI+Pq

_t _J 3

f.—..———"—. ——-—J-—"f—-l'—.' ----- 1

P Pyt o}fh.ogm;ﬁhiém.!es E" =olo—my

|FST1} see :FSTn=

______ 1 _ | I L
T____;Jm*_fjﬁ__i ______ !

e (T A BT T

Figure 3.16 . Generating or parsing with FST lexicon and rules

The architecture in .F'igﬁr'é'3.1.6 is a two-level cascade of transduce

from one transducer acts as the input to another transducer; cascades can
be of arbitrary depth, and each level might be built out of many individual
transducers. The cascade in Figure 3.16 has two. transducers in series: the -
trarisducer mapping from the lexical to the intermediate levels, and the col:
lection of parallel transducers mapping from the intermediate to the surfac
level. The cascade: can be run top-down to generate ‘a string, or bottom-u
to parse it; Figure 3 17 shows a trace of the system acceptmg the mappmg_'
from fox’s to foxes:. S -

The power of finite-state transducers is that the exact same cascad
with the same’ state” sequences. is: used when the machine is generating th
surface tape from the lexical tape, or when it is parsing the lexical tape from
the surface tape. For example,. for generation, imagine leaving the Interme
diate and Surface tapes blank. Now if:we run the lexicon transducer, give
fox. +N+PL, it will produce foxs# on the Intermediate tape via the sare
states that it accepted the Lexical and Intermediate tapes in our earlier exam- '
ple. If we then allow all possible orthographic transducexs o un in parallel, :
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Lexical 5 | T [ O] X [#N]+PL <

T OOQO®E
'i..}ﬂ?ermgdiate % 1 f Tol|x ATs | # %
'Te_insert [E? E> E} EFI} > b b

'Su'rfdce é flo X e | S f

Figure3.17  Accepting foxes: The lexicon transducer Ty, from Figure 3.11
*+ cascaded with the E-insertion transducer in Figure 3.14.

. Parsing can be slightly more complicated than generation, because of
e problem of amblgmty For example, foxes can also be a verb (albeit a
re one, meaning “to baffle or confuse™), and hence the lexical parse for
f es could be fox +V +3SC as well as fox +N +PL. How are we to
which one is the proper parse? In fact, for amblguous cases of this sort,
"e-'tral_lsducer is not capable of deciding. Disambiguating will require some
extérnal evidence such as the surrounding words. Thus foxes is likely to be
2 noun in the sequence I saw two foxes yesterday, but a verb in the sequence
h‘at"_'ri'ckster foxes me every time!. We will discuss such disambiguation
'-algoﬁthins in Chapters 8 and 17, Barring such external evidence, the best our
trz_t__n;s;ducer can do is just enumerate the possible choices; so we can transduce
fox"s# into both fox +V +3SGand fox +N +PL.

.. There is a kind of ambiguity that we need to handle: local ambiguity
that occurs during the process of parsing. For example, imagine parsing the
pu verbassess. After seeing ass, our E-insertion transducer may propose
that the e that follows is inserted by the spelling rule (for example, as far as
e transducer is concerned, we might have been parsing the word asses). It
1ot until we don’t see the # after asses, but rather run into another s, that
e realize we have gone down an incorrect path.

i Because of this non-determinism, FST-parsing algorithms need to in-
corporate some sort of search algorithm.  Exercise 3.8 asks the reader to
meodify the-algorithm for non-deterministic FSA recognition in Figure 2.21
in Chapter 2 to do FST parsing.
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INTERSECTION

3.4 LEXICON-FREE FSTS: THE PORTER STEMMER

- espec:lally in Information Retrieval (TR) tasks (Chapter 17) in which a us
" needs some information; and is looking forrelevant documents (perhaps:on
- the web;, perhaps i adigital library database). She gives the system a query
~with: some: important. characteristics: of documents she desires, and the"

S Figure 3.18 I_ntcrsec_tion and compositi(')n of tr_ansdiréérﬁ._ -

~and Antworth (1990) gives details of the algorithms for-rule: compilation:
‘Mohri (1997) glves algorlthms for transducer rmnlmlzation and determiniza:
om G : :

While building ﬁ’transduc':er from a lexicon' plus rulés is the standard
: gonthm for morphological: parsing, there are simpler algorithms that don’t

Running a cascade, particularly one with many levels, can be unwieldy. -
Luckily, we’ve already seen how to compose a cascade of transducers in se-
ries into a single more complex transducer. Transducers in parallel can be
combined by automaton intersection. The automaton intersection algo-
rithm just takes the Cartesian product of the states, i.e., for each state g; in :
machine 1 and state ¢; in machine 2, we create a new state ¢;;. Then for =
any input symbol a, if machine 1 would transition to state g, and machine 2
would transition to state g,,, we transition to state Fromi '

Figure 3.18 sketches how this intersection (A) and composmon (o) pro—
cess m1ght be carried out;- T

LEXICON—FST LEXICON—FS
_ | LEXICON-FST|

compose o)

] | OFST,
FST FST (= FST"FST" “FSTN)‘ i ;
: —

Smce there are d number Of rule—>FST compxlers it is almosl; never
necessary in practice to write an FST by hand.-Kaplan:and Kay (1994) give
the mathematics: that define. the mapping from rules to two-level relations,

require the large on-line lexicon demanded by this algorithm. These are used

System retrieves What it thinks are the relevant documents One commo
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ype of query is Boolean combinations of relevant keywords or phrases, e.g.
(marsupial OR kangaroo OR koala). The system then returns documents that
“have these words in them. Since a document with the word marsupials might
“not match the keyword marsupial, some IR systems first run a stemmer on
the keywords and on the words in the document. Since morphological pars-
“ing in IR is only used to help form equivalence classes, the details of the
“suffixes are irrelevant; what matters is determining that two words have the
- same Stem.

o One of the most widely used such stemmmg algorithms is the simple
“and efficient Porter (1980) algorithm, which is based on a series of simple
“cascaded rewrite rules, Since cascaded rewrite rules are just the sort of thing
_that could be easily 1mplemented as an FST, we think of the Porter algorithm
“as a lexicon-free FST stemmer (this idea will be developed further in the
“exercises (Exetcise 3.7). The algorithm contains rules like:

(3.6) ATIONAL — ATE (e.g., relatiorial — relate)

:_:('3-.7) ING = ¢ if stem contains vowel (e.g., motoring — motor) "

“The él'g.oﬁthn_l is presented in detail in Appendix B.

- Do stemmers really improve the performance of information retrieval
“engines? One problém is that stemmers are not perfect. For example Krovetz

(1993) summarizes the following kinds of errors of omission and of commis-
“sion in the Porter algorithm:

Errors of Commission . Errors of Omission

. .. organization = organ .. FEuropean Europe
doing. . . .doe .. ' -analysis- analyzes
‘generalization generic ..  matrices matrix
numerical ~~ numerous noise noisy
policy =~ police =~ sparse . sparsity
university universe explain  explanation
neghglble neghigent urgency urgent

: Krovetz also gives the results of a number of experiments testing whether

‘the Porter stemmer actually improved IR’ performance. Overall he found
_some improvement, especially with smalier documents (the larger the docu-
ment, the higher the chance the keyword will occur in the exact form used
in the query). Since any 1mprovement is quite small, TR engmes often don t
-use stemming. - L : : :
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3.5 HUMAN MORPHOLOGICAL PROCESSING

FULL LISTING

MINBUM -
REDUNDANCY

L completely true. Rather, some kinds of morphological relatlonshlps are men-
. tally represented (particularly inflection and certain kinds of derivation), bi
- others are not; with those words being fully listed: Stanners et al. (1979), fo

PRIMED

Texicon without any internal morphological structure. On this view, mot-:

phemes are represented in the lexicon, and when processing walks, (whether
- forreading, listening, or talking) we must access both morphemes (walk an

etition pnmmg expcrlment In short, repetition priming takes advantage of:

'reprcsentatxon of thelr finding:

In this section we 1ook at psychological studies to learn how multi-morphemic
words are represented in the minds of speakers of English. For example, con
sider the word walk and its inflected forms walks, and walked. Are all three’
in the human lexicon? Or merely walk plus as well as -ed and -57 How
about the word happy and its derived forms happily and happiness? We can
imagine two ends of a theoretical spectrum of representations. The full list--
ing hypothesis proposes that all words of a language are listed in the mental;_

phological structure is simply an epiphenomenon, and walk, walks, walked,
happy, and happzly are all separately listed in the lexicon. This hypothesm.
is certainly untenable for morphologically complex languages like Turkish.
(Hankamer (1989) estimates Turkish as 200 billion possible words).  The:
minimum redundancy hypothesis suggests that only the constituent Mor-

—s) and combine them.
“Most modem experlmental evidence suggests that neither of these i S

example, found that derived forms (happiness, happily) are stored separatel
from their stem (fappy), but that regularly inflected forms (pouring) are not.
distinct in the lexicon from their stems (pour). They did this by using a rép-

thé fact that & word is recognized faster if it has béen seen before (if it is:
primied). They found that lifting primed lift, and burned primed burn, buti
for example selective didn’t pnme select. Flgure 3 19 sketches one poss1ble -_

' - (selective)

. Figure 3. 19 Stanners et al. (1979) result leferent representaﬂons of i in-
ﬂectlon and derivation. . . :

.—il.’lg .
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- In a more recent study, Marslen-Wilson et al. (1994) found that spoken
erived words can prime their stems, but only if the meaning of the derived
. form is closely related to the stem. For example government primes govern,
but department does not prime depart. Grainger et al. (1991) found similar
ults with pretixed words (but not with suffixed words). Marslen-Wilson
tal. (1994) represent a model compatible with their own findings as follows:

o —al - —ure -8
(departmenty ' '

Figure 3.20 Marslen-Wilson et al. {1994) result: Derived words are lmked
1o thelr stems only if semantlcally related

' —ing

|

" Other evidenice that the human lexicon represents some morphological
ucture comes from speech errors, also called slips of the tongue. In
'ormal conversation, speakers often mix up the order of the words or initial

:.-'1f you-break break it it ll drop o .
Fdon’t have time to work to watch telev:ls1on because I have to
“work

‘But lnﬂectlonal and denvamonal afﬁxes can also appear separately from
thelr sterns, as these examples from Fromkin and Ratner (1998) and Garrett
1975) show

"_'t S not only us Who have screw looses (for * screws loose”)

_-Words of rule formation (for “rules of word formatlon”)

~easy enoughly (for “easily enough™)

' "Wh1ch by itself is the most unimplausible sentence you can imagine

: ‘The ability of these affixes to be produced separately from their stem
uggests that the mental lexicon must contain some representation of the
morphological structure of these words.- _— : o

~In.summary, these results suggest that morphology does play arole in
the human lexicon, especially productive morphology like inflection. They
als .emphasize the important of semantic generalizations across words, and
uggest that the human auditory lexicon (representing words in terms of their
ot ds) and the orthographlc lexicon (representing words in terms of letters)
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may have similar structures. Finally, it secems that many properties of lan-
guage processing, like morphology, may apply equally (or at least s1rm1ar1y)
to language comprehension and language productmn

3.6 SUMMARY

This chapter introduced morphology, the arena of language processing deal-
ing with the subparts. of words, and the finite-state transducer, the com-
putational device that is commonly used to model morphology. Here’s a..
summary'of the main points we covered about these ideas: 2

. Morphologlcal parsmg is the process of ﬁndmg the constituent mor-
phemes inaword (e.g., cat +N +PL for cars) ' -

- English. mainly uses prefixes and suffixes to express inflectional and
= derlvatlonal morphology. : - :

e English inflectional morphology is relatively s1mple and includes pet-
' 'son and number agreement (-s) and tense markmgs (-ed and -ing).

. Enghsh derwatmnai morphology is mote complex and includes su
 fixes like -ation, —ness -able as well as preﬁxes like co- and re-.

: .Many constraints on the English morphotactics (allowable morpheme
sequences) can be represented by finite automata.

Finite-state transdicers are an extension of ﬁmte state automata tha
“can generate output symbols.

Two-level morphology is the appllcatlon of ﬁmte state transducers
'morphologu:al representation and’ parsmg '

Speﬂmg rules can be 1mp£emented as transduc:crs

. There are automatic transducermcompﬂers that can produce a tran
ducer for any s1mple rewrite rule.

. _The lexicon and spe}lmg rules can be combined by composing and
L mtersectmg various transducers.

“The Porter algorithm is a simple and efﬁment way to do stemmmg

~ stripping off affixes. It is not as accurate as a transducer model that in-

.~cludes a lexicon; but may be preferable for applications like informa-
- tion retrieval in which exact morphological structure is not needed.
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'LIOGRAPHICAL AND HISTORICAL NOTES

Despite;- the close mathematical similarity of finite-state transducers to finite-
tate automata, the two models grew out of somewhat different traditions.
Chapter 2 described how the finite automaton grew out of Turing’s (1936)
model of algorithmic computation, and MeCulloch and Pitts finite-state-like
odels of the neuron. The influence of the Turing machine on the trans-
ducér was somewhat more indirect. Huffman (1954) proposed what was
esse" tially a state-transition table to model the behavior of sequential cir-
its, based on the work of Shannon (1938) on an algebraic model of relay
circuits. Based on Turing and Shannon’s work, and unaware of Huffman’s
work;.'_Moore (1956) introduced the term finite automaton for a machine
ith a finite number of states with an alphabet of input symbols and an al-
ph bet' 'of output symbols. Mealy (1 955) extended and synthesmed the work
yore and Huffman. © . :

The finite' automata in Moore s onglnal paper, and the ektension by
Mealy 'chffered in an important' way. In a Mealy machine, the input/output
:symbols are associated with the transitions between states. The finite-state
_ ___sdilcers in this chapter are Mealy machines. In a Moore machine, the
: “mput/mitput symbols are associated with the state; we will see examples of
Moore: machines in Chapter 5 and Chapter 7. The two types of transduc-
ers are ‘equivalent; any Moore machine can be converted into an equivalent
ealy machine and vice versa.

Many early programs for morphologlcal parsmg used an afﬂx-strlp-

AMPLE (A Morphologlcal Parser for ngmsuc Expioranon) {Weber
an Mann 1981; Weber et al., 1988; Hankamer and Black, 1991) is another
¥ bottom- -up morphologlcal parser. It contains a lexicon with all possible
ace variants of each morpheme (these are called allomorphs), together
with-constraints on their occurrence (for example in English the -es allo-
_ orph of the plural morpheme can only occur after s, x, z, sh, or ch). The
system finds every possible sequence of morphemes which match the input
and then filters out all the sequences which have failing constraints.
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An alternative approach to morphological parsing is called generate-
and-test or analysis-by-synthesis approach. Hankamer’s (1986) keCi is a
morphological parser for Turkish which is guided by a finite-state represen-
tation of Turkish morphemes. The program begins with a morpheme that
might match the left edge of the word, and applies every possible phonolog-
ical rule to it, checking each result against the input. If one of the outputs
succeeds, the program then follows the finite-state morphotactics to the next
morpheme and tries to continue matching the input.

The idea of modeling spelling rules as finite-state transducers is really
based on Johnson’s (1972) carly idea that phonological rules (to be discussed
in Chapter 4) have finite-state properties. Johnson’s insight unfortunately did
not attract the attention of the community, and was independently discovered
by Roland Kaplan and Martin Kay, first in an unpublished talk (Kaplan and
Kay, 1981) and then. finally in print (Kaplan and Kay, 1994) (see page 15
for a discussion of multiple independent discoveries). Kaplan and Kay’s
work was followed up and most fully worked out by Koskenniemi (1983),
who described finjte-state morphological rules for Finnish. Karttunen (1983)
built a program’ called KIMMO based on Koskenniemi’s models. Antworth
(1990) gives many details of two-level morphology and its application to En:
glish.:Besides Koskenniemi’s work on Finnish and that of Antworth (1990)
on English; two-level or other finite-state models of morphology have been
worked out for many languages, such as Turkish (Oflazer, 1993) and Ara-
bic' (Beesley, 1996). Antworth (1990) summarizes a number of issues in
finite-state analysis of 1anguages with morphologically complex processes
like infixation and reduplication (e.g., Tagalog) and: gemination (e.g., H
brew).: Karttunen (1993) is a good summary of the application of two- level
morphology: specifically to-phonological rules of the:sort we will discuss
Chapter 4. Barton et'al. (1987) bring up some computational complexity
problems. with two- 1eve1 models, which are responded to by Koskenniemi
and Church (1988). - :

- Students 1nterested in further detalls of the fundamental mathemati
of automata theory should see Hopcroft and Ullman (1979) or Lewis and
Papadimitriow (1981). Mohri (1997) and Roche and Schabes (1997b) give
additional: algorithms and mathematical foundations for language applic
tions; including, for example, the details of the algorithm for transducer rriin:
imization. Sproat (1993) gives a broad general introduction to computati al
morphology ST o -
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EXERCISES

3.1 Add some adjectives (o the adjective FSA ini Figire 3.5.

3.2 Give examples of each of the noun and verb classes in Figure 3.6, and
find some exceptions to the rules. :

'3.3 Extend the transducer in Figure 3.14 to deal with sh and ch.
3.4 Write a transducer(s) for the K insertion spelling rule in English,

3.5 Write a transducer(s) for the consonant doubling spelling rule in En-
= glish.

-3.6 The Soundex algorithm (Odell and Russell, 1922; Knuth, 1973) is a
method commeonly used in libraries and older Census records for represent-
ing people’s names. It has the advantage that versions of the names that are
slightly misspelled or otherwise modified (common, for example, in hand-
- written census records) will still have the same representation as correctly-
spelled names. (e.g., Jurafsky, Jarofsky, Jarovsky, and Jarovski all map to
J612).

.- a. Keep the first letter of the name, and drop all occurrences of non-initjal
“ooaye hiouwy
" b. Replace the remaining letters with the following numbers:

b,fp,v—1
c'gikqsxz—>2
d,t—3
1—=4
m,n—5
r—»6
- ¢. Replace any sequences of identical numbers with a single number (i.e.,
666 — 6)

: d Convert to the form Letter Digit Digit Digit by dropping
' digits past the third (if necessary) or padding with trailing zeros (if
necessary).

The exercise: write a FST to implement the Soundex algorithm.

3.7 Implement one of the steps of the Porter Stemmer as a transducer.
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3.8 Write the algorithm for parsing a finite-state transducer, using the pseu-
do-code introduced in Chapter 2. You should do this by m0d1fy1ng the algo—
rithm ND-RECOGNIZE in Figure 2.21 in Chapter 2.

3.9 Write a program that takes a word and, using an on-line dictionary, -
computes possible anagrams of the word, each of which is a legal word.

3..10. In'Figufe 3.'14, whyisthereaz & x afc from gs to g ?




COMPUTATIONAL
4 PHONOLOGY AND
. TEXT—TO-SPEECH

You like po-tay-to and I like po-tah-to.
You like to-may-to and I like to-mah-to.
Po-tay-to, po-tah-to,
To-may-to, to-mah-to,
Let’s call the whole thing off!

" George and Ira Gershwin, Let’s Call the
_ Whole Thing Off from Shall We Dance,
1937 .

The debate between the “whole language” and “phonics” methods of
teaching reading to children secems at very glance like a purely modern edu-
. cational debate. Like many modern debates, however, this one recapitulates
- an important historical dialectic, in this case in writing systems. The earliest
independently-invented writing systems (Sumerian, Chinese, Mayan} were
mainly: logographic: one symbol represented a whole word: But from the
- earliest stages we can find, most such systems contain elements of syllabic
- or phonemic: writing systems; in which symbols are used to represent the
_ sounds that make up the words.. Thus the Sumerian symbol pronounced ba
. and meaning .“ration” could also function purely as the sound /ba/. Even

--modern Chinese,: which remains- primarily logographic,: uses sound-based
characters to-spell out foreign words and especially geographical names.
Purely sound-based writing systems, whether syllabic (like Japanese hira-
" gaha or katakana), alphabetic (like the. Roman alphabet used in this book),
- or consonantal (ltke Semitic writing systems), can generally be traced back
- to these early logo-syllabic systems, often as two cultures came together.
* Thus the Arabic, Aramaic, Hebrew,. Greek, and Roman systems all derive
© from a:West Semitic script that is presumed to have been modified by West-
.- ern Semitic mercenaries from a cursive form of Egyptian hieroglyphs. The
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+ a pronunciation for every word it can recognize, and a text-to-speech system -

~ case. As we will see; the phone [t] is pronounced very differently in different
*phonetic: environments. - Phonology is the area of linguistics that descnbes

- ments; and how this' system of sounds is related to the rest of the grammar.
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Japanese syllabaries were modified from a cursive form of a set of Chinese
characters which were used to represent sounds. These Chinese characters
themselves were used in Chinese to phonetically represent the Sanskrit i in
the Buddhist scriptures that were brought to China in the Tang dynasty.
Whatever its origins, the idea implicit in a sound-based writing system,
that the spoken word is composed of smaller units of speech, is the Ur-theory
that underlies all our modern theories of phonology. In the next four chapters: -
we begin our exploration of these ideas, as we introduce the fundamental -
insights and algorithms necessary to understand modern speech recognition;
and speech synthesis technology, and the related branch of linguistics called
computational phonology.
Let’s begm by deﬁmng these areas. The core task of automatic speech -
recognition is take an acoustic waveform as input and produce as output. .
a string of words. Conversely, the core task of text-to-speech synthesis is
to take a sequence of text words and produce as output an acoustic wave-
form. The uses of speech recognition and synthesis are manifold, including
automatic dictation/transcription; speech-based interfaces to computers and
telephones, voice-based input and output for the disabled, and many others:
that will be discussed in greater detail in Chapter 7.
- This chapter will focus on an important part of both speech recognmon
and text-to-speech systems: how words are pronounced in terms of individ--
ual speech units called phones: A speech recognition system needs to have

needs to have a pronunciation for every word it can say. The first section o
this chapter will introduce phonetic alphabets for describing pronunciation
part of the ficld of phonetics. We then introduce articulatory phonetics, the
study of how speech sounds are produced by articulators in the mouth.

-~ Modeling pronunciation would be much simpler if 2 given phone was.
always pronounced the same in every context. Unfortunately this is not the

the systematic-way that sounds are differently realized in different environ-

The next section of the chapter will describe the way we write Phﬂﬂﬂloglcal
rules to describe these different realizations. o

-~ We next introduce an area known as comP“tatmﬂal phonology One
1mp0rtant part of computational: phonology is the: study of computationa
mechanisms for modeling phonological rules.: We will show how the spel:
ling-rule transducers of Chapter-3 can be used to model phonology. We the
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. discuss computational models of phonological learning: how phonological
- rules can be automatically induced by machine learning algorithms.
_ Finally, we apply the transducer-based model of phonology to an im-
portant problem in text-to-speech systems: mapping from strings of letters
~ to strings of phones. We first survey the issues involved in building a large
" pronunciation dictionary, and then show how the transducer-based lexicons
- and spelling rules of Chapter 3 can be augmented with pronunciations to
. map from orthography to pronunciation.
_ This chapter focuses on the non-probabilistic areas of computational
- linguistics and pronunciations modeling. Chapter 5 will turn to the role of
- probabilistic models, including such areas as probabilistic models of pronun-
-ciation variation and probabilistic methods for learning phonological rules.

4.1 SPEECH SOUNDS AND PHONETIC TRANSCRIPTION

- The study of the pronunciation of words is part of the field of phonetics, the
- study of the speech sounds used in the languages of the world. We will be
. modeling the pronunciation of a word as a string of symbols which represent
‘phones or segments. A phone is a speech sound; we will represent phones
- with phonetic symbols that bears some resemblance to a letter in an alpha-
- betic language like English. So for example there is a phone represented by I
- ~.that usually corresponds to the letter / and a phone represented by p that usu-
. ally corresponds to the letter p. Actually, as we will see later, phones have
- much more variation than letters do. This chapter will only briefly touch
" on other aspects of phonetics such as prosody, which includes things like
~changes in pitch and duration. .. .
. This section surveys the different phones of English, particularly Amer-
. ican English, showing how they are produced and how they are represented
symbolically. We will be using two different alphabets for describing phones.
* The firstis the International Phonetic Alphabet (IPA). The IPA is an evolv-
-ing standard originially developed by the International Phonetic’ Association
1in 1888 with the goal of transcribing the sounds of all human languages. The
" IPA is not just an alphabet but also a set of principles for transcription, which
differ according to the needs of the transcription, so the same utterance can
. be transcribed in different ways all according to the principles of the IPA.
* Tn thie interests of brevity in this book we will focus on the symbols that are
“most relevant for English; thus F1gure41 shows a subset of the IPA sym-
- bols for transcribing consonants, while Figure 4.2 shows a subiset of the IPA
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IPA
Symbaol

ARPAbet

Symbel

Word . |

IPA

Transcription

ARPAbet
Transcription

[p]
[t]
(k]
[b]
[e]
- {n]
S 11} IREE
[fl
[v]-
(6]
AL
- [s] -

: [ty

[r] o

- b

[z}
-

[z]. i
I3

0T 1

[
I E A

[pl
[t]

- [k]

[b]

[g}
[m]

- [ng].
vl -

[th]

@]

[s]

[sh].
[zh] - -
[eh] -
¢ fhl-
ar- -
fwl
[
[yl

thi

gl
[dx] -
-[nx]-. c

e}

[d].

parsiey
tarragon

. catnip.
bay -
dill . -
garlic
iint
nutmeg

. ginseng -

clove
thistle

- heather
sage
hazelnut

-~ ambrosia -
chicory -
- sage
lic:)_x_?ice'
kiwi
parsley
Coyew i

i horseradish

-uh-oh

winteérgreen
- thistle

- fennel: oo

- Squaﬂ'-'_ .

[
[
.
[
[
[

butter =

|'parsli]
[ teeragan] -

- [keetnip]
- [ber]

[dl]
['garlik|
[mrnt]
'natmeg]
['d3msiy)]
[fen]
[klouv]
sl]
[heda]
[serds] -
[herzinat)
[skwaf]. -

['ki

: yu]

{08

Gl brouga :

[paarsliy]
[tae r ax g aan]
(kaetnix p]
[bey]

[dih 1}
[gaarlix k] -
mihnt]
[nahtmehg
[jhih n s ix ng]

. [fehnel]

[k1ow v}
[thihsel]

" [h eh dh axr]

[s ey jh]

~[heyzelnaht]
. [skw ash]

[ae m b r ow zh ax]
[chihk axriy ]
[seyjh].

[1ih k axr ix sh}
[kiy w iy]
[paarsliyl

[y uw]

. [{haotsraedihsh] |
fqah qow}
© [batidxaxr ] -

[wihnxaxrgrin]
{thiks el]

Figure 4.1 ]
‘consonants,

“IPA and ARPAbet symbols for  transcription of English

symbols for transcnbmg vowels These tables also g1ve the ARPAbet syl
bols: ARPAbet (Shoup, 1980) is another phOIlCth alphabet, but one that is
spec1ﬁca11y des1gned for Amerlcan Enghsh and Which uses ASCII symbol

L For simplicity we use the symbol [1] for the Ametican Enghsh. 1 sound; rather than
more-standard: IPA symbol [~ ' SRR i o
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an be thought of as a convenient ASCII representation of an American-

ARPAbDet PA ARPAbet

'Symbol Symbol Word . Transcription  Transcription
' Gyl Gy . (Wi [ih1iy]
[ih]. .. Ly . - [WH.... - . [ihliy]
lev] - .dgis'y_" g [derzi} - .- [deyzi]
[eh]. . poinsgttia- = [pom'seria} .. - [p oy ns eh dx iy ax]
fac] © aster o [aste] 0 [ae’stax]
laa] - poppy - [papi] - ' [paapil
[a0]’ - ‘orchid [orkid] . [aorkixd]
[uh] * - woodriff  [wudraf]l . [wuhdrahf]
ow} - “lotus o [louras] Sl ow dx ax s)
[uwl .. tulip .. [tulip] - [tuwlixpl
. [uh] " buttercup [‘bA_raﬁkAp]-_: . [buh dx axr k uh p)
fer] o bird o bxd] . . [berd]
lay] - : . Ciris : - ['arris} oo ayrixs]
[aw]: . sunflower . [sanflave] ° [sahnflaw ax]
[oy]: - = -poinsettia  [pom'serio] [p oy n s eh dx iy ax]
fyuw]  feverfew - [fivadju] [fiy v axr fy u]
~fax] - woodruff.  ['wudraf] {wuhdr ax f]
lix] - tulip - ['tulip] [t uw 1ix p]
[axr].- -heather ['heda] [h eh dh axr)
[ux} 0 dude? .. . [dud] fd ux d]
: 'Flgure 42 TPA ahd'ARPAbet' symbols for transcription of English vowels.

_ "Many'.of.the.IPA and ARPAbet symbols are equivalent to the Roman
tters used in the orthography of English and many other languages. So for
example the IPA and ARPAbet symbol [p] represents the consonant sound at

:The last phone [& ]/ [ux], is quite rare in general American Enghsh and indeed is an “ex-
te 1011” not present in the original ARPAbet. Labov (1994) notes that the realization of a
onted: [uw] as.[ux] has made it more commeon in (at least) Western and Northern Cities di-
alects of American English startmg in the late 1970s. ThlS fronting was first calied to public
;by mitations and recordings of “Valley Girls™ speéch by Moon Zappa (Zappa and Zappa,
'82) Neverﬂleless, for most speakers Iuw] is ml] much more conmert than [ux} in words
like dude. - i : e _
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the beginning of platypus, puma, and pachyderm, the middle of leopard, or
the end of antelope (note that the final orthographic e of antelope does not
correspond to any final vowel; the p is the last sound). '

The mapping between the letters of English orthography and IPA sym—'
bols is rarely as simple as this, however. This is because the mapping be-
tween English orthography and pronunciation is quite opaque; a single letter
can represent very different sounds in different contexts. Figure 4.3 shows
that the English letter ¢ is represented as IPA [k] in the word cougar, but IPA:
[s] in the word civer. Besides appearing as ¢ and £, the sound marked as [k].
in the IPA can appear as part of x (fox), as ck (jackal), and as cc (raccoon).
Many other languages, for example Spanish, are much more transparent m_
their sound-orthography mapping than Enghsh :

Word Jackal raccoon cougar . civet

IPA i . ['dzeek]] [rae. 'kun] (ku.gay | [svvit]

ARPAbet!. [jhaekell] f{rackuwn]] [kuwgaxr]l (sihvix t]
Figure 4.3 * The mapping between IPA' symbols and Tetters in English or-

: ' thography is complicated; both TPA {k] and Enghsh orthographic [c] have'
.| mainy alternative realizations.

.The Vocal Organs

Aﬂﬁgﬁé}ﬁ’gg We turn now to artlculatory phonetics, the study of how phones are pri
duced, as the various organs in the mouth, throat, and nose modify the airflo
from the fungs.: _ : : : :

- Sound is produced by the rapld movement of air. Most sounds in h :
man spoken lariguages are produced by expelling air from the lungs through
the windpipe (technically the trachea) and then out the:mouth or nose.
it passes through the trachea, the air passes through the larynx, commonl
known as the Adanr’s apple or voicebox. The larynx contains two small
folds of muscle, the vocal folds (often referred to non-technically as the v

_ " cal cords) which can be moved together or apart. The space between th
eoms. - two folds is called the glottis, If the folds are close together (but not tigh
S cl'osed); 'th'ey"will' vibrate as air passes through them; if they are far apa
o ~they won’t vibrate. Sounds made with the vocal folds together and vibra g

vocen - are called vou:ed ‘sounds niade without this vocal cord vibration are calleg

UNVOICED unvmced Or voiceless. Voiced sounds include [b] idl, [g], [v], [z] and
voiceLess - - - the Enghsh vowels, among others. Unvoiced sounds include Irl, [, [k] ['
[z), and others
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THYROID
' GARTILAGE,

TRACHEA. |

. Figure 4.4  The vocal organs, shown in side view. Drawing by Laszlo Ku-
1" binyi from Sundberg (1977), ©Scientific American.

" " The area above the trachea is called the vocal tract, and consists of the
oral tract and the nasal tract: After the air leaves the trachea, it can exit the
body through the mouth or the nose. ‘Most sounds are made by air passing
through the mouth: Sounds made by air passing through the nose are called
“hasal sounds; nasal sounds use both the oral and nasal tracts as resonating
cavities; English nasal sounds include m, and n, and ng. :

- Phones are divided into two main classes:- consonants and vowels.
‘Both kinds. of sounds- are formed-lbyj the motion of air through. the mouth,
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throat or nose. Consonants are made by restricting or blocking the airflow in. -
some way, and may be voiced or unvoiced. Vowels have less obstruction, are.
usually voiced, and are generally louder and longer-lasting than consonants.
The technical use of these terms is much like the common usage; [p]. bl
[t], [d], [k1, [g], [f], [v], [s], fz], -[r]' [1], etc.. are consonants; {aa], [ae], [aw],
[ao], [ih], [aw], [ow], [uw], etc., ar¢ vowels. Semivowels (such as [y] and '
{w]} have some of the propertzes of both; they are voiced like vowels, but
they are short and less syllable 11ke conso_nants. L

ConsonantS' Place of Artlculation o L

_.Beeause consonants are made by restnetmg the a.1rﬂow in some way, co
sonants can be distinguished: by where this restriction is made: the point
of maximum restriction is called the- place of ‘articulation of a consonant:
Places of artlculation shown in: Flgure 4.5, are often used in automatic
speech recognition as a: useful way of groupmg phones together into equlva—
-lence classes

(nasal tract)

Figure 4.5 Major English places of arficulation:

e lablal Consonants whose main restrlctlon is formed ’oy the two li
.. coming together have a bilabial place of articulation. In English these
. include [plasin passum [b] as in bear, and [m] as in marmos. The E
o ghsh labiodental consonants [v] and [f] are made by pressing the b

- tom lip- against the upper row of teeth and lettmg the air flow through
- the space in.the upper. teeth..

* o dental: Sounds that are made by placmg the: tongue agamst the teet




- Section 4.1. Speech Sounds and Phonetic Transcrip‘tion 9

are dentals. The main dentals in English are the [0] of thing or the 3]
of though, which are made by placing the tongue behind the teeth with
the tip slightly between the teeth. : :

e alveolar: The alveolar ridge is the portion of the roof of the mouth just  aweoLar
behind the upper teeth. Most speakers of American English make the
phones [s], [z], [t], and [d] by placing the tip:of the tongue against the
alveolar ridge.

e palatal: The roof of the miouth (the palate) rises sharply from the eaamL
back of the alveolar ridge: The palato-alveolar sounds [{] (shrimp), e
[t]] (chinchilla), [5] (Asian), and [ds] (jaguar) are made with the blade
- of the tongue against this rising back of the alveolar ridge. The palatal
sound [yl of yak is made by placmg the front of the tongue up close to
the palate. :
o velar: The velum or soft palate is a movable muscular flap at the very  veus
* back of the roof of the mouth. The sounds [k] (cuckoo), [g] (goose), veLum
and [y] (kingfisher) are made by pressing the back of the tongue up
o agalnst the velum.
e glottal: ‘The glottal stop [?] is made by closing the glotus (by bringing  aLoraL
the Vocal folds together)

. Consonants Malmer of Artlculatlon

'Consonants are also dlStngl.]lShed by how the restriction in airflow is made,

Vo for examp]e ‘whether there is a complete stoppage of air, or only a partial
“blockage, etc. This feature is called the manmer of articulation of a conso-  vawer
nant. The combination of place and manner of articulation is usually suffi-

cient to uniquely identify a consona.nt Here are the major manners of artic-

: 'ulat:zon for Enghsh consonants: °

. stop A stop is a consonant in Wthh alrﬂow is Completeiy blocked swr
... for a short time. ThlS blockage is followed by an explosive sound as
. the air is released.. The penod of blockage is called the closure and
- the explosmn is called the release.” English has voiced stops like [b],
[d], and [g] as well as unvoiced stops, like [pl; [t], and [k]. Stops are
also called plosives: It is possible to use a more narrow (detailed) tran-
scription style to distinctly represent the closure and release parts of
a stop, both in ARPAbet and IPA-style transcriptions. For example
-+ - the closure:of a [pl, -[t]; or [k} would be represented as [pcl],. [tcl]; or
+ [kel] (respectively) in the ARPAbet; and [p7], [t*], or [K7] (respectively)
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in TPA style. When this form of narrow transcription is used, the un
marked ARPABET symbols {p], {t], and [K] indicate purely the release
of the consonant. We will not be using this narrow transcription style
in this chapter. H
NASALS nasals: The nasal sounds [n], [m], and [n] are made by lowering the
velum and allowing air to pass into the nasal cavity. -
FRIGATIVE fricative: In fricatives, airflow is constricted but not cut off completely
~ The turbulent airflow that results from the constriction produces a char
~ acteristic “hissing” sound. The English labiodentai fricatives [f] and [v
. are produced by pressing the lower lip against the upper teeth, allow
~ ing a restricted airflow between the upper teeth. The dental fricative
[6] and [0] allow air to flow around the tongue ‘between the teeth. Thy
alveolar fricatives [s] and [ 7| are produced with the tongue against th
~ alveolar ridge, forcing air over the edge of thé teeth. In the palato
* alveolar fncatlves [[] and [3] the tongue is at the ‘back of the alveol
L ridge forcmg air through a groove formed in the tongne. The highe
seLaTs " pitched fricatives (in English [s], [z], [f] and [3]) are called sibilan
. - Stops that are followed immediately by fricatives are called affrlcate
B  these include English [t[] (chicken) and [d3] (giraffe). _
spRoxAvT . @ approximant: In approximants, the two articulators are close toge
' but not close enough to cause turbulent airflow. In English [y] (vellow
the tongue moves close to the toof of the miouth but not close eno
to cause the turbulenice that would characierize a fricative. In Englis
' [wl (__ormwood) the back of the tongue comes close to the velum
American [r] can. be formed in-at least two ways; with just the tip.
. the tongue extended and close to the palate or with the whole tongu:
- bunched up pear the palate: [I] is formed with the t1p of the tongue
against the alveolar ridge or the teeth, with one or both sides of
tongue lowered to allow air to flow over it. [1] is called a lateral soun
because of the drop in the sides of the tongue:
tap: A tap or flap [r] is a qmck motion of the tongue against the a
- olar ridge. The consonant in the middle of the word lofus ([louros
" atap in most dJalects of Amencan Enghsh speakers of many Bri
' d1alects would use a [t} mstead of a tap in th1s Word '

Vowels

lee consonants vowels can be charactenzed by the pos1t10n of the art
lators as they aré made. The two most relevant ‘parameters for vowe
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what is called vowel height, which correlates roughly with the location of
he highest part of the tongue, and the shape of the lips (rounded or not).
‘Figure 4.6 shows the position of the tongue for different vowels.

nasal tract

heed[iy] . . . - had[ac] who'd [uw]

'."Figl'l're 4.6 Positions of the tongue for three English vowels, high front [iy],

. low front [ae] and hlgh back [uw] tongue positions modeled after Ladefoged
(1996).

- In the vowel [i], for example, the highest point of the tongue is toward
& front of the mouth. In the vowel [u], by contrast, the high-point of the
‘tongue is located toward the back of the mouth. Vowels in which the tongue
Jis'raised toward the front are called front vowels; those in which the tongue
is raised toward the back are called back vowels. Note that while both ]
and [e] are front vowels, the tongue is higher for [1] than for [¢]. Vowels in
.which the highest point of the tongue is comparatively high are calied high
vowels; vowels with mid or low values of maximum tongue he1ght are called
'lmd vowels-or low vowels; respectively. -.

- Figure 4.7 shows a schematic characterization of the voweI he1ght of
different vowels. It is schematic because the abstract property height only

correlates roughly with actual tongue positions; it is in fact a more accurate

“teflection of acoustic facts. Note that the chart has two kinds of vowels:
: those in which tongue height is represented as a point and those in which it
is represented as a vector. A vowels in which the tongue position changes
markedly during the production of the vowel is diphthong. English is par-
ticularly rich in diphthongs; many are written with two symbols in the IPA
(for example the [e1] of hake or the [ou] of cobra). :
i The second important articulatory dlmensmn for VDWels is the shape
‘of the lips. Certain vowels are: pronounced with the lips rounded (the same
lip shape used for whlstlmg) These rounded vowels include [ ], [o], and the
chphthong [ou]. i :
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v

SYLLABIFICATION

ACCENTED

high

o iy
B

Figure 4.7 - . Qualities of English vowels (after Ladefoged (1993)).

' Syllables

: | Consonants and vowels combme to make a Syllable There is no completely
- agreed-upon definition of a syllable; roughly: speaking a syllable is a vow:

like sound together with some-of the surrounding consonants that are m
closely associated with it. The IPA. period symbol [.] is used to separate
syllables, so parsley and catnip have two.syllables (['par.sli] and [ ket nip
respectively), tarragon has three ['tee.ro.qan], and dill has one ([dd]). As
lable is usually described as having an optional initial: consonant or set:
consonants called the onset, followed by a vowel or vowels; followed
final consonant or séquence of consonants called the coda. : Thus d is:t
onset of [dil], while 1is the coda. The task of breaking up a word into syl
bles is called syllabification. Although automatic syllabification algorit
exist, the problem is hard; partly because there is no agreed-upon defini
of 'syllable boundaries:: Furthermore, although it is ushially clear how m i
syllables are in‘a word Ladefoged (1993) points out there are some Wor
(meal; teal;: seal hire;: ﬁre hour) that can be viewed either as havmg 0
Syllable or two.

In a natural sentence of Amcrlcan Enghsh certaln Syllables are mo
prominent than others. These are called accented syllables. Accented syl
bles may be prominent because they are louder, they are longer, they ar
sociated with a pitch movement, or any combination of the above. Since a
cent plays important roles in meaning, understanding exactly why a speak
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chooses to accent a particular syllable is very complex. But one important

factor in accent is often represented in pronunciation dictionaries. This fac-

tor is called lexical stress. The syllable that has lexical siress is the one that oL
will be louder or longer if the word is accented. For example the word pars-

ley is stressed in its first syllable, not its second. Thus if the word parsiey

is accented in a sentence, it is the first syllable that will be stronger. We

write the symbol [] before a syllable to indicate that it has lexical stress (e.g.

[ par.sli]). This difference in lexical stress can affect the meaning of a word.

For exarple the word confent can be a noun or an adjective. When pro-
nounced in isolation the two senses are pronounced differently since they

have different stressed syllables (the noun is pronounced ['kan.tent]) and the
adjective [kon.'tent]. Other pairs like this include object (noun ['ab.dzekt]

and verb [ob.'d3ekt)); see Cutler (1986) for more examples. Automatic dis-
ambiguation of such homographs is discussed in Chapter 17. The role of  HovoaasPHs
prosody is taken up again in Section 4.7.

4.2 THE PHONEME AND PHONOLOGICAL RULES

' Scuse me, while I kiss the sky
Jimi Hendrix, Purple Haze

. "Scuse me, while I kiss this guy
" Common mis-hearing of same lyrics

All [t]s are not created equally. That is, phones are often produced
differently in different contexts. For example, consider the different pro-
nunciations of [t].in the words tunafish and starfish. The [t] of funafish is
aspirated. Aspiration is a period of voicelessness after a stop closure and
before the onset of voicing of the following vowel. Since the vocal cords are
not vibrating, aspiration sounds like a puff of air after the [t] and before the

- vowel. By contrast, a [i] following an initial [s] is unaspirated; thus the [t] uwssrsre
- in starfish ([starfif]) has no period of voicelessness after the [t] closure. This
* variation in the realization of [t] is predictable: whenever a [t] begins a word
~or unreduced syllable in English, it is aspirated. The same variation occurs
~ for [ki; the k] of sky is often mis-heard as [g] in Jimi Hendrix’s lyrics because
[k} arid [g] are both unaspirated. In a very detailed transcription system we
could use the symbol for aspiration [“Jafter any [t] (or [k] or [p]) which be-
gins a word or unreduced syllable. The word tunafish would be transcribed
- [tPunsfif] (the ARPAbet does. not have a way of marking aspiration),
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FHONEME
ALLOPHONES

NARROW. -
TRANSCHIPTION °

- theé pronunciations of words we can choose to represent them at this broad
- phonemic level; such a broad transcription leaves out a lot of predictab

-includes more detail, mcludmg allophonic variation, and uses the various d
©- . acritics. F1gure 4.8 summarizes a number of allophones of /i/; Plgure 49
“shows a few of the most commonly used IPA diacritics.

There are other contextual variants of [t]. For example, when [t} occurs
between two vowels, particularly when the first is stressed, it is pronounced
as a tap. Recall that a tap is a voiced sound in which the top of the tongue:
is curled up and back and struck quickly against the alveolar ridge. Thus the
word buttercup is usually pronounced [barakap)/[b uh dx axr k uh p] rather:
than [batakapl/[b uh t axr k uh p].

Another variant of [t] occurs before the dental consonant [9]. Here the
[t] becomes dentalized ([t]). That is, instead of the tongue forming a closure
against the alveolar ridge, the tongue touches the back of the teeth.

How do we represent this relation between a [t] and its different re
izations in different contexts? We generally capture this kind of pronunci:
ation variation by positing an abstract class called the phoneme, which is
realized as different allophones in different contexts. We traditionally writ__éf
phonemes inside slashes. So in the above examples, /t/ is a phoneme whose
allophones include [t"], [c], and [t]. A phoneme is thus a kind of general-
ization or abstraction over different phonetic realizations. Often we equate
the. phonemic and the lexical levels, thinking of the lexicon as containing
transcnptlons expressed: in terms of phonemes. When we are transcrlbmg

phoneuc detail.  We can also choose to use a narrow transcription that

Phone Environment -~ | Example| IPA

[t | in initial position - - | towcan 1 [thukPeen]
fE] i vafter [s] orin reduced sy]lables o Dswarfishe o [starfif]o
[2]7 || word-finally or after vowel before [n] | kizten [k"r?n}
[26] - | sometimes word-finally - . .- - | cat oo [kMet] o

e} | betweeh vowels o T butfereup [barak®™sp}
[t} || béfore consonants or word:finally fruitcake :  [frut’k%enl
[t} before dental consonants ([ ]) - | eighth lertd] -
fooo "-'sometlmcs word- ﬁnally v | past - [pees]

- Flgure 48 ‘Somé allophones of_ 1 in General'Am'erica'n English.
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. The.relationship between a phoneme and its allophones is often cap-
_'tured by writing a phonological rule. Here is the phonological rule for den-
‘talization in the traditional notation of Chomsky and. Halle (1968):

St/ =t/ 8 ' (4.1)
. In this notation, the surface allophone appears to the right of the arrow,
‘and the phonetic environment is indicated by the symbols surrounding the
underbar (__). These rules resemble the rules of two-level morphology of
- Chapter 3 but since they don’t use multiple types of rewrite arrows, this rule

§ ambiguous between an obligatory or optlonal rule. Here is a version of the
_’_ﬂappmg rule:

/{ }/-~> v | 4.2)
Diacritics | Suprasegmentals
) Voiceless a] || Primary stress ['pu.ma]
+ B\ Aspirated p"] , Secondary stress [fouea greet]
., | Sylabic I : .| Long EX
fieo| Nasalized | [&] .+ | Halflong. .- . EN
1o Unreleased | [87 |1 . Syllable break [ pu.mo]
- Dental 1t _ _
B Figure 4.9  Some of the IPA diacritics and symbols for suprasegmentals.

4.3  PHONOLOGICAL RULES AND TRANSDUCERS

."Ch’apter 3 showed: that spelling rules can be implemented by transducers.
- Phonological rules can be implemented: as transducers in the same way;
indeed the original work by Johnsom (1972) and Kaplan and Kay (1981)
-on finite-state models was based on phonological rules rather than spelling
tules. There are a number of different models of computational phonol-
‘ogy that use finite automata in various ways to realize phonological-rules.
- We will describe the two-lével morphology of Koskenniemi (1983) used in
_ Chapter 3, but the interested reader should be aware of other recent models.”
“ While Chapter 3 gave examples of two-level rules, it did not talk about the

-3 Oné examplé is Bird and Ellison’s (1994) ‘model of the multi-tier representations of au-
osegmental phonology in which each phonological tier is représented by a finite-state au-
omaton; and autosegmental association by the synchronization of two automata,
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motivation for these rules, and the differences between traditional ordered
rules and two-level rules. We will begin with this comparison. :

As a first example, Figure 4.10 shows a transducer which models the:
application of the simplified flapping rule in (4.3): -

T VA Y (4.3)

B Figure 4.10: - Transducer for English Fiapping: ARPAbet “dx” indicates a-
- flap, and the “other” symbol means “any feasible pair not used elsewhere in::
the transducer”. “@” means “any symbol not used elsewhere on any arc”.

- The transducer in Figure 4,10 accepts any string in which flaps oc
in the correct places (after a stressed vowel, before an unstressed vowel), and:
rejects strings in which. flapping doesn’t occur, or in which flapping occurs
in the wrong environment. Of course the factors that ﬁappmg are actuaﬂy a

. good deal more complicated, as we will see in Section 5.7. b

*In a traditional phonological system, many different phonologlcal rules.
apply between the lexical form and the surface form. Sometimes these rule
interact; the: output from: one rule- affects the input to-another rule. O
way to 1mplement rulc—mteractlon in a transducer system is to run transduc

~ers in a cascade: Consider;. for example; the tules that are needed to dea
 with the phonologmal behavior of the English noun plural suffix -s. Thi
. suffixis pronounced [iz] after the phones [s], [{], (2], or [3] (so peaches is pro
- nounced [pit[iz], and faxes is pronounced [freksiz]), [2] after voiced sound
(pigsis pronounced [prge]), and [s] after unvoiced sounds (cats is pronounce
[kmts]) We model this variation by wrmng phonologlcal rules for the rcal
ization of the morpheme in different contexts; ‘We first need to choose one o
these three forms (s, z; anid iz) as the “lexical” pronunmatlon of the suffix; w
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- chose z only because it turns out to simplify rule writing. Next we write iwo
phonological rules. One, similar to the E-insertion spelling rule of page 77,
inserts a [i] after a morpheme-final sibilant and before the plurai morpheme
[z]. The other makes sure that the -5 suffix is properly realized as [s] after
unvoiced consonants,

€& —+ i/[+sibilant] ~ __z # (4.4)
z — s/[-voice] © _ # (4.5)

_ These two rules must be ordered; rule (4.4) must apply before (4.5).
. This is because the environment of (4.4) includes z, and the rule (4.5) changes
7. Consider running both rules on the lexical form fox concatenated with the
“plural -

Lexical form: - - - faks"z
{4.4) applies: faks iz
(4.5) doesn’t apply: faks iz

. If the devoicing rule (4.53) was ordered first, we would get the wrong
“result (what would this incorrect result be?). This situation, in which one
tule destroys the environment for another, is called bleeding:*

Lexical form: faks "z
(4.5) applies: faks™s
(4.4} doesn’t apply: fokss

. As was suggested in Chapter 3, each of these rules can be represented
by a transducer. Since the rules are ordered, the transducers would also need
10 be ordered. For example if they are placed in a cascade, the output of the
~first transducer would feed the input of the second transducer.

. Many rules can be cascaded together this way. As Chapter 3 discussed,
~‘running a cascade, particularly one with many levels, can be unwieldy, and
"o transducer cascades are usually replaced with a single more complex
 transducer by composing the individual transducers.

* Koskenniemi’s method of two-level morphology that was sketchily
o troduced in Chapter 3 is another way to solve the problem of rule ordering,
'Koskenniemi (1983) observed that most phonological rules in a grammar
" aré independent of one another; that feeding and bleeding relations between

“Tf we had chosen to represent the lexical pronunciation of -s as [s] rather than [2], we would
ve: written the rule inversely to voice the - after voiced sounds, but the rules would- still
need to be ordered; the ordering would simply flip.
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- that lets- them avoiding feeding and bleeding, is. their ability to represe
o constramts on twa levels. This is based on the use of the colon ("), which
- was. touched in very brleﬂy in Chapter 3. The symbol a:b means a lexical
o that maps to a surface b. Thus a:b & :c . means a is realized as b

K ordermg for the i- msertlon and z-devoicing rules..: The: idea is that th
" devoicing: rule maps a lexzcal 7 1nsert10n toa smface 8 and the & rule refers

rules are not the norm.” Since this is the case, Koskenniemi proposed that
phonological rules be run in parallel rather than in series. The cases where'
there is rule interaction (feeding or bleeding) we deal with by slightly mod
fying some rules. Koskenniemi’s two-level rules can be thought of as a Way
of expressing declarative constraints on the well-formedness of the lexical .
surface mapping.

Two-level rules also differ from traditional phonological rules by e
plicitly coding when they are obligatory or optional, by using four differing
rule operators; the <> rule corresponds to traditional obligatory phonolog
ical rules, while the =3 rule implements optional rules:

Rule type ' LInterpretatlon

a:b&sce d a is always realized as b in the context co—d
a:b=c__d |amay berealized as b only in the context ¢ ___ d
a:b < € e d |a must be realized as b in context ¢ — d and nowhere else
a:

b/« ¢ d ais never realized as b in the context ¢ . d

. The most 1mp0rtant intuition of the two-level rules, and the meehamsm

after a surface c. By contrast a:b < ¢ ___ means that a is realized as_: J7;
after a lexical ¢;- As discussed in Chapter 3, the symbol ¢ with no colon is
equivalent to ¢:c that means a lexical ¢ which maps to a surface c.

- Figure 4.11 shows an intuition for how. the two-level approach avoids

to the lexical z: . : ol .
_The two-level rules that model th1s constramt are ‘ihown in (4'6)

_and(47) - | |
el i <:> [+Slblla]flt] __Z # RS ( 6
ais & [Vmce] __# R o

Ac; Chapter 3 dlseussed there are: compﬂatlon algonthms for crea
automata from rules. Kaplan and Kay (1994) give the general derivation
these aigorith‘ms and Antworth (1990) gives one that is specific to two-level
tules. The automata correspondm g to the two rules are shown in Figure 4.

5 Feedmg is'a situation in which one rulés creatés the ermronment for another rule and
mist be' run beforehand Coe e : .
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lexical level

ix s surface level

Figure 411  The constraints for the i-insertion and z-devoicing rules both
refer to a lexical #, not a surface 8.

- and Figure 4:13. Figure 4.12 is based on Figure 3.14 of Chapter 3; see page
- 78 for a reminder of how this automaton works. Note in Figure 4.12 that
. the plural morpheme is represented by z:, indicating that the constraint is
. expressed about an lexical rather than surface z.

Figure 4.12  The transducer for the i-insertion rule 4.4. The rule can be
. tead whenever a morpheme ends in a sibilant, and the following morpheme is
. Z; insert [i].

" Figure 4.14'shiows the two automata run in parallel on the input [faks "z
(the figure uses the ARPAbet notation [faa ks " z]). Note that both the au-
tomata assuming the default mapping “:€ to remove the morpheme boundary,
and that both automata end in an accepting state. -
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Z, #. other [~vee]

_ Figure4.13  The transducer for the z-devoicing rule 4.5. This rule might bé:_
* . summarized Deévoice the morpheme . if it follows a morpheme-final voicele
consonant..

Intermediate {

ix—insertion

S
. z—dévoicing-:. ¢ X <

Su'rf&Ce % f |aa .S 1i

Flgure 4.14 . The transducer for the i-insertion rule 4.4 and the z- devmcmg
rule 4.5 run in parallel o

4.4 ADVANCED ISSUES N COMPUTATIONAL PHONOLOGY

Harmony

Rules hke ﬂappmg, i- 1nsert10n and 7 devowmg are relatwe]y s1mple as ph
nological rules go. In this section we turn to the use of the two-level or fin
state model of phonology to middel more sophisticated phenomena; this: se
tion will be easier to follow if the reader has some knowledge of phonolo_:
The Yawelmini:dialect of Yokuts is a Native American language spoken
California witha cornplex phonological system. Tn particular, there are
phonolog1ca1 riles related to the realization of vowels that had to be ord
Cin traditional: phonology and whose interaction thus demonstrates a comp
cated use’ of finite-state phonology. These rules were first drawn up: m _
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aditional Chomsky and Hall¢ (1968) format by Kisseberth (1969) follow-
~ing the field work of Newman (1944).

- First, Yokuts (like many other languages including for example Turk-
h and Hungarian) has a phonological phenomenon called vowel harmony.
owel harmony is a process in which a vowel changes its form to look like
neighboring vowel. In Yokuts, a suffix vowel changes its form to agree
n backness and roundness with the preceding stem vowel. That is, a front
owel like /i/ will appear as a backvowel [u] if the stem vowel is /u/ (ex-
“amples are taken from Cole and Kisseberth (1995):

- Lexical = Surface Gloss

- dub+hin — dubhun “tangles, non- future
xil4+hin — xilhin  “leads by the hand, non-future”
bok’+al - bok'ol “might eat”
‘xat’+al — xat’al  “might find”

~. This Harmony rule has another constraint: it only applies if the suffix
'-ﬁ__vowel and the stem vowel are of the same height. Thus /u/ and /i/ are both
‘high; while /o/ and /a/ are both low.

.+ The second relevant rule, Lowering, causes long high vowels to be-
“come low; thus /u:/ becomes [01] in the first example below:

Lexical " Surface  Gloss _
tut’+it — ?oit’ubt “steal, passive aorist”
mitk’+it — mek’+it “swallow, passive aorist”

R The third rule, Shortemng, shortens iong vowels if they occur in closed

"syllables

' - Lexical . . . Surface ..
srap+hin - — saphin
sudu.k-l—hm — sudokhun

" The Yokuts rules must bé ordered, just as the i i-insertion and 7~devoicing
“tules had to be ordered. Harmony must be ordered before Lowering because
“the /uz/.in the lexicat form /?u:t’+it/ causes the /i/ to become [u] before it
lowers in the surface form [?0:t’ut]. Lowering must be ordered before Short-
“ening because the /w:/ i /sudwk+hin/ lowers to [o]; if it was ordered after
_:'shortemng it would appear on the surface as [u]. : :

. *Goldsmith (1993) and Lakoff (1993) independently observed that the
;'Yokuts data could be modeled: by something like a transducer; Karttunen

- 6 For purposes of simplifying the explanation thig account igrores some parts of the system
irch as vowel underspecification’ (Archangeh '1984). iy :
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(1998) extended the argument, showing that the Goldsmith and Lakoff con-
straints could be represented either as a cascade of three rules in series, orin -
the two-leve! formalism as three rules in parallel; Figure 4.15 shows the two
architectures, Just as in the two-level examples presented earlier, the rules
work by referring sometimes to the lexical context, sometimes to the surface
context; writing the rules is left as Exercise 4.10 for the reader.

Lex:'calé_t?lu:ﬁ ‘t‘[h'ﬂ nB é ’?IU:lt ,+Th,i ]l‘l,?

o e — b e o —

| Rounding i
1 ]
L Lower.'ng P
b Shortemng i [ e ek
___________ o . ¥

]
Rounding | E Lowerfng

Surface § I"IOTtIhIUlnI

T%

i [2]olt[hlufn]

a) Cascade of rules.

b) Parallei two-level rules.

* mon in Semitic languages like Arabic, Hebrew, and Syriac. McCarthy (1981

Jevels of representation that Goldsmith (1976) had cailed tiers. Kay (1987

: autosegmental representatlons of Goldsmith (1976)

“Figure 4. 15 Combmmg the rounding, lowenng, and shortening rules for
- Yawelmani Yolkuts. - L

Templatlc Morphology

Finite-state models of phonology/morpho]ogy have also been proposed fo
the templatic (non-concatenative) morphology (discussed on page 60) com:

proposed that this kind of morphology could be modeled by using differen

proposed a computational model of these tiers via a special transducer whicl
reads four tapes instead of two, as in Figure 4.16.

The tricky part here is designing a machine which aligns the Varlou
strmgs. on the tapes in the correct way; Kay proposed that the binyan: tap:
could act as a sort of guide for alignment. Kay’s intuition has led to a numb
of more fully worked out finite-state models of Semitic morphology suc
Beesley’s '(19.'96): model for Arabic and Kiraz’s (1997) model for Syriac.

The more recent work of Kornai (1991) and Bird and Ellison (1994
showed how one-tape automata (i.e:: finite-state automata rather than four
tape or even two-tape: transducers): could be used to model templatic: mor
phology and other kinds of phenomena that are handleed with the tier- bas
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o

lexical tape i [ a. | k ‘ t ‘ a { bJ

consonantal root tape % ’ k ! t { b

binyan tape ii ‘ v l C l C ‘ v C v !C%

I

vocalic morph. tape \Z | a

- Figure 4.16 A finite-state model of templatic (“non-concatenative”) mor-

phology. Moedified from Kay (1987) and Sproat (1993).

Optimaiity The(')'ry' -

- In a traditional phonological derivation, we are given an underlying lexical
form and a surface form. The phonological system then consists of one com-
.:ponent: a sequence of rules which map the underlying form to the surface
form. Optimality Theory (OT) (Prince and Smolensky, 1993) offers an al-
- térnative way of viewing phonoioglcal derivation, based on two functions
(GEN and EVAL) and a set of ranked violable constraints (CON). Given an
underlying form, the GEN function produces all imaginable surface forms,
even those which couldn’t possibly be alegal surface form for the input. The
- EVAL function then applies each constraint in CON to these surface forms in
“order of constraint rank. The surface form which best meets the constraints
_ is chosen.

' A constraint in OT represents a wellformedness constraint on the sur-
face form, such as a phonotactic constraint on what segments can follow each
e 'Other or a constraint on what syllable structures are allowed. A constraint
- can also check how faithful the surface form is to the underlying form.

.. Let’s turn to our favorite complicated: language, Yawelmani, for an ex-
ample.” In addition to the interesting vowel harmony phenomena discussed
above, Yawelmani has a phonotactic constraints that rules out sequences of
~consonants. In particular three consonants in a row (CCC) are not allowed
. to.oceur in a. surface word: Sometimes, however a word contams two con-
secutive morphemes such that the first one ends in two consonants and the
second one starts with one consonant (or vice versa). What does the lan-

7 The' following explication’ of -OT via' thé Yawelmani example draws heavily from
‘Archangeli (1997) and a lecture by Jennifer Cole at the 1999 LSA Linguistic Institute. .-
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guage do to solve this problem? It turns out that Yawelmani either deletes:
one of the consonants or inserts a vowel in between.

For example, if a stem ends in a C, and its suffix starts with CC, the:
first C of the suffix is deleted (“+” here means a morpheme boundary). :

C-deletion C +e/C+_C (4.8)

Here is an example where the CCVC “passive consequent adjunctive” mor-
pheme hne:l (actually the underlying form is /hmil/) drops the initial C if
the previous morpheme ends in two consonants (and an example where it
doesn’t, for comparison):

underlying
morphemes g]oss '

diyel~ne:l—aw “guard - passwe conbequent adjunctwe locative”
cawa-hne:l-aw “shout - passive consequent adjunctive - locative”

~ If a stem ends in CC and the suffix starts with C, the language 1nstead
mserts a Vowei to break up the first two consonants:

" Vepsertion £ =+ V/C__C+C . (4,-9_}

Hé're' aie some éXamplés in which an i is inserted into the roots 2ilk- “sing”
and ‘the roots logw- “pulverize” only when they are followed by a C—mmal
sufﬁx llke hm “past” not a V- 1n1t1a1 sufﬁx llke -en, “future”

'_ : surface form. gioss
- ?ilik-hin - .. “sang”™
Clilken: . “will sing”
logiwhin = “pulverized”
logwen - - “will pulvenze

Klsseberth (1970) suggested that It was riot a commdence that Yawi
mani had these particular two rulés (and for that matter other related dele
rules that we haven’t presented). He noticed that these rules were functio
ally related; in particular, they all are ways of avoiding three consonants if
row. Another way of stating this generalization is to talk about syllable stru
ture. Yawclmani syllables are only allowed to be of the form CVC or C
(where ¢ means a consonant and 'V means a vowel). We say that laniguages
like Yawelmani don’t allow complex onsets or complex codas. From |
point of view of syllabification, then, these insertions and deletions all 2
pen so as to’ ‘allow Yawelmani words to be properly syllabified. Smce CV-
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of the Yawelmani words we have discussed and.some others; note, for ex-
ample, that the surface syllabification of the CVCC syllables moves the final
consonant to the beginning of the next syllable: :

underlying  surface gloss
morphemes  syllabification con
ilk-en ?ilken “will sing” -
logw-en log.wen “will pulverize™
logw-hin Io.giw.hin “will pulverize”
xat-en xa.ten “will eat”

diyel-hmil-aw di.yel.nezlaw “ask - pass. cons: adjunct. - locative”

Here’s where Optimality Theory comes in. The basic idea in Optimal-
- ity Theory is that the language has various constraints on things like sylla-
“ble structure, These constraints ‘generally apply to the surface form. One
“such constraint, *COMPLEX, says “No complex onsets or codas”. Another
_class of constraints requires the surface form to be identical to (faithful to)
- the underlying form. Thus FAITHV says “Don’t delete or insert vowels” and
- FAITHC says “Don’t delete or insert consonants”. Given an underlying form,
- the GEN function produces all possible surface forms (i.e., every possible in-
_sertion and deletion of segments with every possible syllabification) and they
e ranked by the EVAL function using these constraints. Figure 4.17 shows
the architecture. > o ' -

#2ilk~hin/

|

GEN .

villchin %ilifin %ihin %aRpid % Lkhin

EVAL (*COMPLEX, FAITHC, FATTHY)

© o Pidikhin] o -

Figure 4.17 The architeéture of a derivation in Optimality Theory (after
Archangeli (1997). :

o The EVAL function works by applying each constraint in ranked order;
'_ _the optimal candidate is one which either violates no constraints, or violates
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TABLEAU

less of them than all the other candidates. This evaluation is usually shown'
on a tableau (plural tableaux). The top lefi-hand cell shows the input, the
constraints are listed in order of rank across the top row, and the possible:
outputs along the left-most column. Although there are an infinite Ynurnber':'
of candidates, it is traditional to show only the ones which are ‘close’; in:
the tableau below we have shown the output ?ak.pid just to make it clear.
that even very different surface forms are to be included. If a form violates.
a constraint, the relevant cell contains ¥; a !* indicates the fatal violation
which causes a candidate to be eliminated. Cells for constraints which are:
itrelevant (since a higher-level constraint is already violated) are shaded. -

. 7ilk-hin/ [[*ComPLEX | FAITHC [FAITHV |
— b e L
- Til.khin
- ?ilhin
- ik, hm
- Tak.pid

~ One appeal of Optlmahty Theoretlc denvatlons is that the constrain
are presumed to be cross lmgulsnc generahzaﬂons That is all languages are.
presumied to have some version of faithfulness, some preference for sim
syliables, and so on. Languages differ in how they rank the constraints; thu:
English, presumably, ranks FAITHC higher than *COMPLEX. (How do we.

transducers? Frank and Satta (1999), following the foundational work
Ellison (1994), showed that (1) if GEN is a regular relation (for exarpl
assuming the input ddesn’t contain context-free trees of some sort), and

if the number of allowed violations of any constraint has some finite boury

. then an OT derivation can be computed by finite-state means. This secon

constraint is relevant because of a property of OT that we haven’t mentione

'if two candidates violate exactly the same number of constraints, the wmmn
“candidate is the one which has the smallest number of violations of the rel
-vant constraing.: SR i

_ One way to 1mp1ement OT as'a ﬁmte—state System was: worked ou
Karttunen (1998); following the above-mentioned work and that of I—Iam
mond (1997). In Kartturien’s model, GEN is 1mplemented as a finite- sta
transciicer: which is-given an underlying form ‘and produces. a set of candl
date forms For example for the syllablﬁcatlon example above; GEN:
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generate all strings that are variants of the input with consorant deletions or
~vowel insertions, and their syllabifications.
: Each constraint is implemented as a filter transducer that lets pass only

~-as the identity mapping. For example, *COMPLEX would be implemented
via a fransducer that mapped any input string to itself, unless the input string
had two consonants in the onset or coda, in which case it would be mapped
“to pull. -

. 'The constraints can then be placed in a cascade, in which higher-ranked
onstraints are simply run first, as suggested in Figure 4.18.

)

GEN
+COMPLEX
FAITHC
) FAIPFH'V |

Flgure 418 Version #1 (“me_:rcﬂess cascade”) of Karttunen s ﬁmte—state
- cascade 1mp1ementat10n of OT.

B There is one cruc1a1 ﬂaw with the cascade model in Figure 4.13. Recall
*that the constraints-transducers filter out any candidate which violates a con-
~:Straint:-Butin'many derivations; include the proper derivation of ?1.ik.hin,
~even the optimal form still violates a constraint, The cascade in Figure 4.17
': would incorrectly filter it out, leaving no surface form at all! Frank and Satta
(1999) and Hammond: (1997) both point. out that it is essential to only en-
~force a constraint if it does not reduce the candidate set to zero, Karttunen
"(1998) formalizes this intuition with the lenient composition operator. Le-
nient composition: is a combination of regular composition and an operation
»called priority union. The basic idea is that if any candidates meet the con-
- straint these candidates will be passed through the filter as usual. If no output
meets the constraint, lenient composition retains ail of the candidates. Fig-
-ure 4.19 shows the general idea; the inicrested reader should se¢ Karttunen
1998) for the details: Also see Tesar (19953, 1996), Fosler (1996) and Fisner
: (1997) for discussions of other computatmnal issues in OT.-
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-"'Strings which meet the constraint. For legal strings, the transducer thus acts .

LENIENT
COMPOSITION
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l fFilk-hin/
GEN GEN -
OL tilkhin ?ilkhin 7il.bin Zakpid 7ilikhin
| *COMPLEX *COMPLEX

Or 9ilhin- 7ak.pid %itikhin
FAITHC L FAITHC

o %.lik hin
FAITHV FATTIIV

v o L7k hin]

Figure 4.19  Version #2 (“lenient cascade™) of Karttunen’s finite-state cas—
cade implementation of OT, showing a visualization of the candidate popula~
tions that would be passed through each FST constraint. :

4.5 MACHINE LEARNING OF PHONOL‘OGIC’AL RULES

WeHME. - The task of a machine learning system is to automatically induce a mode
- for some domain, given some data fiom the domain and, sometimes, othe
- information as well.. Thus a system to learn phonological rules would b
supErvisEn  given at least a set of (surface forms of) words to induce from. A supervise
algorithm is one which i§ given the correct answers for some of this datz
_ using' these answers to induce’a model Which can' generalize to new dat
uksupervisep it hasn’t seen before,  An unsupervised algorithm does this purely f_rb-
the data. While unsupervised algorithms don’t get to see the correct label
for the classifications, they can be given hints about the nature of the rules
models they should be forming. For example, the knowledge that the mode!
will:be in the form of automata is itself a kind of hint. Such hints are c
IQIIEASHN'NG alearmngblas i e :
This section gives a very brief overview of some models of unsupé
vised machine learning of phonological rules: more details: about machi
learning: algorithms will be presented throughout the book. :
Ellison (1992) showed that concepts like the consonant and vowel :
tinction,  the: syllable structure: of a language, and harmony relationship
could be learned by. a system based on choosing the model from: th
‘of potential models which is the simplest.. Simplicity can be measure
choosing the model with the minimum coding length, or the highest proba
bility' (we will define these terms in detail in: Chapter 6).. Daelemans et
~ (1994) used the Instance-Based Generalization algorithin (Aha et al., 19
{0 learn siress rule for Dutch; the algorithm'is:a supervised one which
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given a number of words together with their stress patterns, and which in-
duces generalizations about-the mapping from the sequences of light and
heavy syllable type in the word (light syllables have no coda consonant;
“heavy syllables have one) to the stress pattern. Tesar and Smolensky (1993)
how that a system which is given Optimality Theory constraints but not
- their ranking can learn the ranking from data via a simple greedy algorithm.
- Johnson (1984) gives one of the first computational algorithms for
phonological rule induction. His algorithm works for rules of the form

10) a— b/C

where C is the feature matrix of the segments around a. Johnson’s algorithm
“sets up a system of constraint equations which C must satisfy, by consider-
“'ing both the positive contexts, i.e., all the contexts C; in which a b occurs on
he surface, as well as all the negative contexts C; in which an a occurs on
he surface. Touretzky et al. (1990} extended Johnson’s insight by using the
ersion spaces algorithm of Mitchell (1981) to induce phonological rules in
heir Many Maps architecture, which is similar to two-level phonology. Like
ohnison’s, their system looks at the underlying and surface realizations of
“single segments: For cach segment, the system uses the version space algo-
- rithm to search for the proper statement of the context. The model also has a
separate algorithm which handles harmonic effects by looking for multiple
‘segmental changes in the same word, and is more general than Johnson's in
dealing with epenthesis and deletion rules.

. The algorithm of Gildea and Jurafsky (1996) was designed to induce
transducers representing two- level rules of the type we have discussed ear-
- lier. - Like the algouthm of Touretzky et al. (1990), Gildea and Jurafsky’s
”algorlthm was given sets of pairings of underlying and surface forms. The
algorithm was based on the OSTIA (Oncina et al., 1993) algorithm, which is
a general learning algorithm for a subtype of finite-state transducers called
_ subsequential transducers. By itself, the OSTIA algorithm was too general
to learn phonological transducers, even given a large corpus of underlying-
form/surface-form pairs. Gildea and Jurafsky then angménted the domain-
“independent OSTIA system with three kinds of learning biases which are
specific to natural language phonology; the main two are Faithfulness (un-
derlying segments tend to be realized similarly on the surface), and Com-
 munity (similar segments behave similarly). The resulting system was able
:to learn transducers for ﬂappmg in American Enghsh or German consonan{
i 'devou:mg o '

- Finally, many learnmg algonthms for phonology are probab1hstlc For
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example Riley (1991) and Withgott and Chen (1993) proposed a de0151011—
tree approach to segmental mapping. A decision tree is induced for each
segment, classifying possible realizations of the segment in terms of contex-
tual factors such as stress and the surrounding segments. Decision trees and
probabilistic algorithms in general will be defined in Chapters 5 and 6.

46 MAPPING TEXT TO PHONES FOR TTS

- Dearest creature in Creation .
Studying English pronunciation
Iwill teach yvou in nty verse
Sounds like corpse, corps, horse and worse.
It will keep you, Susy, busy,
- Make your head with heat grow dzzzy e

: Rwer rwal tomb bomb, comb
Doll and roll; and some and home.
- Stranger does not rime with anger
- Neither does devour with clangour.

LGN Trenite' (1870-1946) The Cha
S reprinted in Witten (1982). '

e Now that we have learned the basu: 1nvent0ry of phones in Enghs an
seen how to model phonologzcal rules we are ready to study the problem of
mappmg from an orthographxc or text word to its pronunmatmn _

Pronuncnatlon chtwnarles

: An 1mportant component of tlus mapping is-a pronunc1at10n dictionar;

' These dictionaries are actualty used in both ASR and TTS systems, althiough
because of the different needs of these two areas the contents of the dicti
naries are somewhat different.

o0 The smtplest pronunctatlon dlCthIlal‘leS ]ust have a hst of words

- their pronunelatlons : SRR :
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Word Pronunciation || Word Pronunciation
' goose [gus]

geese [gis]
hedgehog ['hedz.hog]
hedgebogs ['hed3 hogz|

foxes [fak.sz]

- Three large, commonly-used, on-line pronunciation dictionaries in this
mmat are PRONLEX, CMUdict, and CELEX. These are used for speech
31_,re¢ognition and can also be adapted for use in speech synthesis. The PRON-
_ LEX dictionary (LDC, 1995) was designed for speech recognition applica-
tions and contajns pronunciations for 90,694 wordforms. It covers all the
- words used in many years of the Wall Street Journal, as well as the Switch-
‘Board Corpus. The CMU Pronouncing Dictionary was also developed for
ASR purposes and has ‘pronunciations for about 100,000 wordforms. The
CELEX dictionary (Celex, 1993) inclades all the words in the Oxford Ad-
- vanced’ Learner’s Dictionary (1974) (41,000 lemmnata) and the Longman
";D1cuonary of Contemporary English (1978) (53,000 lemmata), in total it has
pronunciations for 160,595 wordforms. Its pronunciations are British while
the other two are American. Bach dictionary uses a different phone set; the
CMU*éind PRONLEX phoiiesets are derived from the ARPAbet, while the
CELEX dictionary is derived from the TPA. All three représent three levels
~: of ‘stress: primary stress, secondary stress, and no stress. Figure 4.20 shows
the pronunciation of the Word armadxl lo in all three dictionaries.

.'_::- rchtlonary —ﬂ Pronuncmtlon . | PA Versmn

g _Pronlex R R +armixd’ILo . [armoa'dilov]
GOEMU S | AA2RM AH(} DIHIL OWO - [drma'dilou]
‘| CELEX " @-dL5 © [anms.'dnbu]

* Fignre 420 The pronunciation of the word armadillo in three dictionaries.
. Rather than explain special symbols, we have given an IPA equivalent for each
| pronunciation. The CMU dictionary represents unstressed vowels ([}, [i], etc.)
by giving a 0 stress level to the vowel. We represented this by underlining in
.- the TPA form: Note the r-dropping and use of the [au] rather than [ou] vowel in
:the British CELEX pronunciation. :

o Oft'en two distinct: WOrds are spelled the same (fhey are homographs)
but pronounced differently.: For example the verb wind (“You need to wind
is up more neatly”’) is pronouniced: [wamnd| while the noun. wind (“blow,
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blow, thou winter wind™) is pronounced [wind|. This is essential for TT
applications (since in a given context the system needs to say one or the
other) but for some reason is usually ignored in current speech recognition:
systems. Printed pronunciation dictionaries give distinct pronunciations fi
each part-of-speech; CELEX does as well. Since they were designed for
ASR, Pronlex and CMU, although they give two pronunciations for the form
wind, don’t specify which one is used for which part-of-speech.

Dictionaries often don’t include many proper names. This is a se_r_i
‘ous problem for many applications; Liberman and Church (1992) report that
21% of_the word tokens in their 33-million-word 1988 AP newswire co
pus were names. Furthf:i‘more they report that a list obtained in 1987 from
the Donnelly marketmg organization contains 1.5 million names (coverin
72 million households in the United States). But only about 1000 of the
52477 lemomas in CELEX (which is based on traditional dictionaries) are
* proper names. By contrast Pronlex includes 20,000 names; this is still onl
a small fraction of the 1.5 million. Very. few dictioraries give pronunciati
for entries. like Dr, which as Liberman and Church (1992) point out can b
“doctor™ or “drlve” or 2/3; which can be “two thirds” or “February third” or
- ftwo sIash th;ree o .
o No dictionaries currenﬂy have good models for the pronuncmtmn
: '-"'functlon Words (and, I a, the, of; etc. ). This is because the variation in th
words due to phonetlc context is so great. Usually the dictionaries inclu
* some simple baseform (such as [81] for the) and use other algorithms to
rive the variation due to context; Chapter 5 will treat the issue of modelin
contextual pronunciation variation for words of this sort.

‘Omne significant difference between TTS and- ASR dictionaries. is  th
_ 'TTS chctlonanes do not have to represent dialectal "variation; thus wh
a very accurate ASR dictionary needs to represent both pronunmatlons
ezther and tomato, a.TTS dictionary can choose one. :

'Beyond chtlonary Lookup Text Analy51s

'Mappmg from text to phones rehes on. the kind of pronunmatmn dlctlonari'
‘we tatked about in the last section. As we suggested before, one way to.m
text-to-phones would be to look up each word in a pronunciation dictio
and read the string of phones out of the dictionary. This method would wor
fing. for-any-word that we can put in the dictionary in advance. But as w
saw in Chapter 3, it’s not possible to represent every word in English (or an
- other language) in advance. Both speech synthesis and speech recognitio
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systems need to be able to guess at the pronunciation of words that are not
in their dictionary. This section will first examine the kinds of words that
are likely to be missing in a pronunciation dictionary, and then show how
the finite-state transducers of Chapter 3 can be used to model the basic task

of text-to-phones. Chapter 5 will introduce variation in pronunciation and

introduce probabilistic techniques for modeling it.

Three of the most important cases where we cannot rely on a word
dictionary involve names, morphological productivity, and numbers. As
a brief example, we arbitrarily selected a brief (561 word) movie review that
appeared in the July 17, 1998 issue of the New York Times. The review,
of Vincent Gallo’s "Buffalo *66”, was written by Janet Maslin. Here’s the
beginning of the article:

In Vincent Galio’s “Buffalo "66,” Billy Brown (Gallo) steals a
blond kewpie doll named Layla (Christina Ricei) out of her tap
dancing class and browbeats her into masquerading as his wife at
a dinner with his parents. Billy hectors, cajoles and tries to bribe
Layla. (“You can eat all the food you want. Just make me look
good.”) He threatens both that he will kill her and that he won’t
be her best friend. He bullies her ocutrageously but with such
crazy brio and jittery persistence that Layla falls for him. Gallo’s
film, a deadpan original mixing pathos with bravado, works on
its audience in much the same way.

We then took two large commonly-used on-line pronunciation dictionaries;
the PRONLEX dictionary, that contains pronunciations for 90,694 word-
forms and includes coverage of many years of the Wall Street Journal, as well
as the Switchboard Corpus, and the larger CELEX dictionary, which has
pronunciations for 160,595 wordforms. The combined dictionaries have ap-
proximately 194,000 pronimciations. ~ Of the 561 words in the movie
review, 16 (3%) did not have pronunciations in these two dictionaries {(not
counting two hyphenated words, baby-biue and hollow-eyed). Here they are:

Names Inflected Names Numbers Other
Aki (Gazzara Gallo’s *66 c’mere
Anjelica Kaurismaki ) indie

Arquette Kusturica . ... . . _ kewpie
Buscermni Layla . _ . sexpot

Gallo  Rosampa .
Some of these missing words can be found by increasing the dictionary
size (for exampie Wells’s (1990) definitive (but not on-line) pronunciation
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© words (fuxes, indies), Furthermore, we can’t just-add § to the pronunciatic

dictionary of English does have sexpot and kewpie). But the rest need tc
generated on-line.

Names are a large problem for pronunciation dictionaries. It is diffi=
cult or impossible to list in advance all proper names in English; furthermore
they may come from any language, and may have variable spellings. Mos
potential applications for TTS or ASR involve names; for example name
are essentially in telephony applications (directory assistance, call routing
Corpordte names are. important in many applications and are created co
stantly. (CoComp, Intel, Cisco). Medical speech applications (such as tran:
scriptions of doctor-patient interviews) require pronunciations of names o
pharmaceuticals; there are some off-line medical pronunciation dictionari
but they are known to be extremely inaccurate (Markey and Ward, 199
Recall the figure of 1.5 million names mentioned above, and Liberman an
Church’s (1992) finding that 21% of the word tokens in their 33 million wor
1988 AP newswire corpus were names.: . i

Morphology isa partlcular problem for many languages other than En=.
glish. For languages with very productive morphology it is Computatlonall
1nfeas1ble to represent every possﬂ:ﬂe word recalt this Turklsh example:

(4 11) uygarlagt1ramad1klar1nuzdanm1§ sthizeasina *

Cuygar - +la§ +tir - dama O wdik ;i-la'f"?umzz"
"cwlhzed +BEC +CAUS" +NEGABLE +PPART +PL +P1PL
+dan +mug +siniz +casma
: +ABL +PAST +2PL RASIE

“(behaving) s if you are among those Whom we couid not
c1v111zefcause to become c1v1112ed” SRR SRS

. Evena language as s1m11ar to Enghsh as German has greater ablhty i
create words; Sproat etal. (1998) note the spontaneously created German ex
ample Unerﬁndl zchkeztsunterstellung (¢ allegatlon of mcomprehensﬂnhty

- Butevenm Enghsh ‘morphologically smlple though itis, morpholo
cal knowledge is necessary for pronuncmhon modelmg For example nam
and acronyms’ are often inflected (Gallo 5, IBM’s, DAT's, Syntex’s) as are ne

_of the uninflected forms, becausé as the last section showed, the: possessive
-’y and: plu:ral -s suffix in English are pronounced differently in different con
- texts; Syntex’s is pronounced [smtcksiz], faxes is pronounced [feeksiz|, IBM’
is pronounced [atbijemz], and DATs is pronounced [dets]. o
5 * Finally; pronouincing: numbers is-a particularly. difficult problem.: Th
R "66 it Buffalo *66 is pronounced: [stkstistks] not Tsikssiks]. The most natura
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- way to pronounce the phone number “947-2020” is probably “nine”-“four”-
““geven”-“twenty”-“twenty” rather than “nine”-“four”-“seven”-“two”-“zero”-
“fwo -“zero”. Liberman and Church (1992) note that there are five main
ways to pronounce a string of digits (although others are possible):

” L1 e

L2

e Serial: Each digit is pronounced separately—8765 is “eight seven six
five™. :

e Combined: The digit string is pronounced as a single integer, with all

‘position labels read out-—*‘eight thousand seven hundred sixty five”.

e Paired: Each pair of digits is pronounced as an integer; if there is an

" odd mumber of digits the first one is pronounced by itself—“eighty-
seven sixty-five”.

o Hundreds: Strings of four digits can be pr’bnoﬁﬁcéd ‘as counts of
hundreds—“eighty-seven hundred (and) sixty-five”.

o Trailing Unit: Stririgs that end in zeros are pronounced serially until
the Tast nonzero digit, which is pronounced followed by the appropnate
unit—38765000 is “eight seven six five thousand”

'Pronuncmtxon of numbers and these five methods are dlscussed further
in Exercnses 4 5 and 4, 6 ' :

R An FST-based Pronunc1at10n Lexu:on

Early work in’ pronun(:latlon ‘modeling for text-to-speech systems (such as
the seminal MITaik system Allen et al. (1987)) relied heavily on letter-to-
sound rules. Bach rule specified how a letter or combination of letters was  H[JET™
‘mapped to phones; here is a fragment of such a rule-base from Witten (1982):

. Fragment Pronunciation

p- [pl
-ph- [f]
- phe- ]
-phes-  [fiz]

place-  [plers]
placi-  [plemsi] .
"~plement— {phmsnt]

- Such systems cons;sted of a long list of such rules and avery sma]l dic-
tmnary of exceptions (often function words such as a, are, as, both, do, does,
etc.).. More recent systems have completely inverted the algorithm, relying
on very large dictionaries, with 1étte’1?—t0+sound tules only used for the small
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number of words that are neither in the dictionary nor are morphological
variants of words in the dictionary. How can these large dictionaries be re
resented in a way that allows for morphological productivity? Lutckily, these
morphological issues in pronunciation (adding inflectional suffixes, slight
pronunciation changes at the juncture of two morphemes, etc.) are identical.
to the morphological issues in spelling that we saw in Chapter 3. Indee
(Sproat, 1998b) and colleagues have worked out the use of transducers for
text-to-speech. We' rn1ght break down their transducer approach into fi
components : :

L an EST to represent the pronunmanon of mchwdual words and n
' phemes in the lexicon’
. FSAs to represent the possxble sequencmg of Inorphemes ' .
. individoal FSTs for cach pronuncmtlon rule (for example expressm
_ the pronunc:latlon of -5 in different contexts)
4, 'heunstlcs and letter~to sound (LTS) rules/transducers used to mod
' the pronuncmtlons of narnes and acronyms s

. default letter~to~sound rules/transducers for any other unknown words

' We will 11m1t our discussion here to the first four components; th
mterested in letter-to-sound rules should see (Allen et al., 1987). These |
components will turn out to be simple extensions of the FST components
we saw in Chapter 3 and on page 110. The first is the representation of the
lexical base form of each word; recall that base form means the uninflected
form. of the word. - The previous base forms were stored in orthographi

- representation; we will need to angment each of them with the correct lexi

phonological representatlon Flgure 4.21 shows the original and the upd' d
~ lexical entries:

The second part of our FST system is the ﬁmte state machmery
model morphology. We will give only one example: the nominal pl
suffix =s.: Figure 4.22 in Chapter 3 shows the antomaton for English plural
updated to handle pronunciation as well. The only change was the adc
tion"of the {s| pronunciation for the ‘suffix, and € pronunciations for all
morphologlca.l features: ¥ : '

We can compose the 1nﬁect10n FSA in: F1gure 422 with a transduc
' 1mplement1ng the baseform:leéxicon it Flgure 421 to produce an inflecti
ally-enriched:lexicon that hias singular and plural nouns. The resulnng mint
lexicon is'shown in Figure 4.23. - :

~The lexicon shown in Figure:4. 23 has two levels an underlymg or “Ie:
caI” level and an intermediate level. The only thing that remains is to
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EOrthographic Lexicon { .. Lexicon
Regular Nouns R
. cat - clkalet|t
fox T f|f ola x|ks

. dog _ oo d|d ola glg

: Irregular Singular Nouns

- goose ] . glgoolus|sele
Joe Irregular Plural Nouns

| goeoese { ) g[g oolu:eeli sis ele

Figure 4.21  FST-based lexicon, extending the Iexicon in the table on page
- 74 in Chapter 3. Each symbol in the lexicon is now a pair of symbols sep-
1 arated by “[”, one representing the “orthographic” lexical entry and one the

“phonological” lexical entry. The irregular plural geese also pre-specifies the
- contents of the intermediate tape “:eefi”.

.. reg-noun-stem:

*jrreép-sg-noun—form

. irreg—pl-noun-form .-

.|~ Figure 4.22-.. FST for the norminal singular and plural inflection. The au-
"1 tomaton adds the morphological features [+N], [+PL], and [+S5G] at the lexi-
. cal level where relevant and also adds the plural suffix s|z (at the intermediate

. level). We wiil discuss below why we represent the pronunciation of -5 as z
rather than s. '

- transducers which apply: spelling rules and pronuinciation rules to map the
. 'intermediate level into the surface level. These include the various spelling
. rules discussed on page 77 and the pronunciation rules starting on page 105.
- The lexicon and these phonological rules and the orthographic rules
~“from Chapter: 3 can now. be used to map between a lexical representation
" “(containing both-orthographic and phonological strings) and a surface rep-
resentation- (containing both orthographic and phonological strings).  As we
. saw in Chapter 3; this mapping can be run from surface to lexical form, or
-from lexical to surface form; Figure:4.24 shows the architecture: Recall that
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+PLI€:slz

+8Gle:el e

+Nig:gl e +PLlesele

Figure 4.23 . Mini-lexicon composing a transducer from the baseform lexi-".
con of Figure 4.21 with the inflectional transducer of Figure 4.22.

the lexicon FST maps bétWee_ri the “lexical” level, with its stems and mor:
phological features, and an “intermediate” level which represents a simple
- concatenation of morphiemes. Then a host of FSTs, each representing ei:
' 'ther a single spelling rule constraint or a single phonological constraint, all
. run in parallel so as to-map between this intermediate level and the surfac
level.- Each level has both orthographic and phonological representatlons
-For text-to-specch’ apphcatmns in which the input is a lexical form (e.g.; fo
‘text generation, where the system knows the lexical identity of the word; i
part-of-speech, its inflection, etc.), the cascade of FSTs can map from lexical
form to surface pronunciation. For text-to-speech applications in which the
input is a surface spelling (e.g., for “reading text out loud” applications), th'
cascade of FSTs can map from surface orthographlc form to surface pron _
ciation via the underlying lexical form. : : i
.. Finally let us say a few words about names and acronymnis. Acronym
can-be spelled with or without periods (LR.S. or IRS). Acronyms with pe
riods: are- usually. pronounced by spelling them out ([arares)). Acronym:
that usually appear without periods (ATDS, ANSL; ASCAP) may either be
spelled out: or pronounced: as a word; so AIDS is usually pronounced the
same as thc_ third-person form of the verb aid. Liberman and Church (1992
suggest keeping a small dictionary of the-acronyms that are pronounce
words; and-spelling out the rest. Their method for dealing with names begin:
with a dictionary of the pronunciations of 50,000: names, and then applie
small nimber of affix-stripping rules: (akin to the:Porter Stemmer of Cha
ter: 3}, rhynnng heuristics, and letter-to-sound rules to increase the covera'
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, flo|x|«NJsp] | | <
Lexical : —
s [f{a|k|s [+N]pL <
I.
T
! LEXICON—FSTI
L o e e st o e e e
1: .
flo|x|*|s s
Intermediate . —
s [flaalk[s [A ]z 3
- L
[ e R e Y e ——— 9
T 1 1
T r I orthographic and . T J=me [
: FST1 : phonological rufes . | FST :
S e see "'T'“‘"
N PR R .
¥
|flo|x|e|s IER?
Surface é %
f laal k | s |ix| z <
-~ Figore 4.24 - Mapping between the lexicon and surface form for orthogra-
.. .phy and phonology simultaneously. The system can be used to map from a
 lexical eniry to its surface pronunciation or from surface orthography to sur-
. face pronunc1at10n via the lex1ca1 entry.

Liberman and Church (1992) took the most frequent quarter million words
in the Donnelly list. They found that the 50,000 word dictionary covered
59%: of these 250,000 name tokens. . Adding: stress-neutral suffixes like -s,
pille, and -son (Walters = Walter + s, Abelson. = Abel + son, Lucasville
= Lucas + ville) increased the coverage to 84%:. Adding name-name com-
pounds (Abdulhussein, Baumgaertner) and rhyming heuristics increased the
coverage to 89%. The rhyming heuristics used letter-to-sound rules for the
beginning of the word and then found a thyming word to help pronounce the
end; so Plotsky was pronounced by using the LTS rule for PI- and guessing -
otsky from: Trotsky. They then added a number of more complicated morpho-
logical rules (prefixes-like: O’Brien), stress-changing suffixes (Adamovich),
suffix-exchanges (Bierstadt: = Bierbaum - bawm + stadr) and used a system
of letter-to-sound rules for the remainder. This'system was not implemented
_-as an FST; Exercise 4.11 will-address some of the issues in turning such a
- set of rules into-an FST. Readers interested in further details about names,
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acronyms and other unknown words should consult sources such as Liber-:
man and Church (1992), Vitale (1991), and Allen et al. (1987). :

4.7 PROSODY IN T_Ts_ N

The orthography to phone transduction process just described produces the_
main component for the input to the part of a TTS system which actually:
generates the speech.: Another important part of the input is a specification

erosory  of the prosody. The térm prosody is generally used to refer to aspects of a-
sentence’s pronunciation which aren’t described by the sequence of phones’
derived from the lexicon. Prosody operates. on longer linguistic units than

suprasecmenia.  phones, and hence is sometlmes called the study of suprasegmental phe

norena.

'Phonological Aspects of Prosody

PROMINENCE There are three main phonologlcal aspects to prosody prommence stru
STRUCTURE.  ture: and tane. . - - e
TNE L Aspage 102 dlscussed prominence is a broad tenn used to cover stre
 smess - . and‘accent. Prominence is a property of syllables, and is often describe
aceewr . arelative manner,; by saying one syllable is more prominent than anothe
' Pronunciation lexicons mark lexical stress; for example table has its str
on the first syllable, while- machine has its stress on the second. Functi
words like there, the or a are usually unaccented altogether. When words ar
. joined together, their: accentual patterns' ¢combine and form a larger accel
- pattern. for-the whole utterance. There are some regularities in how accen
combine. For example adjective-noun combinations like new truck are hkely
to have accent on the right word (new *truck), while noun-noun compounds
like *tree surgeon are likely to have accent-on the left. In generaily; how:
ever, there are' many exceptions to these rules, and so accent prediction: is
- quite complex. For example the noun-noun compound *apple cake has the
‘accent on the first word while the noun-noun compound apple *pie or cf
! _*hall both: have the accent on the se¢ond word (Liberman and Sproat; 199
~ Sproat, 1994,.19984). Furthermore, rhythin plays arole in keeping the ‘a
eented Syllables spread:apart a bit; thus city *hall and *parking lot comb__.
- as *city hall *parking lot (Liberman and Prince, 1977).. Finally, the locatio
of accent.is very strongly affected by the discourse factors we will descri
" in Chapters: 18 ‘and- 19; in ‘particular- new or focused words or phrascs ofte
receive accent -
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Sentences have prosodic structure in the sense that some words seem to
“group naturally together and some words seem to have a noticeable break or
. disjuncture berween them. Often prosodic structure is described in terms of
. prosodic phrasing, meaning that an utterance has a prosodic phrase struc-
. tare in a similar way to it having a syntactic phrase structure. For example, in
the sentence I wanted fo go to London, but could only get tickets for France
. there seems to be two main prosodic phrases, their boundary occurring at the
- comma. Commonly used terms for these larger prosodic units include into-
- national phrase or IP (Beckman and Pierrehumbert, 1986), intonation unit
" (Du Bois et al., 1983), and tone unit (Crystal, 1969). Furthermore, in the
- first phrase, there seems to be another set of lesser prosodic phrase bound-
. aries (often called intermediate phrases) that split up the words as follows
. I wanted | to go | to London. The exact definitions of prosodic phrases
. and subphrases and their relation to syntactic phrases like clauses and noun
phrases and semantic units have been and still are the topic of rauch debate
(Chomsky and Halle, 1968; Langendoen, 1975; Streeter,; 1978; Hirschberg
and Pierrehumbert; 1986; Selkirk, 1986; Nespor and Vogel, 1986; Croft,
+1995; Ladd, 1996; Ford and Thompson, 1996; Ford et al., 1996). Despite
 these complications, algorithms have been proposed which atiempt to au-
tomatically break an input text sentence into intonational phrases. For ex-
ample Wang and Hirschberg (1992), Ostendorf and Veilleux (1994); Tay-
lor and Black (1998), and others have built statistical models (incorporating
probabilistic predictors such as the CART-style decision trees to be defined
in Chapter 5) for predicting intonational phrase boundaries based on such
features as the parts of speech of the surrounding words, the length of the
- atterance in words and seconds; the distance of the potential boundary from
the beginning or endmg of the utterance; and whether the surroundmg words

are accented. - : : S e :
- Twor utterances with the same prommence and phrasmg pattems can
' st111 differ prosodically by having different tunes, Tune refers to the into-
national melody of an utterance. Consider the utterance oh, really. Without
varying the phrasing or stress, it is still possible to have many variants of
this by varying the intonational tune. For example, we might have an excited
version ok, really! (in the context of a reply to a statement that you've just
won the lottery); a sceptical version oh, really?—in the context of not being
sure that the speaker is being honest; to an angry oh, really! indicating dis-
pleasure.. Intonational tunes. can be broken into component parts, the most
important of which is the pitch acecent. Pitch accents occur on stressed sylla-
"~ bles and form 4 characteristic pattern in the FO contour (as explained below).
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Depending on the type of pattern, different effects (such as those just ou
lined above) can be produced. A popular model of pitch accent classification
is the Pierrehumbert or ToBI model (Pierrehumbert, 1980; Silverman et al:
1992), which says there are five pitch accents in English, which are mad
from combining two simple tones (high H, and low L) in various ways:
H+L pattern forms a fall, while a L+H pattern forms a rise. An asterisk
is also used to indicate which tone falls on the stressed syllable. This give
an inventory of H*, L*, L+H*, L*+H, H+L* (a sixth pitch accent H*
which was present in early versions of the model was later abandoned}.
three examples of ¢k, really might be marked with the accents L+H*, L*+
and L* respectively. In addition to pitch accents, this model also has t
phrase accents L~ and H- and two boundary tones.L.% and H%, which-ar
used at the ends of phrases to control: whether the intonational tune rises
or falls.. = :
+ Other mtonatlonal modal‘; dtffer from ToBI by not using dlscrete phon
mic classes for intonation accents. For example the Tilt (Taylor, 2000) ari
Fujisaki models (Fujisaki and Ohno, 1997) use continuous parameters rathe:

. than discrete categories to model pitch accents. These researchers argue the

. while the discrete models are often easier to visualize and work with, con
o 'tmuous models may be more: robust and: more accurate for computat]o

E purposes

Phonetlc or Acoustlc Aspects of Prosody

The three phonolo g1ca1 factors interact and are reahzed by a number of di
ferent phonetic: or:acoustic: phenomena.: Prominent syllables are gener
louder and longer that non-prominent syllables. Prosodic phrase bound
are often accompanied by pauses, by lengthening of the syllable just befor
the boundary, and sometimes lowering of pitch at the boundary. Intonatlo
tune is manlfested in the fundamental frequency (FO) contour. "

Prosody 111 Speech Synthe51s = _.

A major task for:a TTS: system is-to generate appropnate 11ngulst10 rep
- sentations‘of prosody, and from them:generate appropriate acoustic patte
which will be manifested in the output. speech: waveform. The outp
“a TTS system with: such a prosodic ¢omponent is a sequence: of phon
each of which has a duration and an FO (pitch): value. The duration c
phone’is-dependent on the phonetic.context: (se¢ Chapter 7). The FO:v
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is influenced by the factors discussed above, including the lexical stress, the
accented or focused element in the sentence, and the intonational tane of the

. utterance (for example a final rise for questions). Figure 4.25 shows some
sample TTS output from the FESTIVAL (Black et al., 1999) speech synthe-
- sis system for the sentence Do you really want to see all of it?. This output,
together with the F(O values shown in Figure 4.26 would be the input to the
- waveform synthesis component described in Chapter 7. The durations here
- are computed by a CART-style decision tree (Riley, 1992).

CHE SRR L* | L-H%
v dor you |- really | vant. to I dee all | of it
: cuw| yyuwl ry ih| I iy | w|aa; n| -t} t|ax| s|iy-jaoll jahi v|ihjt
~ 110! 110| 50} 50 {75! 64| 57| 82|57| 50| 72| 41} 43| 47} 54| 130|176, 90| 44| 62| 46} 220

3 'Figu.ré 4.25" - Output of the FESTIVAL (Black et al., 1999) generator for the sentence
Do you really want 16 see all of it? The exact intonation contour is shown in Figure 4.26.
" Thanks to Paul Taylor for this figure.

do - you  really - want to - see ‘all. of i -

Figure- 4.26 _Thé-' FO- contour for the'samplé sentence generated by the
FESTIVAL synthesis system in Figure 4.25, thanks to Paul Taylor.

As was suggested above; determining the proper prdéodic' pa&em for
a sentence is difficult; as real-world knowledge and semantic information is
needed to kbow which syllables to accent, and which fune to apply. This sort

. of information is difficult to extract from the text and hence prosody modules

oftén aim to produce a “neutral declarative™ version of the input text; which

- assume the sentence should be spoken in a defauit way with no reference to

discourse history or real-world events: This is one of the main reasons why
1nt0nat10n in TTS often sounds wooden SRR LTV e
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4.8 HUMAN PROCESSING QF PHONOLOGY AND MORPHOLOG

Chapter 3 suggested that productive morphology plays a psychologically real:

role in the human lexicon. But we stopped short of a detailed model of how

the morphology might be represented. Now that we have studied phono

logical structure and phonological learning, we return to the psychological -

question of the representation of morphological/phonological knowledge. -

One view of human morphological or phonological processing might -

be that it distinguishes productive, regular morphology from irregular or ex—_'_'

ceptional morphology. Under this view, the regular past tense morpheme::

--ed, for example, could be mentally represented as a rule which would be.

applied to verbs like walk to produce walked. Trregular past tense verbs like-

broke, sang, and brought, on the other hand, would simply be stored as-part

of a lexical representatlon and the rule wouldn’t apply to these. Thus this’

proposal strongly distinguishes representatlon via rules from représentation -

- via lexical listing. R =

».~ This proposal seems sens1ble and is mdeed 1dent1ca1 o the transducer~

based models we have presented in these last two chapters, Unfortunately,

.+ -this simple model seems to be wrong, One problem is that the irregular verb
L _'thémselves show a good deal of phonological subregularity. For example; -
° the /& alternation relating ring and rang also relates sing and sang and swim

and swam (Bybee and Slobin, 1982). Children learning the language of--

‘ten extend this pattern to incorrectly produce bring-brang, and adults often -

“make speech errors. showing effects of this subregular pattern. A second

problem is that there is psychological evidence that high-frequency regular

inflected forms (needed; covered) are stored in the lexicon just like the stems

cover and neéd (Losiewicz, 1992). Finally, word and morpheme frequency: :

int general seems to play an important role in human processing. '

- Arguments like these led: to “data-driven’™ miodels of morphologzcal:

learning and representation, which essentially store all the inflected forms:

they have scen. These models generalize to new forms by a kind of analogy; .

regular morphology is just like subregular morphology. but acquires rule-like

trappings simply because it’occurs more: often. - Such models include the

' TIOMST ‘coniputational connectionist or Parallel Distributed Processing model of -
gggcn%gﬁg_ Ruinelhart and McClelland: (1986) and subsequent improvements (Plunket" :
- and:-Marchman, 1991; MacWhinney and Leinbach, 1991). and the similar |

- metwork model. of Bybee (1985,:1995). .In these models, the behavior of

regular morphemes like -ed emerges from its frequent interaction with other
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forms. Proponents of the rule-based view of morphology such as Pinker
“and Prince (1988), Marcus et al. (1995), and others, have criticized the con-
niectionist models and proposed a compromise dual processing model, in
_'ﬁ'\'_z"vhich regular forms like -ed are represent as symbolic rules, but subregular
-examples (broke, brought) are represented by connectionist-style pattern as-
‘sociators. This debate between the connectionist and dual processing models
“has deep implications for mental representation of all kinds of regular rule-
‘based bebavior and is one of the most interesting open questions in homan
language processing. Chapter 7 will briefly discuss connectionist models of

uman speech processing: readers who are further interested in connection-
“ist models should consult the references above and textbooks like Anderson
{1995). ...

49 SummarRy

- This chapter bas introduced many of the important notions we need to un-
“derstand spoken language processing. The main points ate as follows:
"+ o We ¢an represent the pronunciation of words in terms of units called
- phones. The standard system for representing phones is the Interna-
" tional Phonetic Aiphabet or IPA. An alternative English-only tran-
_ “scription system that uses ASCH letters is the ARPAbet.
7= Phones can be described by how they are produced articulatorily by
©the vocal organs; consonants are defined in terms of their place and
manney of artlculatmn and vojcing, vowels by their height and back-
- 'ness,
. A phoneme is a generahzatwn or abstractlon over different phonetic
realizations. Allophonie rules express how a phoneme is realized in a
glven context.

e Transducers can be used to model phonological rules just as they were
used in Chapter 3 to model spelling rules. Two-level morphology is
a'theory of morphology/phonology which models phonological rules
as finite-state well-formedness constraints on the mapping between
IGXICal and surface form:

““'s Pronunciation dictionaries are used for both text-to- speech and au-

-+ tomnatic speech recognition. - They give the pronunciation of words as
strings of phones, sometimes inchiding syllabification and stress. Most
on-line pronunciation dictionaries have on the order of 100,000 words
but still lack many names, acronyms, and inflected forms.
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. » The text-analysis component of a text-to-speech system maps from
orthography to strings of phones. This is usually done with a large
dictionary augmented with a system (such as a transducer) for haﬁdling’
productive morphology, pronanciation changes, names, numbers, and
acronyms. '

BIBLIOGRAPHICAL AND HISTORICAL NOTES

The ma_]or 1n51ghts of axtlculatory phonetics date to the hngmsts of 800 150
B.C. India. They invented the concepts of place and manner of articulation,
worked out the glottal mechanism of voicing, and understood the concept
of assimilation, European science did not catch up with the Indian phoneti-
cians until over 2000 years later, in the late 19th century. The Greeks did
have some radimentary phonetic knowledge; by the time of Plato’s Theaete-
tus and- Cratylus, for example, they distinguished vowels from consonants;
and stop consonants from continuants. The Stoics developed the idea of the
syllable and were aware of phonotactic constraints on_possible words. An
unknown Icelandic scholar of the twelfth century oxplolted the conecept of
the phonerne proposed a phonemlc writing system for Icelandlc mcludmg
‘diacritics for length and nasahty But his text remained unpublished un:
til 1818 and even then was Jargely unknown outside Scandinavia (Robm
1967). The modern era of phonetics is usually said to have begun with
Sweet, who. proposed what is essentlally the phonomo in his Handbook o

 Phonetics (1877). He also dewsed an alphabet for transcr1pt10n and dIStln-

- guished between broad and narrow transcription; proposing many ideas th
wWere eventually incorporated into the TPA. Sweet was considered the best
practicing phonetician of his time; he made the first scientific recordmgs._ of
languages for phonetic purposes, and advanced the start of the art of arti
latory: description. He was also infamously difficult to get along with; a tr

' that is well captured in the stage character that George Bernard Shaw

~eled after him: Henry Higgins: The phoneme was first named by the P

: 'scholar Baudouin de’ Courtenay, who: published his theories in 1894.
.. The idea that phonolog1cal rules could be modeled as regular. rel

k tlons dates’ to Johnson (1972); who- showed that any phonological syste
that didn’t allow: rules to apply to their own output (i.e.; systems that did not

. have recursive rules) could be modeled with regular relations (or finite-
- transducers): __.Vlrtua]ly all phonological rules: that had been formulated
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the time had this property (except some rules with integral-valued features,
like early stress and tone rules). Johnson’s insight unfortunately did not at-
tract the attention of the community, and was independently discovered by
Roland Kaplan and Martin Kay; see Chapter 3 for the rest of the history of
two-level morphology. Karttunen (1993) gives a tutorial introduction to two-
level morphology that includes more of the advanced details than we were
able to present here.

Readers interested in phonology should consult (Goldsmith, 1995) as a
reference on phonological theory in general and Archangeli and Langendoen
(1997) on Optimality Theory.

Two classic text-to-speech synthesis systems are described in Allen
et al. (1987) (the MITalk system) and Sproat (1998b) (the Bell Labs sys-
tem). The pronunciation problem in text-to-speech synthesis is an ongoing
research area; much of the current research focuses on prosody. Interested
readers should consult the proceedings of the main speech engineering con-
ferences: ICSLP (the International Conference on Spoken Language Pro-
cessing), IEEE ICASSP (the International Conference on Acoustics, Speech,
and Signal Processing), and EUROSPEECH.

 Students with further interest in transcription and articulatory phonet-
ics should consult an introductory phonetics textbook such as Ladefoged
. (1993). Pullum and Ladusaw (1996) is a comprehensive guide to each of the
. symbols and diacritics of the IPA. Many phonetics papers of computational
interest are to be found in the Journal of the Acoustical Society of America
(JASA), Computer Speech and Language, and Speech Communication.

- EXERCISES

41 Find the mistakes in the IPA transcriptions of the following words:
“three” [0ri]

“sing” [sing]
“eyes” [a1s]
“study” [studi]
“though” [Bou]

o B p T B
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f. “planning” [planiy]
g. “slight” [sht]

4.2 Translate the pronuncrauons of the followmg color words from the IPA 'i
into the ARPAbet (and make a note if you think you pronounce them differ-
ently than this!):

- 4.3" Tra Gershwin’s lyric for Let’s Call the Whole Thing Off talks about two
~ pronunciations of the word “either” (in addition to the tomato and potato
- exaraple given at the: begmmng of the chapter: - Transcribe Tra Gershwm-s

two pronuncratrons of “either” in IPA and in the ARPAbet.

4.4 Transcrrbe the followmg Words m both the ARPAbet and the TPA:
a. dark '
Csuit

. greasy
wash

:.m -

Water

4.5 'Write an FST which correctly pronounces strings of dollar amounts
- like $45, $320, and $4100. If there are mult1ple Ways to pronounce a num
you may p1ck your favonte way -

4.6 Write an FST which correotly pronounces seven—d1g1t phone numbers
like 555-1212, 555 1300, and so on. You should use a combination of: th

pa!red and trajlmg umt methods of pronuncranon for the last four dig
1ts : :

47 Buﬂd an automaton for rule (4 5)
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4.8 One difference between one dialect of Canadian English and most di-
alects of American English is called Canadian raising. Bromberger and
Halle (1989} note that some Canadian dialects of English raise /a1/ to [a1]
and /au/ to {au] in stressed position before a voiceless consonant. A simpli-
fied version of the rule dealing only with /a1/ can be stated as:

Jor/ — [l / [C ] (4.12)

—voice
This rule has an interesting interaction with the flapping rule. In some
Canadian dialects the word rider and writer are pronounced differently: rider
is pronounced [rarra] while writer is pronounced [ratcar). Write a two-level
rule and an automaton for both the raising rule and the flapping rule which
correctly models this distinction. You may make simplifying assumptions as
needed.

4.9 Write the lexical entry for the pronunciation of the English past tense
(preterite) suffix -d, and the two level-rules that express the difference in its
pronunciation depending on the previous context. Don’t worry about the
spelling rules. (Hint: make sure you correctly handle the pronunciation of
the past tenses of the words add, pat, bake, and bag.)

4.10 Write two-level rules for the Yawelmani Yokuts phenomena of Har-
mony, Shortening, and Lowering introduced on page 111. Make sure your
rules are capable of running in parallel.

4.11 Find 10 stress-neutral name suffixes (look in a phone book) and sketch
an FST which would model the pronunciation of names with or without suf-
fixes,
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5 OF PRONUNCIATION
AND SPELLING

ALGERNON But my own sweet Cec:ly, I have never written
you any letters.

- CECILY: You need hardly remmd me of that Ernest Ire-
member only too well that I was forced to write your letters
for you. I wrote always three times a week, and sometimes
oftener.

" ALGERNON: Oh, do let me read them, Cecily?
 CECILY: Oh, I couldn’t possibly. They would make you far
. too conceited. The three your wrote me after I had broken off
 the engagement are so beautiful, and so badly spelled, that
even now I can hardly read them without crying a little.
o Oscar Wﬂde The Importance of being Ernest

Like Oscar Wilde’s fabulous Cecily, a lot of people were thinking about
spelling during the last turn of the century:: Gilbert and Sullivan provide
many examples. The Gondoliers’ Giuseppe, for example, worries that his
private secretary is “shaky in his spelling” while Jolanthe’s Phyllis can “spell
every word that she uses”. Thorstein Veblen’s explanation (in his 1899 clas-
sic The Theory of the Leisure Class) was that a main purpose of the “ar-
chaic, cumbrous, and ineffective” English spelling system was to be difficult
enough to provide a test of membership in the leisure class. Whatever the
social role of spelling, we can certainly agree that many more of us are like
Cecily than like Phyllis. Estimates for the frequency of spelling errors in hu-
. man typed text vary from 0.05% of the words in carefully edited newswire

- text to 38% in difficult apphcatxons like telephone directory lookup (Kukich,
1992).-. . :
. In this chapter: we d1scuss the problem of detecting: and correcting
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spelling errors and the very related problem of modeling pronunciation vari-_
ation for automatic speech recognition and text-to-speech systems. On the-
surface, the problems of finding spelling errors in text and modeling the vari-
able pronunciation of words in spoken language don’t seem to have much
in common. But the problems turn out to be isomorphic in an impof[ant':
way: they can both be viewed as problems of probabilistic transduction. For:
speech recognition, given a string of symbols representing the pronunciation .
of a word in contéxt, we need to figure out the string of symbols represent-
ing the lexical or dictionary pronunciation, so we can look the word up in the
dictionary, But any given surface pronunciation is ambiguous; it might corre- .
spond to different possible words. For exarple the ARPAbet pronunciation:
er] could correspond to reduced forms of the words her, were, are, their,:
or your. This ambiguity problem is heightened by pronuncmt:on varia-
tmn for example the ‘word the is sometimes pronounced THEE and some-
tirmes THUH the word becaiise sometimes appears as because, sometimes:
as 'cause. Some aspects of this variation are systematic; Section 5.7 will sur:
- vey the important kinds of variation in pronunciation that are important for
speech recognltion and text—to -speech, and present some preliminary rules .
- descnbmg this variation. ngh—quahty speech synthesw algorithms need to-
know when to use partlcular pronunciation variants. Solving both speech
- tasks requ1res extending the transduction between surface phonés and Iexz
cal phoncs discussed in Chapter 4 with probabilistic variation.

Similarly, given the sequence of letters corresponding to a mis-spelled -
word, we need to produce an ordered list of possible correct words. For:
example the sequence acress might be a mis-spelling of actress, or of cress, :
or-of acres... We:transduce. from the “surface” formr acress-to the various:
POssibl‘e “Jexical” forms, assigning each with a probability; we then selec_t.:'
the most-probable correct word. -

- In this: chapter we first mtroduce the problems of detectmg and correct:
ing spel]mg errors; and al$o surnmarize typical humén spelling error pattern
We then introduce the esséntial probabilistic architecture that we will use to
solve: both spelling and pronunmatlon problems: the Bayes Rule and th

_ noisy channel model. The Bayes rule and its application to the noisy ch
- nel model will play a role in many problems throughout the book, partic
larly in- speech recognition: (Chapter 7), part of-speech tagging (Chapter 8)
and probab1hstlc parsing: (Chapter 12). - RET
. The:Bayes Rule and the noisy channel model provide the probablllsu
S framework for these problems. But actually solving them requires an algo
- rithm:  This chapter introduces an essential algorithm called the dynami
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programming algorithm, and various instantiations including the Viterbi
-algorithm, the minimum edit distance aigorithm, and the forward algo-
- rithm. We will also see the use of a probabilistic version of the finjte-state
-'3_: automaton called the weighted antomaton.

5.1 - DEALING WITH SPELLING ERRORS

‘The detection and correction of spelling errors is an integral part of modern
word-processors. The very same algorithms are also important in applica-
tions in which even the individual letters aren’t guaranteed to be accurately
identified: optical character recognition (OCR) and on-line handwriting
recognition. Optical character recognition is the term used for automatic
‘recognition of machine or hand-printed characters. An optical scanner con-
“verts a machine or hand-printed page into a bitmap which is then passed to
‘an OCR algorithm.
2o On-line handwriting recognition is the recognition of human printed
or cursive handwriting as the user js writing, Unlike OCR analysis of hand-
“writing, algorithms for on-line handwriting recognition can take advantage
of dynamic information about the input such as the number and order of
the stiokes, aiid the speed and direction of each stroke. On-line handwrit-
ifrg recognition is important where keyboards are inappropriate, such as in
‘small computing environments (palm-pilot applications, etc.) or in scripts
Tike Chinese that have large numbers of writien symbols, making keyboards
‘cumbersome. - S

In this Chapter we wﬂl focus on'detection and correction of spelling
error-; ‘mainly in typed text, but the algorithms will apply also'to OCR and
handwriting applications.  OCR systems have ‘even higher error rates than
“human typists, aithough they tend to make different errors than typists. For
example OCR systems often misread “D” as “O” or “ri’” as “n”, producing
- ‘mis-spelled” words like dension for derision, or POQ Bach for PDQ Bach,
‘The reader with further interest in handwriting recognition should consult
‘soutces such as Tappert et al (1990), Hu et a.l (1996), and Casey and Leco-
hnet (19965: e :

" Kukich (1992) iri her eurvey amcle on spelhng correction, breaks the
eld down mto thIee mcreasmgly broader problems

: 1 non-word error detectlon detectmg spellmg eITorS that result in non-
words (like graffe for giraffey -
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2. isolated-word error correction: correcting spelling errors that result g
in non-words, for example correcting graffe to giraffe, but looking Only'-
at the word in isolation.

. context-dependent error detection and correction: using the con
text to help detect and correct spelling errors even if they acciden
tally result in an actual word of English (real-word errors). Thi
can happen from typographical errors (insertion, deletion, transposi
tion) which accidently produce a real word (e.g., there for three), o
because the writer substitiited the wrong spelling of a homophone or"';
near—homophone (e g., dessert for desert, ot piece for peace). '

- .'The next sectlon Wﬂl discuss the kinds of spelhng -error pattems that--:
occur il typed text and OCR and handwrltmg recogmuon input.

5.2 SPELLING ERROR PATTERNS

The"n‘umbe'r and nature' of Spei]jng errors in human typed text differs fro
those ‘caused by pattern—recogmtlon devices like OCR and handwriting r
ogmzers “Grudin (1983) founid spelling error rates of between 1 and 3% i
himan typewntten text: (thlS includes both non-word errors and real-wor
errors). This error rate ‘goes down significantly for copy-edited text. Thi
rate of spelling errors in handwritten text itself is similar; word error rates
between 1.5 and 2.5% have been reported (Kukich, 1992).

. The errors of OCR: and on line hand- ertmg systems Vary Yaeger etal
(1998) propose, based on studies that they warn are inconclusive, that
on-line printed character recogmtzon on Apple Computer’s NEWTON MES
SAGEPAD had a word accuracy rate of 97-98%, that is, an error rate of 2:
3%, but with a high variance (depending on the trammg of the writer, ete
Tti 1s ‘not cleat whether the failure of the NEWTON was because this error rat
was optmusnc or because a 2—3% error rate is unacceptable. More recen
devices, like 3Com’s: Palm Pilot, often use a special input script (like, th-
Palm Pilot’s “Graffiti”) instead of allowing arbitrary handwriting. OCR ¢
ror rates also vary widely. dependmg on the quality of the input; (Lopre
and Zhou, 1997) suggest that OCR letter-error rates typically range from
0.2% for: clean, first- generation copy to 20%: or worse for multlgeneratio
photocopies and faxes. : :
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In an early study, Damerau (1964) found that 80% of all misspelled
“words (non-word errors) in a sample of human keypunched text were caused
by single-error misspellings: a single one of the following errors:’

» insertion: mistyping the as ther

o deletion: mistyping the as th

¢ substitution: mistyping the as thw
e transposition: mistyping the as hte

. Because of this study, much following research has focused on the
correction of single-error misspellings. Indeed, the first algorithm we will
'.:present later in this chapter relies on the large proportion of Smgie—crror mis-
spellings.
;- Kukich (1992) breaks down human typing errors mto two classes Ty
'pographlc errors (for example mlsspelhng spell as speel), are generally

elated to the keyboard. Cognitive errors (for example misspelling sepa-
rate as seperate) are caused by writers who don’t know how to spell the
word. Grudin (1983) found that the keyboard was the strongest influence on
‘the ‘errors produced; typographic errors constituted the majority of all error
ypes. For example consider substitution- errors, which were the most com-
mon etror type for novice typists, and the second most common error type
or expert typists. Grudin found that immediately adjacent keys in the same
ow accounted for 59% of the novice substitutions and 319 of the érror sub-
stitutiotis (e.g., smsll for smalf). Adding in errors in the same column and
omologous errors (hitling the corresponding key on the opposite side of
- the keyboard with the other hand), a total of 83% of the novice substitutions
: d’-Sl%: of the expert substitutions could be considered keyboard-based er-
rors: Cognitive errors included phonetic errors (substituting a phonetically
: quwaient sequence of letters (seperate for separate) and homonym errors
subsututmg piece for peace). Homonym errors will be d1scussed n Chap—

C '-"}'when we discuss real-word error correction: -
' While typing errors are usually characterized as substitutions, inser-
‘“deletions, or transpositions, OCR errors are usually grouped into five
c 'sses substltutlons mulhsubstltutmns space deletlons or 1nsem0ns and

i In another corpus, Peterson (1986) found that smg!c-error mlsspellmgs accountcd for an

“even higher parcenrage of all misspelled words (93-95%). The difference between the 80%
the higher figuré may be due 16 the fact that Damerau’s téxt included errors caused in
scription to punched card forms, errors in keypinching, and errors caused by paper tape
ipment (!} i addition to purely human misspellings:. - . ... :

INSERTICN
DELETION
SUBSTITUTION
TRANSPOSITION
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failures. Lopresti and Zhou (1997) give the following example of commo
OCR errors: RN

Correct:
The quick brown fox jumps over the lazy dog.
Recognized:
"lhe ™ ick brown foxjurnps over tb 1 azy dog

Substitutions (¢ —+ ¢) are generally caused by visual similarity (rather
than keyboard distance), as are multisubstitutions (I' = I, m — mn, he —
b). Multisubstitutions are also often called framing errors. Failures (repre-
sented by the tilde character  *; : u — ") are cases where the OCR algorithm .
does not select any letter with sufﬁelent accuracy. -'

5.3 DE’TE’CTiN‘G NOE-WORD’ERIRORS "

Detectmg non—word errors, in text Whether typed by humans or scanned is
' 'moat commonly done by the use of a chctronary For-example, the wor
foxjurnps in the OCR example above would not occur in a dictionary. Some:
early. research (Peterson, 1986) had suggested that such spelling dictionat
ies would need to be kept small, because large dictionaries contain very rar
words that resemble- rm_sspellmgs of other words. For example wont isa
legitimate but rare word but is a common misspelling of won’t. Similarly.
‘veery (a kind of thrush) might also be a misspelling of very. Based on a sim
ple model of single-error. rms:Spe]lmgs Peterson showed that it was possible
that' 10% of such misspeliings might be “hidden” by real. words in a 50.0
word dictionary, bnt that 15% of single-error rmsspelhngs might be “hidde
in a 350,000-word dictionary: Tn practice; Damerau and Mays (1989) found
that this was not the case; while some: misspellings. were hidden by real
words in a- larger dlctlonary, in practlce the 1arger dlctlonary proved m
help than harm... - . - e
Because of fhe need to represent productlve mﬂectlon (the -8 and_
suffixes) and derivation, dlCthIlaIIBS for spelling error detection usually:
-~ clude models of morphology, just as the dictionaries for text-to-speech w
saw in Chapters- 3 and 4. Early spelling error detectors simply allowed ant
word to have any suffix — thus Unix SPELL accepts bizarre prefixed wor
like misclam and antiundoggingly and suffixed words based on the like the
hood and theness. Modern spelling error detectors use more hngulstlca,lly
motivated morphoiogu:al representations {see Chapter 3).
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5.4 PROBABILISTIC MODELS

This section introduces probabilistic models of pronunciation and spelling
variation. These models, particularly the Bayesian inference or noisy chan-
nel model, will be applied throughout this book to many different problems.

We claimed earlier that the problem of ASR pronunciation modeling,
and the problem of spelling correction for typing or for OCR, can be modeled
‘as problems of mapping from one string of symbols to another. For speech
recognition, given a string of symbols representing the pronunciation of a
word in context, we need to figure out the string of symbols représenting
the lexical or dictionary pronunciation, so we can look the word up in the
dictionary. Similarly, given the incorrect sequence of letters in a mis-spelled
word, we need to figure out the correct sequence of létters in the correctly
spelled word. ' '

. _noisy guess at
A word: PECODER > griginal

SOURCE
T word

NOISY CHANNEL: - -

- 'Figui‘e 5.1 Thé‘ noisy channel model. B

-+ The intuition of the noisy channel model (sée Figure 5.1) is to treat
 the surface form (the “reduced”” pronunciation or misspelled word) as an
instance of the lexical form (the “lexical” pronunciation or comrectly-spelled
word} which has been passed through a noisy communication channel. This
channel introduces “noise’” which makes it hard to recognize the “true” word.
Our goal is then to build a model of the channel so that we can figure out how
it modified this “true” word and hence recover it. For the complete speech
recognition tasks, there are many sources of “noise’; variation in pronun-
ciation, variation in the realization of phones, acoustic variation due to the

-~ channel (microphones, telephone networks, etc.). Since this chapter focuses

on pronunciation, what we mean by “noise” here is the variation in pronun-
- ciation that masks the lexical or “‘canonical” pronunciation; the other sources
.- of noise in a speech recognition system will be: discussed: in Chapter 7. For
spelling error detection, what we mean by noise is the spelling errors which
- mask the correct spelling of the word. The metaphor of the noisy channel
- comes from the application of the miodel to speech recognition in the IBM
" Tabs in the. 1970s (Jelinek; 1976). But the algorithm itself is a special case
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of Bayesian inference and as such has been known since the work of Bayes
(1763). Bayesian inference or Bayesian classification was applied SUCCESS-
fully to language problems as early as the late 1950s, including the OCR
work of Bledsoe in 1959, and the seminal work of Mosteller and Wallace
(1964) on applymg Bayesian inference to determine the authorship of the
Federalist papers. }
~ In Bayesian clabs1ﬁcat10n as in any classification task, we are given
some observation and our job is to determine which of a set of classes it
belongs to. For speech recognltlon imagine for the moment that the o
servation is the string of phones which make up a word as we hear it. For
spellmg error detection, the observation might be the string of letters th
constitute a possibly- m1sspelled word, In both cases, we want to classify
the observations into words; thus in the speech case, no matter which of the
many possible ways the word about is pronounced (see Chapter 4) we want.
to classify it as about. In the spelling case, no matter how the word separare'
is misspelled, we’d like to recognize it as separate.
+ Let’s begin with the pronunciation example. We are given a string o

phones (say [ni]). We'want to know which word corresponds to this string of
phones. The Bayesian interpretation. of this task starts by considering all pos

‘sible’ classes—in this case; all possible words. Out of this universe of word:

we want to chose the word which is miost probable given the observation we
have (ini]). Tn other words, we want, out of all words in the vocabulary V.
the singlé word such that P(word|observation) is highest. We use W to mean
“our estimate of the correct w”’, and we’ll use O to mean “the observatio
sequence. [ni]” (we call it a sequence because we think of each letter as
individual observation)a Then the equation for picking the best word given
8. o : s SR . :

W argmaxP(w\O) PR . '(5'. ;
o L

" The funcﬁon argmax f (x) means “the x such that f (x) is mamrmzed
Whﬁe (5.1) is guaranteed to give us the optimal word w, it is not clear how
to-make the equation operational; that is, for a given word w and observatio
sequence O we don’t know how to directly compute P(w|0). The intuition of
Rayesian classification is to use Bayes” rule to transform (5.1) into a product
of two ptobabilities; cach of which turns:out to be easier to compute th

P(w|0). Bayes’ tuleis presented in (5. 2) it gwes us a way to break dow
P{x|0) into three other probab1l1t1es S :

: (y]x)P.x)....._. i




Section 5.5. Applying the Bayesian Method to Spelting

149

We can see this by subst1tut1ng (3.2) into (5.1) to get (5 3):
P(Olw)P( |
wEV P (0)
 The probabilities on the right-hand side of (5.3) are for the most part
easier to compute than the probability P(w|O) that we were originally trying
to maximize in (5.1). For example, P(w), the probability of the word itself,
we can estitnate by the frequency of the word. And we will see below that
P{O|w) turns out to be easy to estimate as well. But P(Q), the probability
of the observation sequence, turns out to be harder to estimate. Luckily, we
can 1gn0re 'P(0). Why? Since we are maxumzmg over all words, we will
* be computing (O‘l,}(vop(w) for each word. But P(O) doesn’t change for each
- word; we are always asking about the most likely word string for the same
observation O, which must have the same probability P(Q). Thus:

W == argm, w = argmaxP(OJw}P(w) (5.4)
o wEV PO) - Gev

To summarize, the most probable word w given some observation O
can be computing by taking the product of two probabilities for each word,
- and choosing the word for which this product is greatest. These two terms
‘have names; P{w) is called the Prior probability, and P(O|w) is called the
likelihood. '

(5.3)

_ likelihood prior
Key Concept #3 W= argmax P(Olw) P(w) - (5.5)
wel . ’
In the next sections we will show how to compute these two probab1h—

_: ties for the probabilities of pronunciation and spelling.
5.5  APPLYING THE BAYESIAN METHOD TO SPELLING

-'There are many algorithms for spelling. correction; we will focus on the
Bayesian (or noisy channel) algorithm because of its generality. Chapter 6
- will show how this algorithm can be extended to model real-word spelling
errors; this section will focus on non-word spelling errors. The noisy chan-
nel approach:. to spelling correction was first suggested by Kernighan et al.
(1990); their program, correct, takes words rejected by the Unix spell
program, generates a list of potential correct words, rank them accordmg to
Equation (5. 5) and plcks the hlghest—ranked one: :
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. tion 5.4. Let ¢ represent the typo (the misspelled word), and let ¢ range over

NORMALIZING:

facress || acres || - 2 4 insertion

Let’s walk through the algorithm as it applies to Kernighan et al.’s
(1990) example misspelling acress. The algorithm has two stages: proposmg
candidate corrections and scoring the candidates. :

In order to propose candidate corrections Kernighan et al. make the
simplifying assumption that the correct word will differ from the misspelling
by a single insertion, deletion, substitution; or transposition. As Damerau"s_.
{1964) results show, even though this assumption causes the algorithm to
miss some corrections, it should handle most spelling errors in human typed
text. The list of candidate words is generated from the typo by applying any:
single transformation which results in a word in a large on-line diction
Applying all posmbie transformations to acress ylelds the list of candidate
words 1 in Flgm'e 5.2. :

Transformation

: co . Correct| Error Position
Error || = Correction| = Letter | Letter| (Letter #| Type
acress || actress C . t - |- deletion
acress [ cress L o= e insertion:
acress || caress . || ca | ac '
acress || ‘access. co I
acress || - acioss o - e
acress |° acres ¢ = 2

Lh W O O N
- g -

=]

=]

Q

=z

g

<

insertion =

Figﬁre 5.2  Candidate corréctions for the misspelling actess, together with
“the transformations that would have produced the error (after Kermghan eta
(1990)) e represents a null Tetter. :

The second stage of the algorithm scores each correction by Equa-

the set C of candldate corrections. The most likely correction is then:

_ - hkehhood prlOl'
wh= argmax P(tlc)- P(c) -
: cEC o

As in Equatlon (5 4) we have 0m1tted the denommator in Equatzon (5 (]
since the typo ¢, and hence its probability P(t), is constant for all ¢. The pri
probability of each correction P(c) can be estimated by counting how offt
the word ¢ occurs in some corpus, and then normahzmg these counts by -
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fotal count of all words.? So the probability of a particular correction word
¢ is computed by dividing the count of ¢ by the number N of words in the
corpus. Zero counts can cause probiems, and so we will add .5 to all the

that in Equation (5.7) we can’t just divide by the total number of words N
since we added .5 to the counts of all the words, so we add .5 for each of the
V- words in the vocabulary).
: Clc)+0.5
PO=5Tosv S
~ Chapter 6 will talk more about the role of corpora in Ccomputing prior
probabllmes for now let’s use the corpus of Kernighan et al. (1990), which
~ is the 1988 AP newswire corpus of 44 million words. Thus N is 44 million.
 Since in this corpus the word actress occurs 1343 times, the word acres 2879
' times, and so on, the resulting prior probabilities are as follows:

c 'ffe'tjl(c) piey -
actress 1343 0000315 .
~cress. 0. . .000000014..
. caress . 4. 0000001 .
-access . 2280 : -.000058-

. across 8436 . .00019
~acres - 2879. - .000065. .

(5.7

Computmg the likelihood term p(t|c) exactly is an unsolved (unsolve-
- able?) research problem; the exact probability that a word will be mistyped
- depends on who the typist was, how familiar they were with the keyboard
~ they were using, whether one hand happened to be more tifed than the other,
- ete. Luckily, while p(t]c) cannot be computed exactly, it can be estimated
- pretty well, because the most important factors predicting an insertion, dele-
. tion, transposition are simple local factors like the identity of the correct
letter itself, how the letter was misspelled, and the surrounding context. For
- example, the letters m and n are often substituted for each other; this is partly
a fact about their identity (these two letters are pronounced similarly and
- they are next to each other on the keyboard), and partly a fact about context
" (because they are pronounced similarly, they occur in similar contexts).

. One simple way to estimate these probabilities is the one that Kemi-
.- ghan et al. (1990) used.. They ignored: most of the possible influences on
.. the probability of an error and just estimated e.g.. p(acress|across) using

2% Normalizing means dlvuhng by SOmie’ total count so that the resulfinig probabﬂmes fall
legally between 0 and 1. :
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counts. This is called “smoothing”, and will be discussed in Chapter 6; note -
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CONFUSICN
MATRIX

‘correct word (at a total normalized percentage of 45%), and actress a thy

- second most likely word: Unfortunately; the al gonthm was wrong here: T

- writer’s intention becomes clear from the context: ;.. was called a “st lai

. and-versatile acress. whose combination of sass and glamour. has de
- Frer. s The surroundmg ‘words make it clear that actress and not-acres

the number of times that e was substituted for ¢ in some large corpus of er
rors. This is represented by a confusion matrix, a square 26 x26 table whic
represents the number of times one letter was incorrectly used instead of an
other. For example, the cell labeled |0, ¢] in a substitution confusion mat;

[£,5] in an insertion confusion matrix would give the count of times thatz .
was inserted after 5. A confusion matrix can be computed by hand-coding
a collection of spelling errors with the correct spelling and then counting
the number of times different errors occurred (this has been done by Grudi
(1983)). Kemlghan et al. (1990) used four confusion matrices, one for each:
type of single-etror:. : :

‘e ‘del[x,y] containis the number of times in the training set that the char
* acters xy in the correct word were typed as x. S
e insfx,y| contains the number of times in the training set that the char
acter x in the correct word was typed as xy.

‘e sub[x,y] the number of tithes that x was typed as y.
e 'trans[x', y| the number of timies that xy was typed as yx.
" Note that they chose to' condition their insertion and deletion proba
b111t1e:s on the previous character; they could al$o have chosen to conditio
“on the followmg character. Using these matrices, they estimated p(t|c) a
follows (where ¢p is the pth character of the word ¢):

f del[c I)C ]
. _ﬁm  if deletlon
SRR %Iﬂ% Ifmsertlon
o P(tlc):< : 'Sub[t . }
- : _'.iajﬁ"ﬁ% ;if substltutlon
transc o .
a—jﬁl%[?}f:% if trdnsposmon

Flgure 5 3 shows the final probab1ht1es for each’ of the potentlal Cott
tions; the prior (from Equation (5.7)) is multiplied by the likelihood (com
puted using Equation (5.8) and the confusion matrices). The final column
shows the “normalized: percentage’. : :

- This' 1mplementat10n of the Bayesian- algorlthm predicts acres- as- th
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freq(c) | plo) - -

| pe)

_p(tjop(c)

% |

actress
Cress
caress
‘Access
1 across
L acres
i acres -

0
4
2280
8436
2879
2879

0000315
000000014
0000001
000058
00019
000065
000065

000117
00000144
00000164 -
000000209
0000093
0000321
0000342

3.69x 1077

2.02x 10714
i.64 x 10713

121 x 1071 |

1.77 x 10~°
2.09 x 1077
222 %1077

- 18%

37%
0%
0%
0%

21%
23%

Figure 5.3  Computation of the ranking for each candidate correction. Note

* that the highest ranked word is riot actress but acres (the two lines at the bottorn

- of the table), since acres can be generated in two ways. The del[}, ins[], sub[],
- and frans[} confusion matrices are given in full in Kernighan et al. (1990).

~the 1ntended Word Chapter 6 will show how to augment the computatlon of
- the prior probability to use the surrounding words.
= The algorithm as we have described it requires hand-annotated daia to
* train the confusion matrices. An alternative approach used by Kernighan
et al. (1990) is to compute the matri_ces by iteratively using this very spelling
‘error correction algorithm itself. The iterative algorithm first initializes the
*'matrices with equal values; thus any character is equally likely to be deleted,
- “equally likely to be substituted for any other character, etc. Next the spelling
““error correction algorithm is run on a set of spelling errors. Given the set
of typos paired with their corrections, the confusion matrices can now be
' recomputed the spelling algorithm run again, and so on. This clever method
- turns out to be an instance of the 1mp0rtant EM algorithm (Dempster et al.,
- 1977) that we will discuss in Chapter 7 and Appendix D. Kernighan et al.
- (1990)’s’ algorithm was evaluated by taking some spelling errors that had
. two potential corrections, and asking three human judges to pick the best
correction, Their program agreed with the majority vote of the human judges
87% of the Ume .

MINIMUM EDIT DISTANCE

- The previous section showed that:the Bayesian algorithm, as implemented
- with confusion matrices, was able to rank candidate corrections. But Kerni-
~ ghan et al. (1990) relied on:the simplifying assumption that each word had

only a single spelling error:: Suppose we wanted a more powerful algorithm
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DISTANGE

MINIMUM EDIT
STANCE

ALIGNMENT

which could handle the case of multiple errors? We could think of such:
an algorithm as a general solution to the problem of string distance. The:
“string distance” is some metric of how alike two strings are to each other,
The Bayesian method can be viewed as a way of applying such an algorithm
to the spelling error correction problem; we pick the candidate word which:
is “closest” to the error in the sense of having the highest probability given:
the CITor,

Onc of the most popular classes of algorithms for finding string dl
tance are those that use some version of the minimum edit distance algo
rithm, named by Wagner and Fischer (1974) but mdependently discovered
by, many people see the History section. The minimum edit distance be
tween two strings is the minimum number of editing operations (insertion
deletion, substitution} needed to transform one string into another. For ex
ample the gap between intention and execution is five operations, which can:.
be represented in three ways asa trace an ahgnment or a operation llst
as show in Flgure 5 4 '

e n n
e * U i n

in.t_'en_g £t i on

Alignment: &

gcexecution

] delete P
Operatlon_" ' substltute n by €
' LlSt' : - subsutute thy x -
: insert u -

L substitute n.by ¢ -»

. Figure 5.4. - Three methods for representing differences between sequen
- (after Kruskal (1983))

*. We can also assign a particular cost or weight to each of these op

‘ations. - The Levenshtein- distance: between.two sequences is the simpiés

weighting factor in which each of the three operations has a cost of 1 (
enshtein; 1966). - Thus. the Ievenshtein: distance between infention and

~ ecution is'5. Levenshtein also proposed an alternate version of his metri
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- in which each insertion or deletion has a cost of one, and substitutions are
“not allowed (equivalent to allowing substitution, but giving each substitution
‘a cost of 2, since any substitution can be represented by one insertion and
“one deletion). Using this version, the Levenshtein distance between inten-
~tion and execution is 8. We can also weight operations by more complex
- functions, for example by using the confusion matrices discussed above to
- assign a probability to each operation. In this case instead of talking about
- the “minimum edit distance” between two strings, we are talking about the
“maximum probability alignment” of one string with another. If we do this,
-an augmented minimum edit distance algorithm which multiplies the prob-
~abilities of eéach transformation can be used to estimate the Bayesian likeli-
-~ hood of a multiple-error typo given a candidate correction. "~ -
: The minimum edit distance is computed by dynamic programming.
. Dynamic programming is the name for a class of algorithms, first introduced
by Bellman (1957), that apply a table-driven method to solve problems by
+ combining solutions to subproblems. This class of algorithms includes the
- most commonly-used algorithms in speech and language processing, among
_-them the minimum edit distance algorithm for spelling error correction the
. Viterbi algorithm and the forward algorithm which are used both in speech
- tecognition and in machine translation, and the CYK and Earley. algorithm
-usged in parsing. We will introduce the minimum-edit-distance, Viterbi, and
. forward algorithms in this chapter and Chapter 7, the Earley algorithm in
"'Chapter 10, and the CYK algorithm in Chapter 12.
-~ ... The intuition of a dynamic programming problem is that a large prob-
~lem can be solved by properly combining the solutions to various subprob-
lems: For example, consider the sequence or “path” of transformed words
that comprise the minimum edit distance between the strings infention and
“execution. Imagine some string (perhaps it is exention) that is in this opti-
* mal path (whatever it is). The intuition of dynamic programming is that if
“exention is in the optimal operation-list, then the optimal sequence must also
“include the optimal path from intention to exention. Why? If there were a
shorter path from intention to exention then we could use it instead, resulting
in a shorter overall path, and the optlmal sequence wouldn't be 0pt1ma1 thus
leéading to a contradiction. G .
o Dynamie programming algorlthms for sequence comparison work by
'creatmg a distance matrix with one column for each symbol in the target se-
.- quence and one row for each symbol in the source sequence (i.e., target along
the bottom, source along the side):.: For minimum edit distance, this matrix
18 the edit-distance matrix.. Each cell edit-distanceli j] contains the distance

DYNAMIC
PROGRAMMING
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between the first i characters of the target and the first j characters of the

source. Each cell can be computed as a simple function of the surrounding:

cells; thus starting from the beginning of the matrix it is possible to fill in
every entry. The value in each cell is computing by taking the minimum of

the three possible paths through the matrix which arrive there: -

distanceli — 1, j| + ins-cost(target;) :

P(tlc)=min { distanceli — 1, j — 1]+ subst-cost{source;, target;)  (5.9)

' distanceli, j — 1] + del-cost(source ;) '

The 'a'lgo'rit'hm itself is summarized in Figure 5.5, while Figure 5.6

shows the results of applying the algorithm to the distance between inte
tion and execution assuming the version of Levenshtein distance in which

1nsertlons and deletlons each have a cost of 1 and substltutwns have a cost
of 2

. function MIN-EDIT-DISTANCE(target, sotirce) véturns min-distance
. n+LENGTH(targe). )
T LENGTH(source)
" Create a distance matrlx dzatance[ n+1 i+l ]
“idistance[ 0, O]%mO :
- for each columii i from 0 to # do:
- for each row j from O tom do - . :
distancefi, j | < MIN( distance[i—1,j] + ins- cmt(targea‘;)
distanceli—1,j—1] + subst-cost(source;, target;),
distanceli, j—1] + del-cost{source;))

... Figure 55 The mlmmum edlt d1stance algorithm, an example of the class
. of dynamic programmmg algorithms. . :

5.7 ENGLISH PRONUNCIATION VARIATION

- When any of the fugitives of Ephraim said: ‘Let me go over, the me
< of Gilead said unto him: ‘Art thou an Ephraimite?’ If he said:. ‘Nay
-~ then: said they unto him: - ‘Say now Shibboleth’; and he said: ‘Sibb
. leth’; for hie could not frame to pronounce it right; then they lald ho
IOR h1m and slew him at the fords of the J ordan
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Figure 5.6 ‘Computation of minimum edit distance betweer intention and
~execution via algorithm of Figure 5.5, using Levenshtein distance with cost of
1 for insertions or deletions, 2 for substitutions. Substitution of a character for
| itself has a cost of 0.

This p'aés'ﬁage from Judgeé is a raher gory reminder of the poiitical

importance of pronunciation variation: Even in our (hopefully less politi-
- cal) computational applications of pronunciation, it is important to correctly
- model how pronunciations can vary. We have already seen that a phoneme
" can be realized as-different allophones in different phonetic environments.
~ We have also shown how to write rules and transducers to model these
- changes for speech synthesis. Unfortunately, these models significantly sim-
- plified the pature of pronunciation variation.- In particular, pronunciation
variation is caused by many factors in addition to the phonetic environment.
This section summarizes some of these kinds of variation; the following sec-
tion will introduce the probabilistic tools for modeling it.
g Pronunciation variation is extremely widespread.. Figure 5.7 shows
- the most common pronunciations of the words because and about from the
" hand-transcribed Switchboard corpus of American English telephone con-
-, versations. . Note the wide variation in pronunciation for these two words
when spoken as part of a continuous stream of speech. .. :
o+ What causes this variation? There are two broad classes of pronunci-
~ation variation: lexical variation and allophonic variation. We can think
- of lexical variation ‘as a difference in what segments are used to represent
- the word in the lexicon, while allophonic variation is a difference in how the
+individual segments change their: value in different contexts. In Figure 5.7,
most of the variation in pronunciation is allophonic; that is, due to the influ-

LEXICAL
VARIATION
ALLOPHONIC
VARIATICN
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SOCIOLINGUISTIC

DIALECT
VARIATION

because o about

IPA ARPAbet | % ARPAbet | %
[bikaz] | [biykahz] | 27% Tax b aw] "32%
Tbikaz) | [bixkanzl | @ 14% fax b aw f] 16%
[kaz) - [kahz] - 7% || [ba [b aw] | 9% -
koz] [k ax z] 5% | [ix b aw] 8%
ibikoz] |. [bix k ax z] 4% i [ix bawt] 5% -
[bikaz| [b ih k ah 7] 3% iba [ix b ae] 4%
[bokaz] | [baxkahz] | ' 3% [ax b ae dx] 3% -
[kuz] fkuhz] - 2% ] 1 [bawdx] 3%
Tks] ksl 2% ' b ae] 3%
K. | Ikixzl 2% | bawtl | 3%
- [kiz . Ikihz] . - 2% ¢ - fax b aw dx] 3%

[ bikaz] | [biykahzh)| 2% \ T [ax b ae] 3%

[bikas] | [biykahs] | 2% [b aa] 3%
[bika] | [biyk ah] 2% [b ae dx] 3%
[bikaz} [biy k aa z] 2% [ibawr] [ix baw dx] 2% :
ozl | [axzl o | 2% || [ibat] | [ixbaat] 2%
- Figure 5.7 . The. 16 most common pronunciations of because and abou
from the hand-transcribed Switchboard corpus of American English conve

__S_a_t_ioné_i telephone speech I(Gb_dfrey etal, 1992; Greenberg et al., 1996).

encé of the surrounding sounds, syllable structure, and so forth. But the

that the word because can be pronounced either as monosyllabic ‘caus

* bisyllabic becaitse is probably a lexical fact, havmg to do. perhaps with

level of informality of speech. E : :
“An important source of lexical variation (although it can also affect al

lophonic variation) is sociolinguistic variation. Sociolinguistic variatio

due to éxtralinguistic factors such as the social identity or background of th

speaker One kind of sociolinguistic variation is dialect variation. Speak

ers of some deep-southern dialects of American English use a monophthong

- or near-monophthong [a] or [ag] instead of a diphthong in some words Wi
. the vowel [ar]. In these dialects rice is pronounced: [ra:s]. African-America

Vernacular English (AAVE) has many of the same vowel differences fr
General American- as does Southern' American English, and also has indi
vidual words with specific pronunciations such as. [brduss) for business an
[aekc;] for ask. - For: older-speakers or those not from: the American Wes

Midwest, the words canght and cot have dlfferent vowels ([kot} and [ka
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ctively). Young American speakers or those from the West pronounce
¢ two words cot and caught the same; the vowels [o] and [a] are usually
ot distinguished in these dialects. For some speakers from New York City
11<e the first author’s parents, the words Mary ([merri]), marry ({meri]), and
77y ((meri]) are all pronounced differently, while other New York City
akers like the second author pronounce Mary, and merry identically, but
iff ently than marry. Most American speakers pronounce all three of these
ords:identically as ([meri]). Students who are interested in dialects of En-
ish'should consult Wells (1982), the most comprehensive study of dialects
Enghsh around the world..

‘Other sociolinguistic dlfferences are due to reglster or style rather than
gdiélect. In a pronunciation difference that is due to siyle, the same speaker
ght- pronounce the same word differently depending on who they were
alking' to or what the social situation is; this is probably the case when
josing between because and 'cause above. One of the most well-studied
afnples of style-variation is the suffix -ing (as in something), which can be
pronounced [m)] or /m/ (this is often written somethin’y. Most speakers use
h forms; as Labov (1966) shows, they use [1] when they are being more
ormal, Zand [m] when more casual. In fact whether a speaker will use [m)j or
{m] in a given situation varies markedly according to the social context, the
gender of the speaker; the gender of the other speaker, and so on. Wald and
Shopen (1981} found that men are more likely to use the non-standard form
m] than women, that both men and women are more likely to use more of
e standard form [17} when the addressee is a women, and that men (but not
woren) tend to switch to [m] when they are talking with friends.

i Where lexical variation happens at the lexical level, allophonic varia-
tion happens at the surface form and reflects phonetic and articulatory fac-
tors.” For example, most of the variation in the word about in Figure 5.7
as caused by changes in one of the two vowels or by changes 1o the final
]; - Some of this variation is due to the allophonic rules we have already
discussed for the realization of the phoneme /¢/. For example the pronun-
ciation of about as [abaur}/[ax b aw dx]) has a flap at the end because the
ext word was the word #t, which begins with a vowel; the sequence about
it was proriounced [sbauri]/[ax b aw dx ix]). Similarly, note that final [t] is
often deleted; (about as [baul/[b aw]}. Considering these cases as “deleted”
. _'actually a 51mp11ﬁcat1on many of these “deleted” cases of [t ] are actually

3 - For some purposes we ‘distinguish between allophomc variation and what are called * ‘op-
tlonal phonologica] rules™; for the purposes of this textbook we will lumyp these both together
3 “altophonic variation™. R IO ce .
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 COARTICULATION -

' Asstwtsnor't' _
- -bonng segment.: The dentalization of [t] to ([t]) before the dental consonant

O PALATALIZATION

o '_ : pronunmatlon of: becaiise" as [bikaz} (ARPAbet [b iy k- ah-zh]). - Here the
- final segment of because;: a lexical /2/; is realized as [5]; because the fi

" DELETION

- deletion of ﬁnal 174 above in the words about and if. / t/ and / d/ are often
' deleted before consonants or When they are part of a sequence of tw o
: 'three consonants Flgure 5 9 shows some examples

ufronee.

| _ extenswely studled For example /d/ is more: llkely to be deleted than /t/

'terrnmtsnc given an environment, a rule always applies..This is by no means

factors that must be interpreted probabilistically. -Tn the rest of this section
‘we: summarize: more of these rules and talk about the influencing factors.

- due to the movement of the articulators in neighboring segments, Most al
~lophonic riles relating English phoneme to their allophonies can be grouped

- into a small humber of types: assnmlatlon chssmnlatlon deletion, ﬂappmg
'_VOWel reduction; ‘and epenthesis: - S -

‘when the- constncnon for a segment occurs closer-to the palate than it:n

In the most common cases, /s/ becomes [[], /z/ becomes /5], // becomes [t

follows; Figure 5.8 shows examples from the Switchboard corpus. ... -

: t"actors like word. frequency ([ ] is more hkely to be paIatahzed in frequen
" WOIdS and phrases)

realized as a slight change to the vowel quality called glottahzatlon Wthh
are not represented in these transcnpnons
When we discussed these tules earlier, we 1mphed that they were de-

the case. Eacli of these allophonic rules is dependent on a complicated set o

Many of these tules model coarticulation; which is a change in a segment

" Assimilation is the change ina segment fo make It more hke a neigh:

[6] is an"example of assimilation. - Another: common type of assimilation
in; Enghsh ‘and- cross—lmgmsncally is palatallzatmn Palatalization- occtirs

mally Would because the followmg segment- is’ palatal or alveolo- palatal

and /d/ becomes: d3] We. Saw one case of palatalization in Figure. 5.7 in the

lowing word was you've.- So the sequence because you've was pronounced
[bikaziiv]. A simple version of a palatalization rule might be expressed as

Note in Flgure 58 that Whether alt ] is palatahzed depends on Texic

e Deletmn is: qtnte connnon mn Enghsh speech We saw examples

_ The many factors that mﬂuence the deletion’ of / ¢ / and / d/ have been
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= PA iPA " ARPAbet

. Phrase Lesical | Reduced Reduced

[set your [ [setjor] [set[a) [sehcher]
1inot yet [natjet] [natet] ] [n aacheht]

| 1ast year Neestjir] [eestfir|- [lae schiy 1]
'what you [watju] [wotfu] [w ax ch uw]
-rthis year {B1sjir] [Brfir] [db ib sh iy 1]

|- because you've. I [bikazjuv]! - [bikaguv] [b iy k ah zh uw v}
- did you ldrdju] - | [didzya] [dih jhy ah]

| Figure 5.8 Examples of palatalization from the Switchboard coirpus; the
“lemma you (including your, you've, and you’d) was by far the most common
Vicause of palatahzatlon followed by vear(s} (especially in the phrases this year
- and last year).

TPA- - TPA: "ARPAbet

Phrase Lexical - |- Reduced - | Reduced -

find him [famdhim] || [famim] -~ | [faynixm]
‘around this* | faraumddis| ravmrs] | [ixrawnihs]
mind boggling | [mambog ] [mamboglin] | [nray nbao g el ib ng]

© I'most places [moustplersiz] | [mousplersiz] |- [mowspleysixz]

draft the | [draeftdi] - [draefai] [d rae f dhiy]

eft me [leftmi] - * Plefmi] [leh f miy].
. Figure 5.9  Examples of /t/ and /d/ deletion from Switchboard. Some of

these examples may have glottalization instead of being completely deleted.

Both are more likely to be deleted before a consonant (Labov, 1972). The
fina} /t/ and /d/ in the words and and just are particularly likely to be deleted
_ (Labov, 1975;. Neu, 1980). Wolfram (1969) found that deletion is more
“ likely in faster or more casual speech, and that younger people and males
. are more likely to delete. Deletion is more likely when the two words sur-
- rounding the segment act as a sort of phrasal unit, either occurring together
. frequently (Bybee; 1996}, having a high mutual information or trigram
.. predictability (Gregory et al., 1999}, or being tightly connected for other
- reasons (Zwicky; 1972): Fasold (1972), Labov (1972), and many others have
~shown that deletion is less likely if the word-final /i/ or. /d/ is the past tense
- ending. -For example in Switchboard; deletion is more likely in the word
- around (13%. /d/-deletion) than in the word turned (30% / d/ deletlon) even
though the two words have snmlar frequenmes

184

161




162

Chapter 3. Probabilistic Models of Pronunciation and Spelling

HYPERARTICULATES

" BEDUCED. -
VOWELS

" SCHWA'

‘transducer, needs to be probabilistic, as we will see below. .
. cesses:: vowel reductlon in which many vowels in unstressed syllables arc

‘Stressed syliables are those in which more air is pushed out of the lu

‘As a result the shape of the mouth is somewhat neutral; the tongue is
ther particularly hlgh nor particularly low. For example the second vo

‘Wells (1982, p. 167--168) notes that [2] and [t} are falling together in:ma
* dialects of English including General American-and Trish, among others.

The flapping rule is significantly more complicated than we suggestéd
in Chapter 4, as a number of scholars have pointed out (see especially Rhodes
(1992)). The preceding vowel is highly likely to be stressed, although this is
not necessary (for example there is commonly a flap in the word thermome
fer [Ba?‘mamirat}). The following vowel is highly likely to be unstressed,.
though again this is not necessary. /t/ is much more likely to flap than
/d/. There are complicated interactions with syllable, foot, and word bound:
aries. Flapping is more likely to happen when the speaker is speaking more
quickly, and is more likely to happen at the end of a word when it forms
a collocation (high mutual information) with the following word (Gregory
et al 1999).  Flapping is less likely to happen when a speaker hyperar-
ticulates, i.e: uses a particularly clear form of speech, which often happe
when users are talking to computer speech recognition systems (OQviatt et al.,
1998). There is a nasal flap [f] whose tongue movements resemble the oral
flap but in Which the velum is lowered. Finally, flapping doesn’t always hap:
pen, even when the environment is. appropriate; thus the flapping. rul

- We have saved for last one of the most 1mportant phonologlcal pr
realized as reduced’ vowels, the most common of which is schwa ([ ]

stressed syllables are. longer, louder; and usually higher in pitch than
stressed Syllables Vowels in unstressed syllables in English often don’t have
their fuil form; the articulatory gesture isn’t as complete as for a full vo

in pamkeet is schwa: [peerakit). :

- While schwa: is the most: common reduced vowel it is not the on
one, at least not in: some dialects. Bolinger (1981) proposed three reduce_;_d
vowels: a reduced mid vowel [o], a reduced front vowel [#], and a reduy
rounded vowel [o |- But the majority of computational pronunciation le
icons. or computational models. of phonology systems: limit themselve_.
one reduced: vowel ([3]) (for example PRONLEX and CELEX) or at mg
two ([9 ] _ARPABET [ax] and [i] = ARPAbet {ix]). Miller (1998) was a
to train a neural net 1o automatically categorize a vowel as [a] or [i} b
only on the phonetic context, which suggests that for speech recogniti
tex-to-speech purposes, one reduced vowel is probably adequate. Inde
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- phenomenon he calls weak vowel merger.

A final note: not all unstressed vowels are reduced; any vowel, and
chphthongs in particular can retain their full quality even in unstressed po-
sition. For example the vowel [er] (ARPAbet [ey]) can appear in stressed

“ways ['o.werz]. Whether a vowel is reduced depends on many factors. For
example the word the can be pronounced with a full vowel di or reduced
_vowel do. It is more likely to be pronounced with the reduced vowel 3o in
ast speech, in more casual situations, and when the following word begins
~'with a consonant. It is more likely to be pronounced with the full vowel 3i
~when the following word begins with a vowel or when the speaker is having
“planning problems™; speakers are more likely to use a full vowel than a re-
‘duced one if they don’t know what they are going to say next (Fox Tree and
Clark, 1997). See Keating et al. (1994) and Jurafsky et al. (1998} for more
- details on factors effecting vowel reduction in the TIMIT and Switchboard
corpora. . Other factors influencing reduction include the frequency of the
- word; whether this is the final vowel in a phrase, and even the idiosyncracies
+ of individual speakers :

5.8 THE BAYESIAN METHOD FOR PRONUNCIATION

~ HEAD KNIGHT OF NI: Ni!-

- KNIGHTS OF NI: Ni! Ni! Ni! Ni! Ni! -
ARTHUR: .. . Who are you? : :
HEAD KNIGHT: We are the Knights Who Say “Ni'!
'RANDOM: - NI
ARTHUR: ~ *. " No! Not the nghts Who Say ’N1 !
HEAD KNIGHT: - The same! -
BEDEVERE: - -~ Who are they?
HEAD KNIGHT: - We are the keepers of the sacred words:

‘Ni’, ‘Peng’, and ‘Nese—wom’ |
Grdham Chapman John Cleese, Eric Idle, Terry Gilliam, Terry Jones,

. . and Michael Palin, Monty Python and the Holy Grail 1975.
The Bayesian algorithm that we used to pick the optimal correction for
S a spelhng error can be used to solve what is often called the pronunciation
subproblem in speech recognition. - In this task, we are given a series of
phones and our job is to compute the- most probable word which generated
- them.. For this chapter, we will simplify the problem in an Important way
by assuming the correct string of phones. A real speech recognizer relies on
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- [ni}; when it occurs after the word 7 at the beginning of a sentence. Stop an

“nounced [ni]. But an investigation of the Switchboard corpus produces
. total of 7 words which can be pronounced [nl] The seven words. are the

. pronunciation (and all the others except the one for knee) lies in the contex_tu_

- ple, we saw that [t} and [d] were often deleted word finally, especially befor
+*coronals; thus the pronunciation of neat as [ni] happened before the word

- regréssive assimilation process also discussed in Chapter 4. Recall that i1
~ nasal assimilation, phones before or after nasals take on nasal manner of ar

‘ticulation.. Thus [0] can be realized as [n]. The many cases of the pronouncex
- as [ni] in' Switchboard occurred after words like ir, on, and been (so in th

- word New York; the vowel [u] has fronted to [i] before a [y]:

- '[n} is functioning jointly as the final sound of talking and the initial sou
~of fo. Because this phone is part of two separate words we will not try. t

rection algorithm had two components: candidate generation, and candldat

" ‘scoring. - Speech recognizers often use an alternative architecture, tradin

- -off speech for storage: In this architecture, each pronunciation is expande

- in advance with: all possible variants, which are then pre-stored with

probabilistic estimators for cach phone, so it is never sure about the identity
of any phone. We will relax this assumption in Chapter 7; for now, Iet s look
at the simpler problem. :
. We’ll also begin with another 81mp11ﬁcat10n by assuming that we 4l
ready know where the word boundaries are. Later in the chapter, we’ll show
that we- can simultaneously find word boundaries (“segment”) and mo ;
pronunciation variation.
Consider the particular problem of interpreting the sequence of phone

see it you can think of any words which are likely to have been pronounces

[ni] before you read on.- The word “Ni” is not allowed.
~::'You' probably thought of the word knee:” This word is in fact p

neat; need, new, knee, to, and you.
- How can-the word the be pronounced [m]'? The explanatlon for thl

'ally—_inducéd pronunciation variation we discussed in Chapter 4. For exam

little (neat little — [nildl]). The pronunciation of the as [ni] is caused by

~+ [mni]): The prontinciation 0f new as [ni] occurred most frequently in thi

_The pronunciation of fo as [ni] occurred after the work talking (talkm
fo you > [tokmiyu]); here the [u] is palatalized by the following [y] and th

model this particular mapping; for the rest of this section let’s consider oni
the followmg five Words as candidate lexical forms. for [ni]: knee, the, n’é
need new:: : RN -- : : :
We saw in’ the prevmus sectlon that the Bayes1an speihng error cor
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scores. Thus there is no need for candidate generation; the word |ni] is
simply stored with the list of words that can generate it. Let’s assume this
‘method and see how the prior and likelihood are computed for each word.
: ‘We will be choosing the word whose product of prior and likelihood s
.'the highest, according to Equation (5.12), where y represents the sequence
“of phones (in this case [ni] and w represents the candidate word [the, new,
etc.}). The most likely word is then:
: likelihood prior

—ey
W = argmax P(y[w) (w) : ' {5.12)
: COwWeEW, : : : :
“ We could: choose to’ generate the hkehhoods p(y[w) by using' a set of
confuswn matrices as we did for spelling error correction.” But it turns out
that confusion matrices don’t do as well for pronunciation as for spelling.
While misspelling tends to change the form of a word only slightly, the

- Confusion matrices only work well for single-errors, which, as we saw above,
“are common in misspelling. Farthermore, recall from Chapter 4 that pro-

- nunciation variation is strongly affected by the surrounding phones, lexical

" frequency, and stress and other prosodic factors. Thus probabilistic models

- of pronunciation variation include a lot more factors than a'simple confusion

- matrix can include. .

- One simple way to gencrate pronunmaﬂon hkehhoods is via proba-
bilistic rules. Probabilistic rules were first proposed for pronunciation by
{Labov, 1969) {(who called them variable rules). The idea is to take the
rules of pronunciation’ variation we saw in Chapter 4 and associate them
with probabilities, We can' theén run thése probabilistic rules over the lexicon
and generate different possible surface forms each with its own probability.
For example, consider a simple version of a nasal assimifation rule which
explains why the can be pronounced [ni; a word-initia? [3] becomes [n] if the
preceding word ended in [n] or sometimes [m] ' o

[lSJ(’):?n/[—lvnasal]# o N (5.13)

= The [.15] to' the: left of: the mle’ is the probabﬂ1ty, this: can be com-
puted from a large-enough: labeled corpus such as the transcribed portion of
Switchboard. Let ncount be the nomber of times lexical {9] is realized word-
initially by surface [n] when the previous word ends in a nasal (91 in the
Switchboard corpus).- Let: envcount. be the total number of times lexical {3}
occurs (whatever its surface realization). when the previous word ends in a
nasal (617 in the Switchboard corpus). The resulting probability is:

188

changes in pronunciation between a lexical and surface form are much greater.

165

PROBABILISTIC
RULES




166

Chapter 5. Probabilistic Models of Pronunciation and Spelling

“ure 5.10 shows sample rules and the probab1ht1es trained on the Switchboard
'pronuncmtlon database. -

 word types; so the total dénominator is 2,486,075+ 30,836):

ncount
PO n/Hnasal) #_) = p—

01

617 .
— .15

We can build similar probabilistic versions of the assimilation and de;
tion rules which account for the |[ni] pronunciation of the other words. Fig

Wordl Rul.eNém.le [ Rale .. — |

- the | nasalassimilation | -* =1/ {+nasal]#..
| eat | finaltdeletion | =50/ Vo #
“need | finald deletion - A0V #
Cnew | ufromting | wmsif i #D] _
_ Flgure 5. 10 Slrnple rules of pronunc:latmn variation due fo context in ‘cons
| tinuous speech accountmg for the pronunmatmn of each of these words as [ni].

: We now need to compute the pI‘l()I‘ probablhty P( ) for each word
For spelhng correctlon we did this by using the relative frequency of
word 1 in a large corpus a word which occurred 44,000 times in 44 milli
words' receives the probablhty estimate 3%% or .001. For the pronunc
tion problem let s take our pI’IOI‘ probabllltles from a collection of a wri
and. a spoken corpus The Brown Corpus is a1 million word collection
of samples from 500 written texts from different genres (newspaper, novels,
non-fiction; academic, etc.) which was assembled at Brown Universit
1963-1964 (Kudéera and Francis, 1967; Francis, .1979; Francis and Kue
1982). The Switchboard Treebank - corpus. is a 1.4 million word collécti
of telephone ‘conversations.. Together they let us sample from both the s
ten and spoken’ genres. The table below shows the probabilities for our
words; each probability-is computed from the raw frequencies by norm
ing by the number of words in the combined corpus (plus .5 * the number of
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w  freg(w) p(w)
knee 61 000024
the 114,834 .046
neat 338 .00013
need 1417 .00056
new 2625 .001

Now we are almost ready to answer our original question: what is
the most likely word given the pronunciation |ni] and given that the previous
word was [ at the beginning of a sentence. Let’s start by multiplying together
our estimates for p(w) and p(y|w) to get an estimate; we show them sorted
from most probable to least probable (the has a probability of 0 since the
previous phone was not [n], and hence there is no other rule allowing [8] to
be realized as [n):

Word plylw) p(w) - ply|Wp(W)

new 36 .001 00036
.. neat . .52 .00013. .000068
need . .11 00056 ...000062
knee  1.00 .000024 .000024
the 0.046 O

Our algorithm suggests that rew is the most likely underlying word.
But this is the wrong answer; the string [ni] following the word I came in
fact from the word need in the Switchboard corpus. One way that people
are able to correctly solve this task is word-level knowledge; people know
that the word string f need ... is much more likely than the word string
I'new .... We don’t need to abandon our Bayesian model to handle this
fact; we just need to modify it so that our model also knows that I need is
more likely than 7 new. In Chapter 6 we will see that we can do this by
using a slightly more intelligent estimate of p(w) called a bigram estimate;

. essentially we consider the probability of need following I instead of just the

" individual probability of need. . . . o o

.This Bayesian algorithm is in fact part of all modemn speech recog-
nizers. Where the algorithms differ strongly is how they detect individunal
phones in the acoustic signal, and on which search algorithm they use to
efficiently compute the Bayesian probabilities to find the proper string of
‘words in conpected speech (as we will see in Chapter 7).
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Decision Tree Models of Pronunciation Variation

In the previous section we saw how hand-written ruies could be augmente |

with probabilities to model pronunciation variation. Riley (1991) and Witk

gott and Chen (1993) suggested an alternative to writing rules by ha

which has proved quite useful: . automatically inducing lexical-to-surfac

DECISIONTREE  pronunciations mappings from a labeled corpus with a decision tree, parti
ularly with the kind of decision tree called a Classification and Regression

CART Tree (CART) (Breiman et al., 1984). A decision tree takes a situation d
scribed by a set of features’ and classifies it info a caiegory and an associated
probability. For pronunc1at10n a decision tree can be trained to take a lexical

phone and vanous contextual features (surrounding phones, stress and syll

ble structure information, perhaps lexjcal identity) and select an appropriate

surface phone to realize it. We can think of the confusion matrices we use

in spelling error correction above as degenerate decision trees; thus the s

stitution matrix takes a lexical phone and outputs a probability distribution

over potential surface phones.to be substituted. The advantage of decision

trees is that they can be automatically induced from a labeled corpus, af

that they are concise: Decision trees pick out only the relevant features-an

thus suffer less from sparseness than a matrix, which has to condition. on

every nelghbormg phone
Next-dictionary_phone
Vowel ~ Consonant
- Prev:ous—dlct;onary_phone B o " Next—dictionary_phone -
km unwaeeh el fy;waxraaao T kA o dhhhihbBdFgkl
rha)'?ey . eraw ax el enng g v mnpstwy .
. dfnirgtvz
: . Sy g
Prevsous.—dlctlnnary__phone . Posmon in syllable L NIULL 64 § }?ULL gé B
E o - et 3! 32 [
m;‘y";}’,&e oh . kp_ . nital COD‘H _ e 1wl a1
ey 55 Lpooogy [ Tl T
Cdx I " telLt .83 ! tel £ .58
A8 BLE 2T NOTL o NULL G
SR S jdel g 07 5
Figure 5.11 - Hand-prunied decision tree for the phoneme /t/ induced from the Switcl
board corpus (courtesy of Eric Fosler-Lussier). This particular decision tree doesn’t model
flapping since flaps were already listed in the dictionary. The tree antomatically induced the
categories. Vowel and Coﬂsonant We have only shown the most likely reahzatlons at each!
- leaf node : o -
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: For example, Figure 5.11 shows a decision tree for the pronunciation
- of the phoneme /t/ induced from the Switchboard corpus. While this tree
doesn’t including Happing (there is a separate tree for flapping) it does model
© the fact that /t/ is more likely to be deleted before a consonant than before
. avowel. Note, in fact, that the tree automatically induced the classes Vowel
and Consonant. Furthermore note that if /t/ is not deleted before a conso-
" nant, it is likely to be unreleased. Finally, notice that /t/ is very unlikely to
be deleted in syllable onset position.

- Readers with interest in decision tree modeling of pronunciation should
- consult Riley (1991), Withgott and Chen (1993), and a textbook with an in-
- troduction to decision trees such as Russell and Norvig (1995).

©5.9 WEIGHTED AUTOMATA

. We said carlier that for putposes of efficiency a lexicon is often stored with

- the most likely kinds of pronunciation variation pre-compiled. The two most
“common representation for such a lexicon are the trie and the weighted weanTe
finite-state automaton/transducer (or probabilistic FSA/FST) (Percira et al.,
. 1994). We will leave the discussion of the trie to Chapter 7, and concentrate

~ here on the weighted automaton.

i The weighted automaton is a simple augmentation of the finite automa-

~ ton in which each arc is associated with a probability, indicating how likely

* that path is to be taken. The probability on all the arcs leaving a node must

. sum to 1. Figure 5.12 shows two weighted automata for the word tomato,

- adapted from Russell and Norvig (1995). The top autematon shows two pos-
:"sible pronunciations; representing the dialect difference in the second vowel.

. The bottom one shows more pronunciations (how many?) representing op-
*“tional reduction or deletion of the first vowel and optional flapping of the

* final [t]. _

: A Markov chain is a special case of a weighted automaton in which  markov cram
the input sequence uniquely determines which states the automaton will go
~through. . Because they can’t represent inherently ambiguous problems, a

.. Markov chain is only useful for assigning probabilities to unambiguous se-
quences; thus the N-gram models to be discussed in Chapter 6 are Markov
chains. since’ each: word s treated as if it was unambiguous. In fact the
weighted: automata used in speech. and language processing can be shown
to be equivalent to Hidden Markov Models (HMMs). Why do we in-
troduce weighted automata in this chapter: and HMMs in Chapter: 72 The
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oF IZ_ the Vowel [ey] is more l]kely to ﬂap than the other dlalect

' two models offer a different metaphor; it is sometimes easier to think abou
. certain problems as weighted-automata than as HMMs. The weighted
- tomaton: metaphor is often applied when the input alphabet maps relatively -
'."neatly té'the underlylng alphabet. - For example, in the problem of cotrect

U ing spelhng errors in typewritten mput the input sequence consists of letter
L and the states of the automaton can correspond to letters. Thus it is natural
: - to think of the problem’as transdu_cmg from a set of symbols to the same set
. of symbols with some modifications, and hence weighted automata are n
R “urally used for spelling error correction. In the problem of ¢orrecting error
in:hand-written input, the input : sequence is visual, and the:input alphabet is:
an alphabet of lines and angles and curves: Here instead of transducing fr
Can alphabet to 1tse]f we need to do classification on some input sequence be

©amore: approprlate metaphor; since they naturally handle separate alphabe
' ton ini which the mput sequence does not.uniquely specify the state sequence

: can'be’ modeled as'an: HMM; the: dlfference is one of metaphor rather than'
- :explanatory power ' S - _

Chapter 5. Probabilistic Modeis of Pronunciation and Spellin

Word model with dlalect variation:

- Figure 5.12 - * You:say [t ow m ey t ow] and I say [t ow m aa t ow]. Two!
" pronunciation networks for the word fomiato, adapted from Russell and Norvi
o (1995).. The top one models socmlmgmstxc vartation (some British or eastern
.Amencan dlalects) the bottom one adds in coartlcuIatory effects. Note the:
L correlation between allophomc and sociolinguistic var1at1011 the dlalect with

fore c0n51der1ng it as a sequence of states: Hidden Markov Models provide

for input sequences and state sequences. Butsince any probabilistic automa:
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Weighted automnata can be created in many ways. One way, first pro-
posed by Cohen (1989) is to start with on-line pronunciation dictionaries and
use hand-written rules of the kind we saw above to create different potential
surface forms. The probabilities can then be assigned either by counting

the number of times each pronunciation oceurs in a corpus, or if the cor-’

pus is too sparse, by learning probabilities for each rule and multiplying
out the rule probabilities for each surface form (Tajchman et al., 1995). Fi-
nally these weighted rules, or alternatively the decision trees we discussed
in the last section, can be automatically compiled into a weighted finite-state
transducer (Sproat and Riley, 1996}, Alternatively, for very common words,
we can simply find enough examples of the pronunciation in a transcribed
corpus to build the model by just combining all the pronunciations into a
network (Wooters and Stolcke, 1994),

The networks for tomato above were shown merely as illustration and
are not from any real system; Figure 5.13 shows an automaton for the word
about which is trained on actual pronunciations from the Switchboard corpus
(we discussed these pronunciations in Chapter 4).

‘Figure 5.13 A pronunciation network for the word abouz, from the actual
pronunciations in the Switchboard corpus.

Computmg Likelihoods from Weighted Automata. The Forward

. Algorlthm

_One advan’{age of an autornaton-based lcxlcon is that there are SfﬁCleIlt al-
- gorithms for generating the probabilities that are needed to implement the
) Bayesian method of correct-word-identification of Section 5.8, These algo-
. rithms apply to weighted automata and also to the Hidden Markov Models
- that we will discuss in Chapter 7. Recall that in our example the Bayesian
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FORWARD

probabilities of different paths through the automaton.

rof Chapter 7. The forward algorithm is also an important step in defining th
_'Vlterbl algorithrn that we will see later in this chapter.

) automaton cornsists of -

edges between nodes; an edge exists between two nodes if there is a non-zero:

o 1.7, an initial probablllty d1str1but10n over states, such that T is the probab}llty that th

i 2 aset of legal aceept:ng stafes.

method is given as input a series of phones [n iy}, and must choose betwee;
the words the, neat, need, new, and knee. This was done by computing two.
probabilities: the prior probability of each word, and the likelihood of the -
phone string [n iy] given each word. When we discussed this example ear:
lier, we said that for example the likelihood of [n iy} given the word need was -
.11, since we computed a probability of . 11 for the final-d-deletion rule from
our Switchboard corpus. This probability is transparent for need since ther
were only. two possible pronunciations ([n iy] and [n iy d]). But for words -
like about, visualizing the different probabilities is more complex. Using
precompiled weighted automata can make it simpler to see all the different:

There. is & very simple algorithm for computing the likelihood of a:
stnng of phones given the weighted automaton for a word. This algorithm,”.
the forward algorithm, is an essentjal part of ASR systems, aithough in this;
chapter we will-only be working with a simple usage of the algorithm. This is
because the forward algorithm is particularly: useful when there are multiple -
paths: through an automaton which can aceount for the input; this is not the
case in the weighited automata in this chapter buit will be true for the HMMS:

“Let’s begin by giving a formal definition of a welghted dutomaton and
of the mput and output to the likelihood computation problem. A welghted

1 a sequence of states q (nglqg qn),' each'correspondin'g toa phone
and- ' :

2 a set of tran51t10n probabthtles between states aoy ,alz,an, encodlng' A
the probab1hty of one phone followmg another e

We represent the states as nodes; and the transmon probabﬁmes as.:

transition probability between the two nodes.* The sequences of symbol

4 We have used two“special” states (ofters calléd non-emitiing states) as the start and en
state; it is’also pos51b1e t6 avoid the use of these states: In that case, an automaton mus_ :
spe01fy two more thmgs B :

“ automaton will stare i state i Of course; some states j may-have 7t ;= (; meaning tha
.+ they cannot be initial states .
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that are input to the model (if we are thinking of it as recognizer) or which are
produced by the model (if we are thinking of it as a generator) are generally
called the observation sequence, referred to as O = (010205...0;). (Upper-
case Jetters are used for a sequence and lower-case letters for an individual
element of a sequence). We will use this terminology when talking about
weighted automata and later when talking about HMMs.

Figure 5.14 shows an automatoen for the word need with a sample ob-

servation sequence.

d =.11

| Word Model

Observation

| Sequence . : 3' . ;
(phone symbols) - == N 1y d

0 0, 03

|~ Figure 5.14 . A simple weighted automaton or Markov chain pronunciation
network for the word need, showing the transition probabilities, and a sample
observation sequence.: The transition probabilities ay, between two states x
and y are 1.0 unless otherwise specified.

~ This task of determining which underlying word might have produced
_"an observation sequence is called the decoding problem. Recall that in or-
“der to find ‘which of the candidate words was most probable given the ob-
~'servation sequenice [n iy], we need to compute the produet P{O|w)P(w) for
“each candidate word (the, need, neat, knee, new), 1.¢. the likeliiood of the
observation sequence O given the word w times the prior probability of the
- word. :

i The forward: algonthm can be run to perform this computation for each
word, we give it an observation sequence and the pronunciation automaton
for'a word and it will return. P(Olw)P(w). Thus one way to solve the de-
coding problem is to run the forward algorithm separately on each word and
'(_:Ho'ose'the word with the highest: value: - As we saw ecarlier, the Bayesian
method produces the wrong result for pronunciation -n- iy] as part of the
Word sequence I'need (its first choice is the word new; and the second choice
is neat, need is only the third chozce) Since the forward algorithm is just
a _Way of Implementmg the Bayesmn app:roach it wilkreturn the exact same
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|- knee. All networks are simplified from the actual pronunciations in the Switch-:

| network for a word; they are added here to simplify the exposition of the for

Tabeled not just by states which always occur in linear order, but implici

- In the minimum edit distance algorithm, we filled in the matrix by just co
. puting the value of each cell from the three cells around it. With the forward:

rankings. (We will see in'Chapter 6 how to augment the algorithm with bi-
gram probabilities which will enable it to make use of the knowledge’ tha;t_.:
the previous word was ).
The forward algorithm takes as input a pronunmatlon network for eac
candidate word. Because the word the only has the pronunciation [n iy] afte
nasals, and since we are assuming the actual context of this word was after
the word [ (no nasal), we will skip that word and look only at new, near :
need, and knee. Note in Figure 5.15 that we have augmented each network
with the probablllty of each word, computed from the frequency that we's
on page 167 : -

@ @ @

" “Word mndel for "knee"

" Ward moded for "neat” -

: Wurd model for "new"

' Flgure 5. 15 " Pronunciation networks for the words need, neat, new, an

|- board corpus. Each network: has been augmented by the unigram probabilit
. of the word (i.e., its normalized frequency from the Switchboard+Brown co
. pus). Word probabilities- are not usually included as part of the pronunciation

warcl algorlrhm

The forward algonthm is: another dynamlc programmmg algonthm
and can be. thought of as a shght generahzatlon of the minimum edit"
tance algonthm Like the minimum edit distance’ algonthm it uses a table
to. store intermediate values as: it builds: up- the probability of the observ:
tioti: sequence Unlike the minimum edit distance algorithm, the rows ;

by a state-graph which has'many ways of getting from one state to anothier.
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algorithm, on the other hand, a state might be entered by any other state,
and so the recurrence relation is somewhat more complicated. Furthermore,
the forward algorithm computes the sum of the probabilities of all possible
paths that could generate the observation sequence, where the minimum edit
distance computed the minimum such probability.® Each cell of the forward
algorithm matrix, forwardit, j| represents the probability of being in state j
after sceing the first ¢ observations, given the automaton A. Since we have
angmented our graphs with the word probability p(w), our example of the
forward algorithm here is actunally computing this likelihood times p{w). The
value of each cell forward(t, j| is computed by summing over the probabili-
ties of every path that could lead us to this cell. Formally, each cell expresses
the following probability:

forwardlt, j] = P(01,0..01,q: = j%) P(w) (5.14)

SN Here g, = j means “the probability that the rth state in the sequence

. of states is state j”. We compute this probability by summing over the ex-

.- tensions of all the paths that lead to the current cell. An extension of a path

. from a state i at time 7 — 1 is computed by multiplying the followmg three
factors R

I. the prevmus path pmbablhty from the prevmu% cell forward[t — 1,1,

2. the transition probability a;; from previous state i to current state j,
- and

3. the observation likelthood 5, that current state j matches observation

symbol #. For the weighted automata that we consider here, b, is 1 if
.. the observation symbol matches the state, and 0 otherwise. Chapter 7
E Wﬂl cons1der more complex observatlon hkehhoods

'_The algonthm is descnbed n Flgure 5 16

- Figure 5.17 shows the forward algorlthm apphed to the word need. The
;-:ailgorlthm applies similarly to the other words which can produce the string
|n iy], resulting in the probabilities on page 167. In order to compute the
‘most probable underlying word, we run the forward algorithm separately on
cach of the candidate words, and choose the one with the highest probabil-
. Chapter. 7 will give further details: of the mathematics of the forward
:algonthm and introduce. the related forward-backward algorithm.

5 The forward afgorithm computes the sumi because there may be multiple paﬂls thfough
g. network which expldm a gwen observatton sequence Chapter 7 will take up this point in
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function FORWARD (observations, state-graph) returns forward-probability

num-states +— NUM-QF-STATES(state-graph)
nim-obs < length(observations) '
Create probability matrix forward[ntim-states + 2, num-obs -+ 2}
Sforward{0,0]+ 1.0 :
for each time step ¢ from O to num-obs do
for each state s from 0 to num-statesdo .~ _
for each transition &' from s specified by state-graph
Jorwardls' t++1] + forward[s,f} * als, 51 * b[s', o]
~retarn the sum of the probabilities in the final column of forward

Figure 5.16  The forward algorithm for computing likelihood of observa-
© tion sequence given a word model. als,s'] is the transition probability. from
current state s to next state &', and b{s’ ,0¢] is the observation Hkelihood of s’
" given o;. For the weighted automata that we consider here, b[s’,0/] is 1 if the
observation symbol matches the state, and 0 otherwise. '

end | R o | 00086* 11 = 00062

df.. !

need iy | j - ' 00056 1.0 =.00056

“m | 00056 *1.0 =.00056 -

start __1.0 . L j :
C# n Wy B

Figure 5.17 ) The forward algorithm applied to the word need; computing:
the probability P(O}w)P{w). While this example doesn’t require the full power
of the forward algorlthm we wrll see its use on more complex examples i
Chapter 7. PR = c o

Decodlng The Vlterbl Algorlthm g

The forward aigonthm as we presented 1t seems a bit Of an overkill. Si
“only one path through the pronunciation networks will match the input strin
why use such a big matrix and consider so many possible paths? Furthe;
more, as & decoding method, it seems rather inefficient to run the forwa
algonthm once: for éach word (imagine how inefficient this would be.if W
“were comiputing likelihoods for all possible sentences rather than all possibl
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words!) Part of the reason that the forward algorithm seems like overkall is
that we have immensely simplified the pronunciation problem by assuming
that our input consists of sequences of unambiguous symbols. We will see in
Chapter 7 that when the observation sequence is a set of noisy acoustic val-
ues, there are many possibly paths through the automaton, and the forward
algorithm will play an important role in summing these paths.

But it is true that having to run it separately on each word makes the
forward algorithm a very inefficient decoding method. Luckily, there is a
simple variation on the forward algorithm called the Viterbi algorithm which
allows us to consider all the words simultaneously and still compute the most
likely path. The term Viterbi is common in speech and language process-
ing, but like the forward algorithm this is really a standard application of
the classic dynamic programming algorithm, and again looks a lot like the
minimum edit distance algorithm. The Viterbi algorithm was first applied
to speech recognition by Vintsyuk (1968), but has what Kruskal (1983) calls
a ‘remarkable history of multiple independent discovery and publication’;
see the History section at the end of the chapter for more details, The name
Viterbi is the one which is most commonly used in speech recognition, al-
though the terms DP alignment (for Dynamic Programming alignment),
dynamic time warping and one-pass decoding are also commonly used.
The term is applied to the decoding algorithm for weighted automata and
Hidden Markov Models on a single word and also to its more complex ap-
plication to continuous speech, as we will see in Chapter 7. In this chapter
we will show how the algorithm is used to find the best path through a net-
work composed of single words, as a result choosing the word which is most
probable given the observation sequence string of words.

_ The version of the Viterbi algorithm that we will present takes as input
a single weighted automaton and a set of observed phones o0 = (010203 ... 0;)
and returns the most probable state sequence g = (g142g3 .. - q;), together
with its probability. We can create a single weighted antomaton by combin-
ing the pronunciation networks for the four words in parallel with a single
start and a single end state. Figure 5.18 shows the combined network.

_ Figure 5.19 shows pseudocode for the Viterbi algorithm. Like the min-
.. imum edit distance and forward algorithm, the Viterbi algorithm sets up a
. probability matrix, with one column for each time index # and one row for

-each state in the state graph. Also like the forward algorithm, each column
has a cell for cach state g; in the single combined automaton for the four
words. Tn fact, the code for the Viterbi algorithm should look exactly like
the code for the forward. algorithm  with' two modifications. - First, where
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-~ cell, the Viterbi aIgonthm puts the max of the prev1ous paths into the curren

~ observation phone [n], the thlrd to [iy} and the fourth to a final pseud

000024

knee

-, Flgure 5, 18 The pronunmatlon networks for the words need neat, new, and :
. e’ combined into a smgie weighted automaton. Again, word probabilities
. are not usually considered part of the pronunciation network for a word; they
- are added here to snnphfy the exposmon of the V1terb1 algonthm :

the forward algonthm places the sum of all previous paths into the’ current

cell.
o “The 'ai'gorithrn' first creates' N 4— 2 or four state columns. The ﬁrst col-
urmn is ‘an initial pseudo—o‘osorvanon the second corresponds to the firs

observation. We begln in the first column by setting the probablhty of the
start state to 1.0, and the other probabilities to 0; the reader should find this
in Flgure 5.20. Cells with probability 0 are simply left blank for readability.

T hen we move to the néxt state; as with the forward” algonthm,
every state in column 0, we compute the probablhty of moving into each
state in coiumn 1. The value viterbi[t, j] is computed by taking the miaxim
over the extensions of all the paths that lead to the current cell. An extension
of a path from a state 7 at time t—1 is oomputed by rnultlpiymg the sa
three factors we used for the forward algonthm

1 ‘the prevmus path probablllty from the prev1ous celi forward [
2. the tran_s_ltlon pro_bablllty a;i i from prev:lous. state ito current S| te
3. the observauon i:kehhood b i that current state J matchec; observ':tr

“symbol 7. For the we1ghted automata that we consider here, b ﬁ' :
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function VITEREI(observations of len T state-graph) returns best-path

num-states «— NUM-OF-STATES (state-graph)
Create a path probability matrix viterbi{num-states+2,T+2]
viterbif0,0] 1.0
for each time step ¢ from 0 to T do
for each state s from O to num-states do
for each transition 5" from s specified by state-graph
new-score < viterbils, 1] * a[s.5'1 * by (o))
if ((viterbils' 1+ 11 = Q) || (new-score > viterbils', t+11))
then
viterbils, i+1]<new-score
back-pointer[s’, t+1] s
Backirace from highest probability state in the final column of viterbif | and
refurn path

Figure 5.19  Viterbi algorithm for finding optimal sequence of states in con-
tinuous speech recognition, simplified by using phones as inputs. Given an
observation sequence of phones and a weighted antomaton (state graph), the
algorithm returns the path through the automaton which has maximuin proba-
bility and accepts the observation sequence. afs,s ] is the transition probability
from current state s to next state s', and b[s,o,] is the observation likelihood
of s’ given or. For the weighted autornata that we consider here, b[s", 0¢] is 1 if
the observation symbol matches the state, and 0 otherwise.

the observation symbol matches the state; and 0 otherwise. Chapter 7
will consider more complex observation likelihoods.

: In Figure 5.20, in the column for the input 7, each word starts with [n],
-and so each has a non-zero probability in the ceil for the state #. Other cells
in that column have zero entries, since their states don’t match n. When we
“proceed to the next column, each cell that matches iy gets updated with the
- contents of the previous cell times the transition probability to that cell, Thus
‘the value of viterbi[2,iyy,e. ] for the iy state of the word new is the product of
~the “word” probability of new times the probability of new being pronounced
- with the vowel iy. Notice that if we look only at this iy column, that the word
_rieed is currently the “most-probable” word. But when we move to the final
: 'jdlumn, the word new will win out, since need has a smaller transition prob-
“ability to end (.11) than new does (1.0). We can now follow the backpointers
and backtrace to find the path that gave us'this final probability of-.00036.
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T SEGMENTA
fion . -

- .Welghted Automata and Segmentatlon

'ferentrated sequence of symbols and: “segmenting” it into chunks. For exa
'ple sentence segmentatlon is the problem of autornallca]ly finding the se

- tence boundarres in & corpus: Srrmlarly word segmentation is the problem _
B Cof ﬁndmg word boundanes in a corpus. In written English there is no dif-"
o 'ﬁculty in segmenting words from each other because there are orthograph '
- spaces between words.: This is not the case in languages like Chinese and-
- Japanese that us¢ a Chinese-déerived ‘writing: system.  Written Chinese does
-~ not mark word boundaries.: Instead; each Chinese character is written one af-
_ter the other Wlthout spaces Smce ‘¢ach. character approxnnately represents

' : 00036 * 1.0
end : /= 00036

b = 00013

‘n T owooo1s T
[, = 00013 %

need

new | [0

00024 % 1.0, - -
= 000024 |

1. 0 * 000024

e e 2000024 - .;_ o _. . P

- Figure 5.20 . The entries in the individual state columns for the Viterbi al- -
- gorithm.. Each cell keeps the probability of the best path so far and a pointer |

© to the previous cell along that path. Backtracing from the end state, we can.
= reconstruct the' state sequence n,ww zynew, arnvmg at the best word new..

Welghtcd automata and the Vlterbr a.lgorrthm play an 1mportant In variou
algorlthrn for segmentatlon Segmentatlon is the process of taking an und if.
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a single morpheme, and since words can be composed of one or more char-
acters, it is often difficult to know where words should be segmented. Proper
word-segmentation is necessary for many applications, particularly includ-
ing parsing and text-to-speech. (How a sentence is broken up into words
influences its pronunciation in a number of ways.)

Consider the following example sentence from Sproat et al. (1996):

(5.15) D&M ERH?
“How do you say ‘octopus’ in Japanese?”

This sentence has two potential segmentations, only one of which is

correct. In the plausible segmentation, the first two characters are combined

to make the word for ‘Japanese language’ ( H 3¢ ri-wén) (the accents indicate

- the tone of each syllable), and the next two are combined to make the word
for ‘octopus’ (B # zhang-yi).

(5.16) B =2 EEEOB 7
ri-wén  zhang-yd zén-me shud
‘Japanese octopus  how  say

“How do you say octopus in I apaneser?” '

'_(517)El CoMES o' BR W 7
ri wén-zhang  yi zén-me shud
Japan : essay - fish how say -
“How do you say Japan essay fish?”

Sproat et al. (1996) give a very simple algorithm which selects the
correct segmentation. by choosing the one which contains the most-frequent
words. In other words, the algorithm multiplies together the probabilities of
each word in a potential segmentation and chooses wh1chever se gmentauon
tesults in a higher product probability.

The implementation of their algorithm combines a weighted-finite-
state transducer representation of a Chinese lexicon with the Viterbi algo-
rithm;: This lexicon is a slight augmentation of the FST lexicons we saw
in Chapter 4; each word is represented as a series of arcs representing each
‘character in the word, followed by a weighted arc representing the proba-
'blhty of the word: As is commonly true with probabilistic algorithms, they
actually use the negative log probability of the word (—log(P(w)). The log
robability is mainly useful because the. product of many probabilities gets
‘very small; and so using the log probability can help avoid underflow. Using
log probabilities also means that we are adding costs rather than multiplying
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MDL.

"(N -gram probab111tles) that Wﬂl be introduced in Chapter 6.

. The weighted automata segmentation algorithm that was presented above 1

probabilities, and that we are looking for the minimum cost solution rath
than the maximum probability solution.

Consider the example in Figure 5.21. This sampie lexicon Figure 5. 21(a
consists of only five potential words:

Word Pronunci'ati@n 'M'eariing Cost (—logp(w))
EES ri-wén  ‘Japanese’ 10.63

| 1l ‘Japan’ 6.51

oy :) zhang- yi ‘octopus’  -13.18

wE wén-zhang = ‘essay’ 9.51

o oye . Cfish 10.28

~ The system tepresents the inpit sentence as the unweighted FSA in
Figure 5.21(b). In order to compose this input with the lexicon, it needs tc
be converted into an FST. The algorithm uses a function /d which takes an
FSA A and returns the FST which maps all and only the strings accepted by
A to themselves.: Let D+ represent the transitive closure of D, that is, the
automaton created by adding a loop from the end of the lexicon back to the
beginning. The set of all possible segmentations is 7d(I) o D*, that is, the
input transducer 7d(I) composed with the transitive closure of the dictionary
D, shown in Figure 5.21(c). Then the best segmentation is the lowest-cost
segmentation in Zd(Z) o D*, shown in Figure 5.21(d). :
_ Finding the best path shown i in Figure 5.21(d) can be done easily with
the Viterbi algonthm and is left as an exercise for the reader. Furthermore,
this segimentation algorithm, like the spelhng error correction algorithm we
saw earlier, can also be extended to incorporate the cross-word probablhtl

Seg'mentatiori'fOr’Lexic’onéInduction

lies on the weights stored in the lexicon. But how is this lexicon to be learned
in the first place? A number of segmentation algorithms address this “prior’’
problem of segmentation in the absence of a lexicon. For example de Mar-
cken (1996) and Brent and Cartwright (1996) both propose algorithms that
take an unsegmented sequence of input phones and use information-theoretic
principles to iteratively induce the lexicon by trying different possible se
mentations. - Both rely on stochastic versions of the Minimum: Descrip
tion Length (MDL):principle and-on:phonotactic: transition probabilities
to'choose between: alternative models.. The description length of a lexicon
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(a) Dictionary D

+ :wen/0.000

a rif).Goe £: £/10.63

£: g/6.51

g trif0.000

(b} Inputl
R ] i -
—O—D—D—O—0O

© 1d(D)oD*

ksl % wen/0.000 :zhang/0.000 - b eH5L  wyu0.000
L 2: £/10.28
g:ri/0.000

£: €£/10.63 #1zhang/0.000 a:yw/0.000
(d) BestPath(ld(D) o D)

gerif0.000 . iwen/000 . e €/10.63 - s:zhang/0.000  miyu/0.600. . €: 81318

Flgure 521 The Sproat et al. (1996).a.lg0rithm. applied to fouf input words
(after Sproat et al. (1996))

or. grammar (meaqured for example in the number of symbols in it) is a
heuristic measure of the information complexity in the lexicon. By prefer-
“ring a lexicon with less symbols, MDL is implicitly choosing a simpler and
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5.10 PRONUNCIATION IN HUMANS

- production. . The model is due to Gary Dell and his colleagues; for brevity -

Dell et al., 1997) in this single' overview. First consider some data. A

- slips. The lexical bias effect is that slips aré more likely to create words than
- ‘mon-words; thus slips like dean bad— bean dad are three times more likely
~than slips like deal back-s beal dack. The repeated-phoneme bias is tha

: .levels semantics, word (lemma); and phonemes.® The semantics level h

- the first stage; activation passes from the semantic concepts to words.

: 6 Dell (1988) also has a fouﬂh level for syllable structiire that we will ignore here.’

Chapter 5. Probabilistic Models of Pronunciation and Spelling -

more general lexicon. Brent ahc_l'Cartwright (1996) hypothesize that children
use MDL algorithms to learn a lexicon by segmenting words from speech. In
fact, Saffran et al. (1996) shows that eight-month-old infants can use phone
sequence probabilities as evidence for word segmentation. '

Section 5.7 discussed many factors which influence proaunciation variation:.
in humans. In this section we very briefly summarize a computational model:
of the retrieval of words from the mental lexicon as part of human lexical:

we combine and simplify features of multiple models (Dell, 1986, 198

we suggested i Chapter 3, production errors such as slips of the tongue
(darn bore instead barn door) ofien provide impottant insights into lexical
production. Dell (1986) summarizes a number of previous results about such

two phones in two words arc likely to part1C1pate in an error if there is an:
identical phone in both words. Thus deal beack is more likely to slip to bea
than deal back is.

‘The model. that:Dell (1986, 1988) proposes is a network with three-_-

nodes for concepts, the lemma level has one node for each words, and the.
phoneme level has"Separate' nodes. for each phone, separated into onsets;
vowels, and codas.” Each lemma node is connected to the phoneme units’.
which comprise the word, and the semantic units which represent the con-
cept. Connections are used to pass activation ffom node to node, and
bidirectional and excitatory. ‘Lexical production happens. in two stages.

vation will cascade down into the phonological units and then back up into
other word units. At some point the most highly activated word is selecte
In the second: stage this selected is given a large jolt of activation. Agal__
this activation passes to the phoriological level. Now the moc;t hlghly acti
phoneme nodes are selected and aceessed n order '
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Figure 5.22 shows Dell’s model. Emrors oceur because too much acti-
- vation reaches the wrong phonological node. Lexical bias, for example, is
~ modeled by activation spreading up from the phones of the intended word to
" neighboring words, which then activated their own phones. Thus incorrect
: "phones get “extra” activation if they are present in actual words.

Semantics

Words
(Lemmas)

|- Figure5.22 . The network model of Dell (1986, 1988), showing the mecha-

~“nism for lexical bias (modified from Dell (1988, p. 134)). The boldfaced nodes

" indicaté nodes with lots of activition. The intended word dean has a greater

_ chance of slipping to bean because of the existence of the bean node. The
. beldfaced lines show the connections which account for the possible slip.

 The two-step network model also explains other facts about lexical
_'ﬁfoduction. Aphasic speakers have various troubles in language production
- ‘and coniprehension; often caused by strokes or accidents. Dell et al. (1997)
. show that weakening various connéctions in a network model like the one
-above can also account for the speech errors in aphasics. This supports the
~‘continuity hypothesis, which suggests that some part of aphasia is merely an
"extension of normal difficulties in word retrieval, and also provides further
-evidence for the network model. Readers interested in details of the model
. should see the above references and related computational models such as
Roelofs (1997), which extends the network model to deal with syllabifica-
'_ion,'phonetic encoding, and more complex sequential structore, and Levelt
et al. (1999). .- I R TRRRENEEE o
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Chapter 5.  Probabilistic Models of Pronunciation and Spelling

SUMMARY

This chapter has introduced somé essential metaphors and algorithms that
will be useful throughout speech and language processing. The main points
are as follows:

" in spelling error correctlon and other problems.” The minimum edit

R 1dent1ty of the surroundmg phones Other 1mportant factors melude- g

s of observation symbols

-+ minimum edit distanice algonthm it is a ‘variant of dynamic program

s We can represent many language problems as if a clean string of sym-
bols had been corrupted by passing through a noisy channel and it is
our job to recover the original symbol string. One powerful way to
recover the original symbo] string is to consider all possible ongmal
strings, and rank them by their conditional probability.

_' The conditional probablhty is usually easiest to compute using the _
Bayes Rule, which breaks down the probability into a prior and a:
likeiihood. For spellmg error correction or pronunciation-modeling,
~ the prior is computed by taking word frequencies or word bigram fre:
. quencies. The likelihood i is computed by training a simple probabilistic
model (hke a confusion matnx a deczsmn tree or a hand—wntten rule)
on a database..

The task of’ computlng the dlstance between two stnngs comes up__

- distance algorlthm is an apphcatlon of the dynamic programming -
'paradlgm to solvmg this problem, and can be used to produce the dis~
- tance between two strings or an allgnment of the two strings.

The pronunctatlon of words is very variable. Pronunciation variation
~is caused by two classes of factors: lexical variation and allophonic -
" variation.  Lexical variation includes socmlmgulstlc factors like di-
~alect and reglster or style :

_'The smgle most 1mportant factor affectmg allophomc variation is the

' sy]lable structure stress pattems and the 1dent1ty anci frequency of the. .
word. -

:.;The decodmg task is the problem of ﬁndJng determmmg the correet
underlymg ‘sequence of symbols that generated the no1sy sequen

' _'The forward algonthm is an’ efﬁelent Way of eomputxng the hkeh-
i hood of an observation sequence given a weighted automata. Like the

. ’ ‘miing. Qi will’ prove patticultarly in Chapter 7 when we consider Hidde
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Markov Models, since it will allow us to sum multiple paths that each
account for the same observation sequence.

e The Viterbi algorithm, another variant of dynamic programming, is
an efficient way of solving the decoding problem by considering all
possible strings and using the Bayes Rule to compute their probabilities
of generating the observed “noisy” sequence.

e Word segmentation in languages without word-boundary markers,
like Chinese and Japanese, is another kind of optimization task which
can be solved by the Viterbi algorithm.

BIBLIOGRAPHICAL AND HISTORICAL NOTES

- Algorithms. for spelling error detection and correction have existing since
~at least Blair (1960). Most early algorithm were based on similarity keys
- like the Soundex algorithmi discussed in the exercises on page 89 (Odell and
Russell, 1922; Knuth; 1973). Damerau (1964) gave a dictionary-based al-
. ‘gorithm for error detection; most error-detection algorithms since then have
been based on dictionaries. Damerau also gave a correction algorithm that
- worked for single errors. Most algorithms since then have relied on dynamic
- programming, beginning with Wagner and Fischer (1974) (see below). Ku-
~kich (1992) is the definitive survey article on spelling error detection and
. correction. Only much later did probabilistic algorithms come into vogue
for non-OCR spelling-error correction (for example Kashyap and Oommen
x (1983) and Kernighan et al. (1990)).
"+ By contrast, the field of optical character recognition developed prob-
abilistic algorithms quite early; Bledsoe and Browning (1959) developed a
~ probabilistic approach to OCR spelling error correction that used a large dic-
tionary and computed the likelihood of each observed letter sequence given
éach word in the dictionary by multiplying the likelihoods for each letter. In
this sense Bledsoe and Browning also prefigured the modern Bayesian ap-
- proaches fo speech recognition. Shinghal and Toussaint (1979) and Hull and
© Srihari (1982) applied bigram Iletter-transition probabilities and the
' Viterbi algorithm to choose the most likely correct form for a misspelled
OCR input.
.-+ The application of dynamic programming to the problem of sequence
Companson has what Kruskal (1983) calls a “remarkable history of multiple
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independent discovery and publication”.” Kruskal and others give at least :

the following independently-discovered variants of the algorithm published
in four separate fields: ;

~ Citation _ Field
Viterbi (1967) information theory
Vintsyuk (1968) : speech processing
Needleman and Wunsch (1970) molecular biolo oy
Sakoe and Chiba (1971) speech processing
Sankoff (1972) _ - molecular biology
Reichert et al. (1973) molecular biology

Wagner and Fischer (1974) cotputer science

To. the extent that there is any standard to terminology in speech and
language processing, it is the use of the term Viterbi for the application of:
dynamic programming to any kind of probabilistic maximization problem;
For non-probabilistic problems, the plain term dynamic programming is:
often used. The history of the forward algorithm, which derives from Hid-
den Markov Models will be summarized in Chapter 7. Sankoff and Kruskal'.
(1983) is a collection exploring the theory and use of sequence comparison
in dlfferent fields. Forney ( 1973) is an early survey paper which explores th
'ongm of the VlterbI aigonthm in the context of mformatlon and commun
cations. theory : : :

“The Welghted ﬁmte state automata was ﬁrst descnbed by Perelra et dl :
(1994) drawing from a combination of work in finite-state transducers and:
wark in probablhsu{: languages (Booth and Thompson ]973) :

EXERCISES .

5.1 Computmg mlmmum edit distances by hand, ﬁgure out whether dr
18 closer to brief or to dwers and what the edit distance s. You may use an
vemon of dzstance that you llke o

52 N ow implement a minimum edit chstance algonthm and use your hand
computed results to check your code. '

T Seven is pretty remarkable but see page 15 for a d.lscu';smn of the prcvalence of muitipl
'dlscovcry e S :
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5.3 The Viterbi algorithm ¢an be used to extend a simplified version of
the Kernighan et al. (1990} spelling error correction algorithm. Recall that
the Kernighan et al. (1990) algorithm only allowed a single spelling error
“for each potential correction. Let’s simplify by assuming that we only have
three confusion matrices instead of four (del, ins and sub; no trans). Now
show how the Viterbi algorithm can be used to extend the Kernighan et al.
(1990) algorithm to handle multiple spelling errors per word.

5.4 To attune your ears to pronunciation reduction, listen for the pronun-
ciation of the word the, a, or to in the spoken language around you. Try to
notice when it is reduced, and mark down whatever facts about the speaker
or speech situation that you can. What are your observations?

5.5 Find a speaker of a different dialect of English than your own (even
someone from a slightly different region of your native dialect) and tran-
scribe (using the ARPAbet or IPA) 10 words that they pronounce differently
than you. Can you spot any generalizations?

56 ' Implement the Forward afgorithm.

5.7 Write a modified version of the Viterbi algorithm which solves the seg-
meéntation problem from Sproat et al. (1996).

5.8 Now iiagine a version of English that was written without spaces.
Apply your segmentation program to this “compressed English”. You will
nieed other programs to compute word bigrams or trigrams.

.9 Two words are confusable if they have phonetically similar pronunci-
ations. Use one of your dynamic programming implementations to take two
ords and output a simple measure of how confusable they are. You will
_nééd-'to- use an on-line pronunciation dictionary. You will also need a metric
for how close together two phones are. Use your favorite set of phonetic
feature vectors for this. You may assume some small constant probability of
phone insertion and deletion.
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“But it must be recogmzed that the notion “probability of a sen-
tence” is an ennrely useless one, under any known interpretation
of this term. :

Noam Chomsky (1969, p. 57)

| Anytzme a lmguzst leaves the group the recognition rate goes up.
Fred J ellnek (then of the IBM speech group) (1988)!

‘Radar O’Remy,- the 'mild-mannered clerk of the 4077th M*A*S*H unit in
'__he book movie, and television show M*A*S*H, had an uncanny ability to
‘quess what his mterlocutor Was about to say. Most of us don’t have this skill,
"except perhaps ‘when it comes to guessing the next words of songs written
by very unimaginative lyricists. Or perhaps we do. For example what word
38 likely to fol]ow this sentence fragment?

I’d 11ke to make’ a collect

Probably most of you concluded that a very hkely word is eall, al-
- though it’s possible the next word could be telephone, or person-to-person
ot ‘interriational. (Think of some others). The moral here is that guessing
wdfds_"is not as amazing as it seems, at least if we don’t require perfect accu-
at:y Why is this important? Guessing the next word (or word prediction)
an essential subtask of speech recognition, hand-writing recognition, aug-
entatlve communication for the disabled, and spelling error detection. In

o an address o the first Workshop on the Evaluation of Natural Language Processing
By erhs; Diecembicr 7, 1988, Whilé this workshop is described in Palimer and Finin (1990),
quiote was Tiof written down; some participants remember a more snappy version: Every
titte: I fire a linguist the performance of the recognizer improves.
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such tasks, word-identification is difficult because the input is very no
and ambiguous. Thus looking at previous words can give us an important:
cue about what the next ones are going to be. Russell and Norvig (1995
give an example from Take the Money and Run, in which a bank tefler it
prets Woody Allen’s sloppily written hold-up note as saying “I have a gub’
A speech recognition system (and a person) can avoid this problem by thei
knowledge of word sequences (““a gub” isn’t an English word sequence) an
of their probabilities (especially in the context of a hold-up, “T have a gun
will have a much higher probability than “I have a gub” or even “T have a.
gull”). |
This ability to predict the next word is important for angmentat
communication systems (Newell et al., 1998). These are computer sys
tems that help the disabled in communication. For example, people w
are unable to use speech or sign-language to communicate, like the physi
Steven Hawking, use systeimns that speak for them, letting them choose wo
with simple hand movements, either by spelling them out, or by selectin;
from a menu of possible words. But spelling is very slow, and a menu. ;
words obviously cari’t have all possible English words on one screen. Thu
it is important to be able to know which words the speaker is likely to 'w
to use next, so as to put those on the menu.
Finally, consider the problem of detecting real-word spellmg erro
These are spelling errors that result in real English words (although not the -
'ones the writer intended) and so detecting them is difficult (we can’t ﬁn "
themt by just looking’ for words that aren’t in the d1ct1onary) F1gure'
. glves some examp]es o -

They are leaving in about fifteen minuers to go to her house.
The study was conducted mainly »e John Black.
. The design an construction of the system will take more than a year
Hopefully, all with continue smoothly in my absence.
. Can they lave him my messages? _
I need to notified the bank of [this problem.]
He is frying to fine out. .

: Figﬁfé"G;:I"  Sore attested r'eal'—word spelling errors from Kukich (199

These errors can be detected by algonthms which examine, :
other featuires, the Words surroundmg the errors. For example, while:
phrase in about ﬁﬁeen miniets is perfectly gra;mmatwal English; it '_
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* unlikely combination of words, Spellcheckers can look for low probability
combinations like this. In the examples above the probability of three word
- combinations (they lave him, to fine out, to notified the) is very low. Of
. course sentences with no spelling errors may also have low probability word
- sequences, which makes the task challenging. We will see in Section 6.6 that
. there are a number of different machine learning algorithms which make use
» of the surrounding words and other features to do coniext-sensitive spelling
error correction,

Guessing the next word tums out to be closely related to another prob-
~ lem: computing the probability of a sequence of words. For example the
“following sequence of words has a non-zero probability of being encoun-
tered in a text written in English:

..all of a sudden I notice three guys standing on the sidewalk
takmg a very good long gander at me.

whﬂc this sgme set of words in a d}ffercnt order probabiy has a very low
probab1]1ty :

good all I of notice a takmg 51dewa]k the me long three at sudden
. guys gander on standmg a a the very '

: Algonthms that assign a probablhty to a sentence can also be used to
‘assign a probability to the next word in an incomplete sentence, and vice
“versa. We will see in later chapters that knowing the probability of whole
-~ sentences or strings of words is useful in part-of-speech-tagging (Chapter 8),
word-sense disambiguation, and probabilistic parsing Chapter 12. '

;- - This model of word pred1ct10n that we will introduce in this chapter
18 the N-gram An N -gram model uses the previous N = 1 words to predict
- the next one. In speech recognition, it is traditional to use the term lan-
guage model or LM for such statistical models of word sequences. In the
rest of this chapter we will be u<;1ng both Eanguage model and grammar,
dependmg on the context.

6.1 COUNTING WORDS IN CORPORA

Tupon being asked if there weren’t enough words ini the English language for him]:
“Yes, there are enough, but they aren’t the right ones.”
James Joyce, reported in Bates (1997).
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Probabilities are based on counting things. Before we talk about pro' :
abilities, we need to decide what we are going to couvnt and where we are
going to find the things to count. :

As we saw in Chapter'5, statistical processing of natural language
based on corpora (singular ¢orpus), on-line collections of text and spe
For computing word probabilities, we will be counting words in a trainin
corpus. Let’s look at part of the Brown Corpus, a I million word collection
of samples from 500 written texts from different genres (newspaper,:
els, non-fiction, academic, etc.), which was assembled at Brown University
in 1963-64 (Kuéera and Francis, 1967; Francis, 1979; Francis and Kueer_a
1982). It contains sentence (6.1); how many words are in this sentence?

(6.1)- He stepped out into the hall, was delighted to encounter a water
brother.

Example (6 13 has 13 W()rds 1f we don’t count punctuamon—mark
words, 15 if we count puncmatlon ‘Whether we treat period (*.”), comm
(), and so on as words. depends on the task. There are tasks such a
grammar- checkmg, spelling etror detéction, or author-identification, foi
which the focation of thé punctuation is important (for checking for prope
capltahzatlon at the’ begmnmg of sentences, or looking for mterestmg p
terns of punctuation usage that uniquely identify an author). In natural
language proeessmg applications, question-marks are an important cue th
someone has asked a quest10n Punctuation is a useful cue for part-of-spe
taggmg These apphcanons, then, often count punctuation as words.

Unhke text corpora, corpora of spoken language usually don’t havi
punctuatlon but- speeeh corpora do have other phenomena that we i h
or might not want to treat as words. One speech corpus, the SWltChb
corpus of telephone conversations ‘between strangers, was collected in' th
carly 1990s and contains 2430 conversations averaging 6 minutes each
a total of 240 hours of speech and 3 million words (Godfrey et al., 1992)
Here’s a sample utterance of Switchboard (smce the units of spoken Ianguag
are different than written Ianguage, we will use the word utterance r.
than “sentence” when we are referring to spoken language):

(6 2) T do uh main- mainly busmess data processing

ThlS utterance like many or most utterances in spoken languag B
fragments words that are broken off in the middle, like the first instaric
of the:word mainly, represented here as main-. Tt also has filled. pauses:
uh; which don’t occur in writfen English: - Should we consider thesé to
words? Again; it depends on the application. If we are building an automa
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dictation system based on automatic speech recognition, we might want to
strip out the fragments. But the whs and wms are in fact much more like
words. For example, Smith and Clark (1993) and Clark (1994) have shown
that wm has a slightly different meaning than uh (generally speaking wm is
used when speakers are having major planning preblems in producing an
. utterance, while uh is used when they know what they want to say, but are
searching for the exact words to express it). Stolcke and Shriberg (1996b)
also found that uh can be a useful cue in predicting the next word (why might
‘this be?), and so most speech recognition systems treat uh as a word.

Are capitalized tokens like They and uncapitalized tokens like they the
“same word? For most statistical applications these are lumped together,
although sometimes (for example for spelling error correction or part-of-
speech-tagging) the capitalization is retained as a separate feature. For the
“rest of this chapter we will assume our models are not case-sensitive,

B How should we deal with inflected forms like cats versus cat? Again,
‘this depends on the application. Most current N-gram based systems are
based on the wordform, which is the inflected form as it appears in the
-_cofpﬁs Thus these are treated as two separate words., This is not a good
: s1mphﬁcat10n for many domains, which ‘might want to treat cats and cat as
nstances of a single abstract word or lemma. A lemma is a set of lexical
‘fortns having the same stem, the same major part«of—speech and the same
- word-sense. We will return to the distinction between wordforms (which
- dlStﬂlgUISh cat and cats) and 1emmas (Wthh lump cat and cats together) in
; Chapter 16. L .

" How many words are there in Enghsh? One way fo answer this (ues-
“tion is to count in a'corpus. We use types to mean the number of distinct
- words in a corpus, that is; the size of the vocabulary, and tokens to mean the
?-.total number of running words. Thus the followmg sentence from the Brown
o rpus has 16 word tokens and 14 word types (not counting punctuation):

( 3) They plcmcked by the pool then 1ay back on the grass and looked at
B the stars.

The Sw1tchboa:rd corpus has 2, 4 m11hon wordform tokens and approx-
imately 20,000 wordform types. This iricludes proper nouns. Spoken lan-
guage 'is Iess tich in its vocabulaly than ‘written language Kulera (1992)
ves a count for Shakespeare’s complete works at 884,647 wordform tokens
om 29,066 wordform types. Thus each of the 884,647 wordform tokens is
epetition of one of the 29, 066 wordform types. The 1 million wordform
ens’ of the Brown corpus contain’ 61,805 wordform types that belong to
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Chapter 6.  N- gratﬁs__:

©6.2  SIMPLE (UNSMOOTHED) N-GRAMS -
The models of word sequer'lces.:w'e will consider in this chapter are pro
' bilistic models; ways to assign probabilities to strings of words, whether fe

- theory.

| ‘every other word. If English had 100; OOO words, the probability of any w

_rabbzt occurs only 11 times in the Brown corpus;

: _uen across followmg words. So if we've just scen the string Anyhow, W ca
usé the probablhty 07 for the and .00001 for rabbit to guess the next ot

37,851 lemma types. All these corpora are quite smail. Brown et al. (1992)
amassed a corpus of 583 million wordform tokens of English that included"
293,181 different wordform types. g

Dictionaries are another way to get an estimate of the number of word
although since dictionaries generally do not include inflected forms they ar
better at measuring lemmas than wordforms. The American Heritage third:
edition dictionary has 200,000 “boldface forms™; this is somewhat highe
than the true number of lemmas, since there can be ocne or more boidfae
form per lemma (and since the boldface forms includes multiword phrases).

The rest of this chapter will continue to distinguish between types and
tokens. “Types” will mean wordform types and not lemma types, and pun
tuation marks will generaliy be counted as words.

computing the probability. of an entire sentence or for giving a probabili
prediction of what the next word will be in a sequence. As we did in Chap-
ter 5, we w111 assume that the reader has a basic knowledge of probabﬂl '

' The s1mplest poss1b1e model of word sequences wou]d slmply let any.
word of the language follow any other word. In the probabilistic versio
thig theory, then, every word would have an equal probability of following.

followmg any other word would be 00, 000 -or OOOO] .

“Ima shghtly more complex model of word sequences, any word ol
follow any other word, but the following word would appear with its: No]
mal frequency of OCCUIICI}CB For example, the word #he has a high rela
frequency, it occurs 69,971 times in the Brown corpus of 1,000,000: wotd
(ie., 7% of the words in this partlcular corpus are the). By contrast the W

B We can use these relative frequenmes to assign a probability dlsmb'

But suppose we've ]ust Seen the foliowmg stﬂng

Just then the whlte
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In this context rabbit seems like a more reasonable word to follow
~white than the does. This suggests that instead of just looking at the in-
* dividual relative frequencies of words, we should look at the conditional
probability of a word given the previous words. That is, the probability
 of seeing rabbit given that we just saw white (which we will represent as
 P(rabbit|white)) is higher than the probability of rabbit otherwise.

Given this intuition, let’s look at how to compute the probability of a
~complete string of words (which we can represent either as w1 ... w, or wi).
. If we consider each word occurring in its correct location as an independent
" event, we might represent this probability as follows:

P(wi,Wa.. . Wy_1,Wy) (6.4)

We can use the chain rule of probability to decompose this probability:

- P(w}) = P(wi)P(walwi)P(wslwp) ... P(wyw] )
= JTPMwiwt™) | (6.5)
=1

But how can we compute probabilities like P{w,[w} )7 We don’t
know any easy way to compuie the probability of a word given a long se-
quence of preceding words. (For example, we can’t just count the number of
" times every word occurs following every long string; we would need far too
~ large a corpus).

We solve this problem by making a useful simplification: we approxi-
mate the probability of a word given all the previous words. The approxima-
tion we will use is very simple: the probability of the word given the single
previous word! The bigram model approximates the probability of a word
given all the previous words P(w,|w" ) by the conditional probability of
the preceding word P{w,|w,_1). In other words, instead of computing the
probability - '

 P(rabbit|Just the other T day T saw a) o (6.6)
we approximate it with the prbbability 3 L
P(rabbit|a) (6.7)

This assumption that the probability. of a word depends only on the
~ previous word is called a Markov assumption. Markov models are the class
~ of probabilistic models that assume that we can predict the probability of
some future unit without looking too far into the past. We saw this use of the
: word Markov in introducing the Markov chain in Chapter 5. Recall that a

219

BIGRAM

MARKCY




198

Chapter 6. N-grams:

N-GRAM
FIRST-ORDER

SECOND-ORDER

Markov chain is a kind of weighted finite-state automaton; the intuition of
the term Markov in Markov chain is that the next state of a weighted FSA is:
always dependent on a finite history (since the number of states'in a finite:
state automaton is finite). The basic bigram model can be viewed as a snnpl
kind of Markov chain which has one state for each word.
We can generalize the bigram (which looks one word info the past) to.

the trigram (which looks two words into the past) and thus to the N-gran_}
{(which looks N — 1 words into the past). A bigram is called a first-order:
Markov model (because it looks one token into the past), a trigram is:a
second-order Markov model, and in general an N-gram is a ¥ — 1th o
der Markov model. Markov models of words were common in engineering,
psychology, and linguistics until Chomsky’s influential review of Skinner’s
Verbal Behavior in 1958 (see the History section at the back of the chapter);
but went out of vogue until the success of N-gram models in the IBM speech:
recognition laboratory at the Thomas J. Watson Research Center. brought'
them back to the attention of the community. :
~ The general equation for this N¥-gram approximation to the condmonal
probablhty of the next word in a sequence is: -

(wn\w ) (w,,,fwnﬂNH) T S (6._.__8_ ¥
Equation 6.8 shows that the probability of a word w,; given all the pre=
Vious words can be approximated by the probability given only the prewou
N words,

For a bigram grammar, then, we compute the probability of a complete.
strmg by substltutmg Equatlon (6 8) into Equatlon (6. 5) The result: -

Let 8 Iook at an example from a Speech-understandmg systern. Th
Berkeley Restaurant Project is a speech-based restaurant consultant; user
ask questions about restaurants in Berkeley, California, and the system di
plays appropriate information from a database of local restaurants (J urafs
et al 1994), Here are some sample user queries: - :

Tm lookmg for Cantonese food. _
o rd hke to eat dinner someplace nearby
.. Tell me about Chez Panisse. - = RS ST
Can you give me a listing of the kmds of food that are avallableV ;
I'm looking for a good place to eat bréakfast. -
- I definitely do not want to have cheap Chinese food.
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When is Caffe Venezia open during the day?
I don’t wanna walk more than ten minutes.

. Table 6.2 shows a sample of the bigram probabilities for some of the
“words that can follow the word eat, taken from actual sentences spoken by
‘tisers (putting off just for now the algorithm for training bigram probabil-
“ities). Note that these probabilities encode some facts that we think of as
“strictly syntactic in nature (like the fact that what comes after eat is usu-
“ally something that begins a noun phrase, that is, an adjective, quantifier or
: noun), as well as facts that we think of as more culturally based (like the low
- probability of anyone asking for advice on finding British food).

eaton - 16 cat Thai 03 j
“eat some S 06 _ eat breakfast 03

- eatlunch 06 ' eat in ' 02

| eatdinner .05 ' eat Chinese. 02
eatat .. 04 0 eat Mexican 02
eata 04 eat tomorrow 01

. ecat Indian .04 eat dessert 007
~eatfoday - . .03 | eat British 001

Figure 6.2 A fragment of a bigram grammar from the Berkeley Restaurant
: -.:'_PrOJe_ct showing the most likely words to follow ear. J

g  Assume that in addition to the probabilities in Table 6.2, our grammar
al'_Sd includes the bigram probabilities in Table 6.3 (<=>> is a special word
_meaning “Start of sentence”).

<> 1 - 25[[Iwant 32{ wantio = .65[[toeat  26] British food 601
: '-<S> I'd- 06| Iwould .29 || wanta .05|| to have .14/ British restaurant .15
<s> Tell .04 || Tdon’t .08 || want some .04 | to spend .09 || British cuisine .01
1«s>T'm .02||Ihave .04| wantthai .01|tobe .02} British lunch 01

':'_"Figure 6.3 More fragments from the bigram gramrar from the Berkeley
.- Restaurant Project.

. Now we can compute the probability of sentences like I want to ear
ritish food or [ want to 'eat Chinese food by simply multiplying the appro-

pnate blgram probabilities together, as follows:

S P(I want to eat British food) = I|<<}> P{want|T) P(to|want)

5 P(eat|to) P(British|eat)

P(food|British)
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LOGPROB

TRIGRAM

NORMALIZING

. corpus, and from this corpus take the count of a particular bigram, and d1v1d
. tl']lS count by the sum of all the bigrams that share the same first word:

RELATIVE
FREQUENCY

- MAKIMUM
- LKELHgoD

ESTIMATION
. MLE

abilistic models, normalizing means dividing by some total count so that th

' start ‘with a given word wy—.;- must be equal to the unigram count for tha

' served frequency of a particular sequence by the observed frequency o

Chapter 6. N-gra

= 25%.32%.65%.20%.002%.60
= 000016

As we can see, since probabilities are all less than 1 (by definition), th
product of many probabilities gets smaller the more probabilities we mul
ply. This causes a practical problem: the risk of numerical underflow. If
are computing the probability of a very long string (like a paragraph or
entire document) it is more customary to do the computation in log space;
take the log of each probability (the logprob), add all the logs (since addin;
in log space is equivalent to multiplying in linear space) and then take ths
anti-log of the result. For this reason many standard programs for comput
N-grams actually store and calculate all probabilities as logprobs. In this tex
we will always report logs in base 2 (i.e., we will use log to mean log,)..

A trigram model Iooks just the same as a bigram model, except tha
we condition on the two previous words (e.g., we use P(food|eat Bnnsh
instead of P(food[Bntlsh)) To compute trigram probabilities at the ver
begmmng of sentence, we can use two pseudo-words for the first trigram
(i.e., P(I] < startl >< start2 >)).

' N-gram models can be trained by counting and normalizing (for prob

resulting probabilities fall legally between 0 and 1). We take some trainin

C(Wn 1Wn)
ZwC(Wn_w)

* We can simplify this equation, since the sum of all bigram counts tha

P(w,.;)wn_l). = (6.

word wn_ (The reader should take a moment to be convinced of this):. -

s C(wnﬁlwn) .
P 1) = = 6.
(anw ) C(Wn 1) ) . (
For the general case of N gram parameter estlmatlon
C("VnkN+1wn) . (6 -

Pl ko) =Gt
. n +

Equatlon 6 12 estimates the N-gram probablhty by dividing the. ob
preﬁx Thls ratlo is called a relatlve frequency, the use of relative fre

known as Maxiininn Likelihood Estimation or MLE, because the resultin
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. parameter set is one in which the likelihood of the training set T given the
- model M (i.e., P(T|M)) is maximized. For cxample, suppose the word Chi-
- nese occurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that it will occur in some other text of way a million
words? The MLE estimate of its probability is E%?W or .0004. Now .0004
- is not the best possible estimate of the probability of Chinese occurring in all
. situations; but it is the probability that makes it most likely that Chinese will
_occur 400 times in a million-word corpus.

_' There are better methods of estimating N-gram probabilities than us-
* ing relative frequencies (we will consider a class of important algorithms in
- Section 6.3), but even the more sophisticated algorithms make use in some
- way of this idea of relative frequency. Figure 6.4 shows the bigram counts
- from a piece of a bigtam grammar from the Berkeley Restaurant Project.
- Note that the majority of the values are zero. In fact, we have chosen the
- sample words to cohere with each other; a matrix selected from a random set
~of seven words would be even more sparse.

T want| 1o eatl Chiheée] "f00d| lunch

L 1]

i g8 ] 1087 o [ 13| 0O 0 | O
want. 3 0 | 786 0 6 8 6
f0 3 0 10 860! 3 0 12

jeat 0 0 2 0 19 2 52

:! Chinese 2 0 0 0 0 120 1

| food. 9 0 17 0 0 0 0

| lunch 4 0 0 0 0 1 0

‘Figure 6.4  Bigram counts for seven of the words (out of 1616 total word
| types) in the Berkeley Restaurant Project corpus of /210,000 sentences.

Figure 6.5 shows the bigram probabilities after normalization (dividing
each row by the following appropriate unigram counts):

I 3437

T want 1215
to 3256
eat .- . 938 .
Chinese. 213 .
food - 1506

Junch 459
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its genre and its size in words). -
non (_1 951) and also used by Miller and Selfridge (1950). The idea is to train

- plest to visualize how this works for the unigram case. Imagine all the words
‘of English covering the probability space between 0 and 1. We choose a rans

“order - -grams by first generating a random bigram that starts with <s> (a ;

RE 1. Umgram approxmlanon to Shakespeare - "

Chapter 6. N- gram:s

I wantT to | eat Chinese | food E

I 0023 0038 0 0 0
want 0025 0 .0049 006660049
to .00092 .26 00092 0 0037
eat. 0 0 020 0021 055
Chinese || .0094 0 0 56 0047
food 013 0 0 0 0
lunch .0087 0 0 00221 0
~ Figure 6.5 Bigram probabilities for seven of the words (out of 1616 total
word types) in the Berkeley Restaurant Project corpus of /10,000 sentences

i

Mdré'on N-gramis and Their Sensitivity to the Training Corpus
In this section we look at a few examples of different N-gram riodels’
get an intuition for two important facts about their behavior. The first is the
increasing accuracy of N-gram models as we increase the value of N. Th
second is their very strong dependency on their trammg corpus (in particular

. We do this by borrowing a Vlsuahzatlon techmque proposed by Shan

various N—gra'mS and then use each to generate random sentences. It’s si

dom number between 0 and 1, and print out the word that covers the re
value we have chosen. The same technique can be used to generate hlgher

cording to its bigram probability), then choosing'a random bigram to follow
it (again, where the likelihood of following a particular bigram is propor—
tional to 1ts conditionai probability), and so on.

. To give an intuttion for the increasing power of higher order N- gram
we trained a unigram, bigram, trigram, and a quadrigram model on the com-
plete corpus of Shakespeare’s works. We then used these four grammars
generate random sentences. In the following examples we treated each punc-
tuation mark as if it were a word in its own right, and we trained the gram-
mars on a version of the corpus with all capital letters changed to lowere
After generated the sentences we corfected the output for cap1tahzat1on
to 1mprove readablhty Some of the resultmg sentences: '
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(a) To him swallowed confess hear both. Which. Of save on trail for are ay
device and rote life have.

{b) Every enter now severally so, let

{c) Hilt he late speaks; or! a more to leg less first you enter

(d) Will rash been and by T the me loves gentle me not slavish page, the and
hour; i1l let

(e) Are where exeunt and sighs have rise excellency took of.. Sleep knave
we. near; vile like

2 B1gram apprommatlon to Shakespeare

.~ '(a) What means, sir. I confess she? then all sorts, he is trim, captain.
“ {b) Why dost stand forth thy canopy, forsooth; he is this palpable hit the
i King Henry. Live king. Follow. -
" (¢) What we, hath got so she that I test and sent to scold and nature bankrupt,
: nor the first gentleman?
- (dy Enter Menenius, if it so many good direction found’st thou art a strong
upon command of fear not a liberal largess given away, Falstaff! Exeunt
.. (e) Thou whoreson chops. Consumption catch your dearest friend, well,
..-and I know where many mouths upon my undoing all but be, how soon,
 then; we'll execute upon my love’s bonds and we do you will?
(t) The world shall— my. IordIF '

P '3‘. Tngram approximation to Shakespeare

@ ‘Sweet prince, Falstaff shall die. Harry of Monmouth’s grave.

o (h) This shall forbid it should be branded, if renown made it empty

" (¢) What is’t that cried?

{d) Indeed the duke; and had a very good friend.

(e) Fly, and will rid me these news of pnce Therefore the sadness of part-
~ing, as theéy say, 'tis done. Lo

(f) The sweet! How many then shall posthuniu's end his miseries.

5 4 Quadrlgram apprommatmn o Shakespeare

" (a) King Henry. What! T will go seek the traitor Gloucester. Exeunt some _
_ - of the watch. A great banquet serv’d in;
.. (b) Will you not tell me who I am?
-+ () Tt cannot be but $0.
. {d} Indeed the short and the long Marry, ’tls a noble Lepldus
. {ey: They say all lovers swear more performance than they are wont to keep -
. obliged faith unforfeited! . -
{f) Enter Leonato’s brother Antomo and the rest but seek the weary beds
_of people sick. - :
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METHODOLOGY BOX: TRAINING SETS AND TEST SETS

The probabilities in a statistical model like an N-gram come from
the corpus it is trained on. This training corpus needs to be care-
fully designed. If the training corpus is too specific to the task or
domain, the probabilities may be too narrow and not generalize well
to new sentences. If the training corpus is too general, the probabil-
ities may not do a sufficient job of reflecting the task or domain.

Furthermore, suppose we are trying to compute the probabil-
ity of a particular “test” sentence. If our *“test’ sentence is part of
the training corpus, it will have an artificially high probability. The
training corpus must not be biased by including this sentence. Thus
when using a statistical model of language given some corpus of rel-
evant data, we start by dividing the data into a training set and a test

- set. We train the statistical parameters of the model on the training
: set, and then use them to compute probabilities on the test set.

* This training-and-testing. paradigm can also be used to evaluate
different N-gram architectures. For example to compare the different -
smoothing algorithms we will introduce in Section 6.3, we can take
a large corpus and divide it into a training set and a test set. Then

: we train the two different N-gram models on the training set and
- see which one better models the test set. But what does it mean to
“model the test set”? There is a useful metric for how well a given
statistical model matches a test corpus, called perplexity. Perplexity
i3 a variant of entropy, and will be introduced on page 223.
_ In some cases we need more than one test set, For example, sup-.
: pose we have a few different possible language models and we want
first to pick the best one and then to see how it does on a fair test
set, that is, one we’ve never looked at before. We first use a devel-
opment test set (also called a devtest set) to pick the best language.
~model; and perhaps tune some parameters. Then once we come up.
with what we think is the best model, we run it on the true test set...
o When comparing models it is important to use statistical tests
. (introduced in any statistics class or textbook for the social sciences)
- to determine if the difference between two models is significant. Co-:
-+ hen (1995} is a useful reference which focuses on statistical research:
. methods for artificial intelligence. Dietterich (1998) focuses on sta-
t1st1caf tests for« Comparmg classifiers.
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The ilonger the context on which we train the model, the more coher-
ent the sentences. In the unigram sentences, there is no coherent relation
between words, and in fact none of the sentences end in a period or other
=ntence-final punctuation. The bigram sentences can be seen to have very
local word-to-word coherence (especially if we consider that punctuation
counts as a word). The trigram and quadrigram sentences are beginning to
100k a lot like Shakespeare. Indeed a careful investigation of the quadri-
gram sentences shows that they look a little too much like Shakespeare. The
words It cannot be but so are directly from King John. This is because
the Shakespeare oeuvre, while large by many standards, is somewhat less
thari a million words. Recall that Kuéera (1992) gives a count for Shake-
sp'e"zire’s complete works at 884,647 words (tokens) from 29,066 wordform
types (including proper nouns). That means that even the bigram model is
very sparse; with 29,066 types, there are 29, 0667, or more than 844 million
ssible bigrams, so a 1 million word training set is clearly vastly insufficient
(‘)-_estimate the frequency of the rarer ones; indeed somewhat under 300,000
different bigram types actually occur in Shakespeare. This is far too small to
n quadrigrams; thus once the generator has chosen the first quadrigram
{1t cannot be bur), there are only five possible continuations (that, I, he, thou,
and so) indeed for many quadrigrams there is only one continuation.
5 To ‘get an idea of the dependence of a grammar on its training set,
let’s look at an N -gram grammar trained on a completely different corpus:
the Wall' Street Journal (WSJ). A native speaker of English is capable of
readmg both Shakespeare and the Wall Street Journal; both are subsets of
English. Thus it seems intuitive that our N-grams for Shakespeare should
have: some overlap with N-grams from the Wall Street Journal. Tn order to
- ¢heck whether this is true, here are three sentences generated by unigram,
bigram, and trigram grammars trained on 40 million words of articles from
the daily Wall Street Journal (these grammars are Katz backoff grammars
With‘ Good-Turing smoothing; we will learn in the next section how these are
constructed) Again, we have corrected the output by hand with the proper
Enghsh capltahzatlon for readablhty

: (umgram) Months the my and issue of year foreign new exchange’s
September were recesswn exchange new endorsed a acquire to six ex-
ecutives, .

(bigram) Last Deceraber through the way (o preserve the Hudson cor-
~poration N. B. E, C. Taylor would seem to complete the major central
planners one point five percent of U. S. . has already old M. X. corpo-
. ratlon of living on information such as more frequently fishing to keep
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her

3. (trigram) They also pomt to ninety nine point six billion dollars from’
two hundred four oh six three percent of the rates of interest stores a
Mexico and Brazil on market conditions

Compare these examples to the pseudo-Shakespeare on the prewous-_
page; while superficially they both seem to model “English-like sentences™:
there is obviously no overlap whatsoever in possible sentences, and very lit
tle if any overlap even in small phrases. The difference between the Shak
speare and WSJ corpora tell us that a good statistical approximation to En
glish will have to involve a very large corpus ‘with a very large cross-sectior
of dlfferent genres. Even then a smlple statistical model like an N—gr m:
would be 1ncapable of modeling the consistency of style across genres. (We.
would only want to expect Shakespearean sentences when we are readi
Shakespeare not in the nuddle of a WaIl Street J ournal article. )

63 SMOOTHING -

to hear another wor
There isn’t one, .
I haven’t heard! -

_ Eliza Doolittle : i
~ Alan Jay Lerner’s My
Fatr Lady lyncs o

‘words pebplé '

" never use -

. could be .

conlyl

know them

If;hlkawa Takuboku 1885- 191

One major probiem Wlth standard N -gram ‘models is that they ] iisf

S be tramed from some corpus, and becanse any. particular training corpus 1

= finite, some petfectly acceptable English N -grams are bound to be Imissir
seapse .- fromit. ‘That i, the bigram matrix for any given training corpus is sparse:.
L s bound to have: a very large number. of cases of putative “zero probab}ll
o blgrams that should really have sore non-zero probablhty Furthermor
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> the MLE method also produces poor estimates when the counts are non-zero
but still smali.

_ Some part of this problem is endemic to N-grams; since they can’t
- use long-distance context, they always tend to underestimate the probability
~of strings that happen not to have occurred nearby in their training corpus,
" But there are some techniques we can use to assign a non-zero probability
 to these “zero probability bigrams”. This task of reevaluating some of the
zero-probability and low-probability N-grams, and assigning them non-zero
values, is called smoothing. In the next few sections we will introduce some
- smoothing algorithms and show how they modify the Berkeley Restaurant
bigram probabilities in Figure 6.5.

- Add-One Smoothing

One simple way to do smoothing might be just to take our matrix of bigram
counts, before we normalize them into probabilities, and add one to all the
counts. This algorithm is called add-one smoothing. Although this algo-
rithm does not perform well and is not commonly used, it introduces many
of the concepts that we will see in other smoothmg algonthms and also gives
us a useful baseline. :

Let’s first consider the apphcatmn of add-one smoothing to unigram
: probablhtles since that will be simpler. The unsmoothed maximum likeli-
~-hood estimate of the unigram probability can be computed by dividing the
_“eount of the word by the total number of word tokens N:

o c(wy)
¥ c(wi)
. C(Wx) .
. N S : :

. The various smoothing estimates will rely on an adjusted count ¢*. The
count adjustmient for add-one smoothing can then be defined by adding one
to thé count and then multiplying by a normalization factor, 5, where V
is the total number of word types in the language, that is, the vocabulary
size. Since we are adding 1 to the count for each word type, the total number
of tokens must be increased by the number of types. The adjusted count for
add-one smoothing is then defined as:

P (Wx)

ci_:(ci+1)N+V R (6.13)

and the counts can be turned into probablhtle‘; pr by normalizing by N.
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DISCOUNTING

DISGOUNT

smoothed counts for the blgram m Flgure 6. 4.

An alternative way to view a smoothing aigorithm is as discounting .
(lowering) some non-zero counts in order to get the probability mass that:
will be assigned to the zero counts. Thus instead of referring to the dis;
counted counts ¢*, many papers also define smoothing algorithms in terms:
of a discount d,, the ratio of the discounted counts to the oniginal counts;

Alternatlvely, we can compute the probablllty pE dlrectly from the-'
counts as follows: :

. * '.cl 41
pz N+V

Now that we have the 1ntu1tlon for the umgram case, let’s smooth -
our Berkeley Restaurant PI‘O_]eCt bigram Figure 6 6 shows the add-one-

- I want|  to “eat | Chinese] food] lunc
| 9 1088 1 14 i 1 1
want | 4 1 787 1 7 9 7
to . 4] 1 111 861 4 1 13
eat 11 3 1 20 3 53
Chinese || 3 1 1 1 1 121 2
food 20 1 18 1 1 1 1
lunch 5 1 1 1 1 2 1

Figure 6.6 - Add-one Smoothed Bigram counts for seven of the words °

(out of 1616 total word types) in the Berkeley Restaurant Project corpus of :
| ~10,000 sentences. J

_ F1gure 6. 7 shows the add-one-smoothed probablhtles for the b1gram in:

Flgure 6.5. Recaﬂ that normal bigram probabﬂlues are computed by nor'

mahzmg each row of counts by the umgTam count: '
: C (wnﬁ;wn) :
P e

(Wn|Wn : ): - C(Wn71) . _ S _

For add—one—smoothed bigram counts we need to ﬁrst augment the: urr

Igram count by the number of total word types in the Vocabulary V.

C(wn_ )+ V

(©.14).

P vl )
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/ ¢ need to add V (= 1616) to each of the unigram counts:

I 3437+1616 = 5053
S want 121541616 = 2931
~to 3256+1616 = 4872
eat 938+1616 = 2554

* Chinese 213+1616 = 1829
- food  1506+1616 = 3122

-.'-_.lunch 459+1616. = 2075

The result is the smoothed bigram probabilities in Figure 6.7.

[T | want | to | cat | Chinese| food = | lunch |

0018 | 22 000201 .0028 | .00020 | 00020 00020
want 0014 | 00035 | .28 00035 .0025 0032 | .0025
0 00082 .00021| .0023 | .18 00082 | 00021 .0027
eat - 00039 | .00039| .0012 | .00039| .0078 0012 1§ .021
Chinese || .0016 | .00055| .00055 | .00055| .00055 @ .066 0011
food L0064 | .00032| 0058 | .00032| .00032 | .00032( .00032
lunch’ 0024 1 .00048 | 00048 | 000481 00048 | 00096 | .00048
- Figure 6.7  Add-one smoothed bigram probabilities for seven of the words

" (out of 1616 total word types) in the Berkeley Restaurant Project corpus of
10,000 sentences. -

- It is often convenient to reconstruct the count matrix so we can see
_how much a smoothing algorithm has changed the original counts. These
adjusted counts can be computed by Equatlon (6.13). Figure 6.8 shows the
ecomtructed counts, -

.. Note that add- -one smoothmg has made a very blg change to the couns.
C(want to) changed from 786 to 331! We can see this in probability space
as well: P(to|want) decreases from .65 in the unismoothed case to .28 in the
moothed case. -

. Iooking at the dlscount d (the ratio between new and old counts) shows
“us how strikingly the counts for each prefix-word have been reduced; the
bigrams starting with Chinese were discounted by a factor of 8!
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WITTEN-BELL
DISCOUNTING

'probdblhty mass is moved to all the zeros, The problem is that we arbitrarily:
- picked the value_“l” to'add to each count. We could avoid this problem by
‘adding smaller values to the counts (*“add-one-half” “add-one-thousandt )y

- Church (1994) summarize a number of additional problems with the add-one

Wltten Bell Dlscountlng

Chapter 6. N-gram

[ eatJ Chinese L food L unch -

eat 37
Chinese .36
food 10
lunch 1.1
Figure 6.8 - Add-one smoothed bigram counts for seven of the words (out of

1616 total word types) in the Berkeley Restaurant Project Corpus of &=10,000
sentences.

I .68
want 42
: 'eat._. o .37 .
- Chinese .12
~food " -.48 o
Clunch 220

“ The sharp change in counts and probablhtles occurs because too much'-"

but we would need to rétrain this parameter for each situation.
- In general add-one smoothing is a poor method of smoothing. Gale and

method; the main probiem is that add-one is much worse at predicting the
‘actual probability for bigrams with zero counts than other methods like the.
Good-Turing method we will describe below. Furthermore, they show that™
variarices of the counts produced by the add-one method are actually worse
than those from the unsmoothed MLE method :

A much better smoothing algonthm that is only shghtly more complex tha
Add-One siioothing we will refer to as Witten-Bell discounting (it is in-
troduced ‘as Method C in Witten and: Bell (1991)). Witten-Bell discounting’
is based on a simple but clever intuition about zero-frequency: events. Let’s:
think of a zero-frequency word or N-gram as one that just hasn’t happened
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vet. When it does happen, it will be the first time we see this new N-gram.
So the probability of seeing a zero-frequency N-gram can be modeled by the
probability of seeing an N-gram for the first time. This is a recurring concept
in statistical language processing:

- Key Concept #4. Things Seen Once: Use the count of things you've
seen once to help estimate the count of things you’ve never seen.

" The idea that we can estimate the probability of “things we never saw”
ith belp from the count of “things we saw once” will return when we dis-
cu'ss"Good Turing smoothing later in this chapter, and then once again when
we discuss methods for taggmg an unknown word with a part-of-speech in
Chapter 8
e HOW can we compute the probability of seeing an N -gram for the first
tn_ne‘? By counting the number of times we saw N-grarus for the first time in
oﬁr training corpus. This is very simple to produce since the count of “first-
time’” N-grams is just the number of N-gram types we saw in the data (since
we ‘had to see each type for the first time exactly once).
. 1 So we estimate the fotal probability mass of all the zero N-grams with
tﬁe'number of types divided by the namber of tokens plus observed types:

: 6.16
H:Zwopz NH N (6.16)

Why do we normalize by the number of tokens plus types? We can
think of our trainitig corpus as a series of events; one event for each token
and one eveént for each new type. So Equation 6.16 gives the Maximum
_Lik'elihood Estimate of the probability of a new type event occurring. Note
that the number of observed types T is different than the “total types” or
“yocabulary size V* that we used in add-one smoothing: T is the types we
have already seen, while V is the total number of possible types we might
ever see.

- Equation 6.16 gives the total “probabiiity of unseen N-grams”. We
need to divide this up among all the zero N-grams. We could just choose
to divide it equally. Let Z be the total number of N-grams with count zero
(types; there aren’t any tokens).  Each formerly-zero unigram now gets its
equal share of the redistributed probability mass:

z= Y | 6.17)
o Bo=0 DT R .

SRR T

Pi N+1) (6.18)
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Chapter 6. N-gram

usé “the probabihty of seeing a new bigram starting with w,_,”. This I

' aﬁd'N the' number of bigram tokens, on the previous word w, , as follow

'unseen blgrams LetZ again be the total number of bigrams with a given first
- Word that have count ZETO (types, there aren’t any tokens), Each fonne
' Zero blgram now gets 1ts equal share of the redxstnbuted probablhty mass:

3 parameterlzmg T:on the history:

- Hete are those values:

If the total probability of zero N-grams is computed from Equation (6:16
the extra probability mass must come from somewhere; we get it by dis
counting the probability of all the seen N-grams as follows:

if (¢; > 0)

*
Pi = NT

Alternatively, we can represent the smoothed counts directly as:

T -
e 'Z"“ﬁ"]_;‘_r—T, if C; = 0

€ = N .
. | ciggrs £ >0
~ . Witten-Bell discounting looks a lot like add-one smoothing for uni
grams. But if we extend the equation to bigrams we will see a big difference
This is because now our type-counts are conditioned on some history. In or- |
der to compute the probability of a bigram w, 1w, 1 we haven’t seen, we:

our estimate of “first-time bigrams” be specific to a word history. Words tha
tenid to occur in a smaller number of bigrams will supply a lower “unseen:
bigram” estimate than words that are more promiscuous.

\ 'We represent this fact by conditioning T, the number of bigram types

T (ws)
N(wy) + T (wy)

Agam We W111 need {0 distribute this probability mass among all

CY e =

: 1_ zr:(wxwl) 0

(6.

U TR _ 24 (wal) 0 -
| 'w ST e
Ay l"j_)-_f Zome )V Tiw)) (o =0)

As for the non-zero bigrams, we discount them in the same manner, b :
2 wa ;_.'C(waz)'.
o c{wy) + T (wx)

Touse Equaﬂon 6.24 to smooth the restayurant blgram from Figure 6.5
we! w1Il need the number of bigram types T (w) for each of the first words

(w0
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1 95
- want 76
to 130
eat i24
* Chinese 20
. food 82
- lunch 45

' In addition we will need the Z values for each of these words. Since
“we know how many words we have in the vocabulary (V = 1,616), there are
*exactly V possible bigrams that begin with a given word w, so the number of
“unseen bigram types with a given prefix is V minus the number of observed

()VT()' S o 62)

Here are those Z values

SRR SRR .75
Cwant 1,540
** Chinese 1,596
o food - 1,534

Clunch o 1,571

Figure 6.9 shows the discounted restaurant bigrain counts.

I ] want| to | eat | Chinese| - food [ Tunch|
8 | 1060 .062 131 062 062 062
3 046 1 740.| 0 .046 6. 8 6
3 085 10 827 3. 085 12
075 0751 2 ] ..078] 17 2 46
Chinese|. 2 | .012] .012; .012) 012 109 1
- food 18 1. 059 | 16 | :.059}. 059 . .0539 059
| lunch 4. | 026] 026 026 026 .| 1. 026
- Figure 6.9 - Witten-Bell smoothed bigram counts-for seven of the words
B “(out of 1616 total word types) in the. Berke]ey Restaurant Project corpus of
S w10, 000 sentences : : . _ .

The dlscount Values for the W1tten—Be11 algonthm are much more rea-
sonable than for add-one: smootlung
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I 97
want .94
to .96
eat .88
Chinese 91
food .94
lunch 91

It is also possible to use Witten-Bell (or other) discounting in a diffef—'
ent way. ‘In Equation (6.21), we conditioned the smoothed bigram prob
bilities on the previous word. That is, we conditioned the number of types
T'(w,) and tokens N(w;) on the previous word wy. But we could choose
mstead to freat a bigram: as if it were a single event, ignoring the fact th,
it is composed of two words. Then T would be the number of types of aif
bigrams, and N would be the number of tokens of al bigrams that occurre

- Treating the bigrams as a unit in this way, we are essentially discounting, not
*Ronasury-  the conditional probability P(w;|w.), but the joint probability P{w,w;). In
“this way the probab111ty P(wxwt) is treated just like a unigram probability.

This kind of dlscountmg is less commionly used than the “conditional”

- ‘counting we walked through above starting with Equation 6.21. (Although

- is often used for the Good Turing discounting algorithm described below)

S Im Sectlon 6.4 we show that discounting also plays a role in more so-

o '-'ph1stlcated Ianguage models. Witten-Bell discounting is commonly used in

L speech rccognltlon systcms such as Placcway et al. (1993).

el Good-Turmg Dlscountlng

- : Thls sectlon mtroduces a shghtly more complex form of d1bc0unt1ng than t]
8o Witten-Bell algorithm called Good-Taring smoothing. This section may he
' sk1pped by readers who are not focusing on discounting algorithms.
: ~ The Good-Turing algorithm was first described by Good (1953), who:

: cred1ts "ﬁmng with the original idea; a complete proof is presented in Church

- et al: (1991): The basic insight of Good- -Turing smoothing is to re- esnmate}

: the amount of probabﬂlty mass to assign to N-grams with zero or low counts:
by lookmg at the number of N -grams with higher counts. In other words;
'we examine N, the number of N -grams that occur ¢ times., We refer to’ thc"

- number of N-grams that occur ¢ times as the frequency of frequency c.” So
' applymg the idea to c;mcothmg the Jomt probabﬂlty of blgrams N() is th
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number of bigrams b of count 0, N; the number of bigrams with count 1, and
gron:

- The Good- Turing estimate gives a smoothed count ¢* based on the set
f N, for all ¢, as follows:

—(e+1) N]‘;jl 627)

c
For example, the revised count for the bigrams that never occurred
cg) is estimating by dividing the number of bigrams that occurred once (the

ever occurred (Ng). Using the count of things we’ve seen once to estimate
: the count of things we’ve never seen should remind you of the Witten-Bell
1scount1ng algorithm we saw earlier in this chapter. The Good- -Turing al-
- gorithm was first applied to the smoothing of N-gram grammars by Katz,
s cited in Nddas (1984). Figure 6.10 gives an example of the applica-
tion of Good-Turing discounting to a bigram grammar computed by Church
and’ Gale (1991) from 22 million words from the Associated Press (AP)
‘newswire.. The first column shows the count ¢, i.e., the number of observed
“instances of a bigram. The second column shows the number of bigrams that
had this count. Thus 449,721 bigrams has a count of 2. The third column
-_s_hows c*, the Good-Turing re-estimation of the count. -

c(MLE) N, F(@G
. 0. . 74,671,100,000  0.0000270
1 2,018,046 0446 -
2 449,721 - 1.26 ..
3. 188,933 224
4 105,668 3.24
5. 68,379 . 422
60 -~ 48,190 5.19
ST - 35709 621 . ..
& L 21710 724
o -9 o 222800 0 825 _
3._'Figlzre 6.10 Blgram “frequencies of frequencies” from 22 mﬂhon AP bi-
‘grams, and Crood -Turing re-estimations after Church and Gale (1991).

. Church et al. (1991) show that the Good-Turing estimate rehes on the
assumptmn that the distribution of each bigram is binomial. The estimate
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also assumes we know Ny, the number of bigrams we haven’t seen. We
know this because given a vocabulary size of V, the total number of blgram
is V2. (Np is V2 minus all the bigrams we have seen).

In practice, this discounted estimate ¢* is not used for all count
Large counts (where ¢ > k for some threshold k) are assumed to be reliabl,
Katz (1987) suggests setting & at 5. Thus we define

c* =cforc>k (62'_)_

The correct equation for ¢* when some k is introduced (from K
(1987)) is: . .
Nepr oo (B 1Ny -
(C+1 Cl { A;lk+1 f0r1<c<k
. T 1 -
Wlth Good -Tuaring dlscountmg as w1th any other it is usuai o (e
N -grams with low counts (especially counts of 1) as if the count was 0.

_ -' ._The dxscountmg we have been dlscussm g 50 far can help solve the problem
- zero frequency. n- grams But there is an addltlonal source of knowledge.
~can draw on. If we have no examples of a particular trigram w,,_,w,. W,
~ help us compute P(wn|wnw1wn 2}, We can estimate its probability by usin
the: blgram probability P(wy|wn_1). Similarly, if we don’t have counts
compute P{w,|w,_1), we can look to the unigram P(w,). ;
L ... There are two ways to rely on this N-gram “hierarchy”, deleted inter:
R Smon - Polation and backoff. We will focus on backoff, although we give a quic
. BACKOFF overview of deleted interpolation after this section. Backoff N-gram model
EE ing is a norilinear method introduced by Katz (1987). In the backoff mode
11ke the deleted interpolation model, we build an N-gram model based on an
— 1}-gram model. The difference is that in backoff, if we have non-zer
o tngram counts, we rely solely on the trigram counts and don’t interpolat
the bigram: and unigram’counts at all. We only “back off™ to a lower ord-_
N-gram if we have zero evidence for a higher-order N- -gram.
: The tngram vers1011 of backoff might be represented as follows: -

[ P(WJW[ Zwi.' I) : lfC(WJ zwt 1wi) =
T ':.ocP .:1fC w0
Pl =4 M (wllw; D : (Wi2wi_1wi)
-.Oﬂzp (Wi)'s Cooo e otherwise.
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. Let’s ignore the o values for a moment; we’ll discuss the need for
th e weighting factors below. Here’s a first pass at the (recursive) equation
for representing the general case of this form of backoff.

Wn|wn N+]) = P(Wn|"“n N+1)
+ O(P{wn|w;,~ N+]))0°P(WR‘W2:}V+2) (6.31)

" Again, ignore the o and the P for the moment. Following Katz, we’ve
used 0 to indicate the binary function that selects a lower ordered model only
the higher-order model gives a zero probability:

] 1L ifx=0
O(x) = { 0, otherwise, (6.32)
“and each P(-) is a MLE (i.e., computed directly by dividing counts). The
-next section will work through these equations in more detail. In order to do
-that, we’'ll need to understand the role of the o values and how to compute
them.

Combining Backoff with Discounting

“Our previous discussions of discounting showed how to use a discounting
“ralgorithm to assign probability mass to unseen events. For simplicity, we
assumed that these unseen events were all equally probable, and so the prob-
~ability mass got distributed evenly among all unseen events. Now we can
“combine discounting with the backoff algorithin we have just seen (o be a
. little more clever in assigning probability to unseen events. We will use the
- discounting algorithm to tells us how much total probability mass to set aside
$ _fof all the evernts we haven’t seen, and the backoff algorithm to tell us how
- to distribute this probability in a clever way.

'+ First, the reader should stop and answer the following question (don’t
s look ahead): Why did we need the o values in Equation (6.30) (or Equa-
‘tion (6.31))? Why couldn’t we just have three sets of probabilities without
weights?
©v0 The answer: w1thout o values, the result of the equatlon would not be
- a true probability! This is because the original P(w, w" L +1) we got from
- relative frequencies were true probabilities, that is, if we sum the probability
.of a given w,, over all N-gram contexts, we should get 1:

szn[wle)_1 o 63

7.]
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o

: | equatron We define P as the discounted (c*) MLE estimate of the condltlonal.___
: probablhty of an N-gram, as follows:: : '

: C( _ mN+i P

probablhty mass for’ the lower order N- grams Now we need to, buﬂd th
o welghtmg we’ll need for passing this mass to the lower order N- -gram
o Let’s represent the total amount of left-over probabllrty mass by the functio

- total left-over probabﬂrty mass can be cornputed by. subtractrng from 1 th
S total chscounted probablhty mass for all N-grams starting with that 00nte

to a11 N - 1-gram (& g, bigrams if our original model was a trigram).: Eac
. 1nd1v1dual N-= l-grary (bigram) will only get a fraction of this mass, so'w
o need to norrnahze |3 by the total probability of all the N — 1-grams (blgrams

But if that is the case, if we back off to a lower order model when th
probability is zero, we are adding extra probability mass into the equa‘uon
and the total probability of a word will be greater than 1!

Thus any backoft language model must alse be discounted. This ex
plains the os and P in Bquation 6.31. The P comes from our need to discou
the MLE probabilities to save some probability mass for the lower order N
grams. We will use P to mean discounted probabilities, and save P for plain
old relative frequencies computed directly from counts. The o is used to en
sure that the probabﬂity mass from all the lower order N-grams sums up
exactly the amount that we saved by discounting the higher-order N- gram_
Here s the correct final equatron -

(Wnlwn—N E) = P(Wntwn N+1)
o . +6( P(Wn|wn N+1)) _
"'O‘(Wn N+1)P(anw N2

Now Iet § see the formal definition of each of these components of th

AR ".".ZI'C*(WH N+1)..

Th1s probabﬂtty P w111 be shghﬂy Iess than the MLE estlmate

' C(Wn N+1) P

(1 e., on average the c* wﬂl be less than c) ThlS wﬂl leave som

B a functlon of the N = 1- gram context For agiven N — 1-gram context, th

B -NH' e DY T

Wn C(Wn N 1)>0

Thrs grves us the total probabﬂrty mass that we are ready to dlstrl‘out
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that begin some N-gram (trigram). The final equation for computing how
tich probability mass to distribute from an N-gram to an N — 1-gram is
.Iepgesented by the function ¢

= D ) 150 P(wn|W)~ Ni1)

-1 )
1- 2w,1:c(w;§_NH)>UP wﬂlwn—N+2)

: U"(1’1211—1"\1'—0—1

:. “'Note that o is a function of the preceding word siring, that is, of
i ﬁ‘}v 15 thus the amount by which we discount each trigram (d), and the
i ass that gets reassigned to lower order N-grams (o) are recomputed for

very N-gram (more accurately for every N — 1-gram that occurs in any N-

P(miwﬂ:ﬁi}) = P(Wnlwniﬁﬁ) (6.38)
:._'j-P(wniwn Ly=0 (6.39)
ﬁ(w,,m)'l C e (64D)

In Equation (6. 35) the discounted probability P can be computed with
-j'_the discounted counts ¢* from the Witten-Bell discounting (Equation (6.20))
of with the Good-Turing discounting discussed below.

“ Here is the backoff model expressed in a slightly clearer format in its
tﬂgram version:

1'5(‘lf\/,-,|1¢1z'z AW 1) ifC(W,',ZWg_le) >0
e . .a n— 1 ifC ._. - . :0
and C(Wi'_lw,') >0
o(wa_1)B(wy), otherwise.

2 In praeﬁce, when disc’eﬁﬁﬁﬁg, “we usually ignore counts of 1, that is,
we treat N-grams with a count of 1 as if they never occurred.
-+ Gupta et al. (1992) present a: varlant backoff method of assigning prob-
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6.5 DELETED INTERPOLATION

DELETED
INTERPOLATION

6.6 N _—-GR_AM_S _F_O_R SPEL_LING AND PRONUNCIATION

P(wy|w,_1w,-2) by mixing together the unigram, bigram, and trigram prob

be:

- correcting spelling errors and for picking a word given a surface pronunci

Chapter 6. N-gf m:

The deleted interpolation algorithm, due to Jelinek and Mercer (1980), .
bines different ¥-gram orders by linearly interpolating all three models when
ever we are computing any trigram. That is, we estimate the probal

abilities. Each of these is weighted by a linear weight A:

P(Wa W W) = APl WamiW,2)
FA2P(Wn|Wp 1)
+A3P(wy}

such that thé As sum to 1:

Y =1

In practice, in this deleted interpolation deleted interpolation ais
rithm we don’t train just three As for a trigram grammar. Tnstead, we 1
each A a function of the context. This way if we have particularly
rate counts for a particular bigram, we assume that the counts of the trigra
based on this bigram will be more trustworthy, and so we can make the lai_n
das for those trigrams higher and thus give that trigram more weight ifi'th
interpolation. So a more detailed version of the interpolation formula woult

Plwa|waawy 1) = AW )P (walwy_gwu 1)
| P (WD P(wawnt) s

T + A3 (WETD)P(w) L
“Given the P(w _) values, the X values are trained so as to maximize
hkehhood of a held-out corpus separate from the main training corpus, usir
a vers10n of the EM ‘algorithm defined in Chapter 7 (Baum,-1972; Dempste

et'al., 1977, Jelinek and Mercer, 1980). Further details of the algonthm
descnbed in Bahl et al. (1983).

In. Ch'apter'S'.' we saw the use of the Bayesian/noisy-channel algorithm: fo
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“ation. We saw that both these algorithms failed, returning the wrong word,
“because they had no way to model the probability of multiple-word strings.
ow that our n-grams give us such a model, we return to these two problems.

__{C'ontext-Sensitive Spelling Error Correction

Chapter § introduced the idea of detecting spelling errors by looking for
‘words that are not in a dictionary, are not generated by some finite-state
odel of English word-formation, or have low probability orthotactics. But
one of these techniques is sufficient to detect and correct real-word spelling
rrors. real-word error detection. This is the class of errors that result
n an actual word of English. This can happen from typographical errors
sertion, deletion, transposition) that accidently produce a real word (e.g.,
“there for three), or because the writer substituted the wrong spelling of a
omophone or near-homophone {(e.g., dessert for desert, or piece for peace).
. The task of correcting these errors is called context-sensitive spelling error
‘correction.

- How important are these errors? By an a priori analysis of single typo-
" graphical errors (single insertions, deletions, substitutions, or transpositions)
Peterson (1986) estimates that 15% of such spelling errors produce valid En-
‘glish words (given a very large list of 350,000 words). Kukich (1992) sum-
‘marizes a number of other analyses based on empirical studies of corpora,
which give figures between of 25% and 40% for the percentage of errors
that are valid English words. Figure 6.11 gives some examples from Kukich
(1992), broken down inte local and global errors. Local ertors are those that
are probably detectable from the immediate surrounding words, while global
‘errors are ones in which error detection reqmres examination of a large con-
- text. . S e .
- One method for context—senmtive Spellmg error correction is based on
'.'N grams
7+ The word N-gram approach to spelling error detection and correction
: was proposed by Mays et al. (1991). The idea is to generate every possible
~misspelling of each word in a sentence cither just by typographical modifi-
“cations (letter insertion, deletion, substitution), or by including homophones
:_a"s-'well,- (and presumably including the correct spelling), and then choos-
- ing the spelling that gives the sentence the highest prior probability. That
-is, given a sentence W = {wy,wa,..., Wk, ..., Wy}, Where wy has alternative
pelling w}, w{, etc.; we choose the spelling among these possible spellings
- that maximizes P(W), using the N-gram grammar to compute P(W). A
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- Word ¢ombinations.-

.. types of lexical disambiguation (such: as word-sense disambiguation or ac

Chapter 6.  N-grams:

.. Local Errors
The study was conducted mainly be John Black.
They are leaving in about fifteen minuets to go to her house.
The design an construction of the system will take more than a year.
Hopetully, all with continue smoothly in my absence
Can they /ave him my messages'? _
I need to notified the bank of [this problem.]-
- He need to go there right 7o w.
_Heis trying to fine out, .

Global Errors
- Won'’t they heave if next Monday at that time?
.- This thesis is supported by the fact that since 1989 the system
~ has been operating system with all four units on-line, but ..

Figure 611 -~ Some attested real-word spelling errors from Kukich (1 992),
~ broken dowrx mto local and global errors,

class basecl N~gran1 can be used mstead which can ﬁnd unhkely part—
speech combinations; although it may not do as well at to finding unlikel

- There are many other stat1st1ca.1 approachec; to context-sensitive Spelhng'-
error correction, some proposed directly for spelling, other for more genér:

‘cent restoration):: Beside the trigram approach we have just described, th
include Bayesian classifiers, alone or combined with trigrams (Gale et
1993; Golding, 1997; Golding and Schabes, 1996}, decision lists (Yarows
1994), transformation: based learning (Mangu and Brili, 1997), latent se
‘mantic analysis (Jones and Martin; 1997); and Winnow (Golding and Ro
1999).: In'a comparison:of these, Golding and Roth (1999) found the Wi
now algorithm: gave. the best performance. .In general, however, these al
- rithms-are very:similar- in many ways; they are all based on features: lik
- word and part-of-speech N- -grams, and Roth (1998,:1999) shows that m
* of them make their predictions using a family of linear predictors calied L.
ear Statistical Queries (LSQ) hypotheses. Chapter 17 will define all thy
_ algonthms and dlscuss these issues fuﬂ:her in the context of word-sense: dlS
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"'--"g?'rams for Pronunciation Modeling

& 'N “gram model can also be used to get better performance on the words-
TOT- pronunclatlon task that we studied in Chapter 5. Recall that the input
s the pronunciation [n iy] following the word /. We said that the five words
that ‘could be pronounced [n iy} were need, new, neat, the, and knee. The
_bﬁthm in Chapter 5 was based on the product of the unigram probability
of each word and the pronunciation likelihood, and incorrectly chose the
td riew, based mainly on its high unigram probability.

: Addmg a simple bigram probability, even without proper smoothing, is
gh to solve this problem correctly. In the following table we fix the table
on ‘page 167 by using a bigram rather than unigram word probability p(w)
for each ‘of the five candidate words (given that the word I occurs 64,736
imes ifl the combined Brown and Switchboard corpora):

Word C(‘T’ w) C(T’ w)+0.5 p(w|’T")

need 153 153.5 .0016

new 0 0.5 .000005
kree 0 0.5 .000005
the 17 17.5 .00018
_neat . 0_ . 05 000005

: .:-'-Incorporatmg this new word probabﬂlty into combined model, it now
predlcts the correct word need, as the table below shows:

Word p(yjw) p(w)  p(y}wp(w)

need 11 0016 .00018

knee 1.00 .000005 .000005

neat .52 .000005 0000026
- mew .36 .000005 .0000018
Cthe . 0.00018 0

67 i._ ENTROPY o

I gor rhe horse right here
: . Frank Loesser Guys and Dolls

L Entropy and perplexity are the most common metrics used to evaluate
-gram systems. The next sections summarize a few necessary fundamental
'facts about information theory and then introduce the entropy and perplex-
i y'metrlcs ‘We strongly suggest that the interested reader consult a good
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ENTRORY

measured ini bits. -
.thlnk of the entropy as a lower bound on the number of bits it would taki

~ scherne:.

L day beiting; and each horse is coded with 3 bits, on the average we Would

information theory textbook; Cover and Thomas (1991) is one excellent ex:
ample.
Entropy is a measure of information, and is invaluable m natiral Ian
guage processing, speech recognition, and computational linguistics. It ¢
be used as a metric for how much information there is in a particular gram
mar, for how well a given grammar matches a given language, for how pre
dictive a given N-gram grammar is about what the next word could be. Give
two grammars and a corpus, We can use entropy to tell us which grami_n_
better matches the corpus. We can also use entropy to compare how difﬁ
cult two speech recognition tasks are, and also to measure how well a glve
probabrhstlc grammar matches human grammars.
_ Computlng entropy requires that we establish a random variable X tha
ranges over whatever we are predicting (words, letters, parts of speech, th
set of which we’ll call %), and that has a particular probability function -'c i
it p{x ) The entropy of this random variable X is then

H(X)=- Zp(x) 1og'2 p(x) (6.44
XEX :' .

o .Th'e.'log can in principle be computed in any base; recall that we use lo
base 2 in all. calculations in this book. The result of this is that the entropy i

“The most intuitive Way to deﬁne entmpy for computer sc1entlsts is't
to encode a certain decrslon or plece ‘of information in the optimal codmg

~Cover and Thomas (1991) suggest the following example. Tmagin
that we want to place a bet on a horse race but it is too far to go all the wa
to Yonkers Racetrack, and we’d like to send a short message to the boo
to tell him which horse to bet on. Suppose there are elght horses in'thi
partrcular race.’

- One way to encode thls message is just to use the blnal‘y representatm
of the horse’s number as the code; thus horse 1 would be 001, horse 2 €
horse 3 011, and so on, with horse 8 coded as 000. If we spend the whol

sendmg 3 bits per race. :
- Can we do better? Suppose thdt the spread is the actual drstrrbutlon s

the bets pIaced and thdt we represent it as the prior probablhty of each ho

as folloWs e . _ :
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Horse 1 1 [Horse 5 &
Horse 2 ﬁ Horse 6 Ejﬁ
Horse 3 -é— Horse 7 B%

1 L
Horse 4 1€ Horse 8 &

: ~ The entropy of the random variable X that ranges over horses gives us
a lower bound on the number of bits, and is:

i=8

H(X) = - Y p(i)logp(i)
=1
= —llogi—flogi—flogi—log -4 log &)
= 2 bits (6.43)

A code that averages 2 bits per race can be built by using short en-
odings for more probable horses, and longer encodings for less probable
: _otses For example, we could eéncode the most likely horse with the code
.and the remaining horses as 10, then 110, 1110, 111100, 111101,
7131110,and 111211,

What if the horses are equaily likely? We saw above that if we use an
equal- length binary code for the horse numbers, each horse took 3 bits to
“code; and so the average was 3. Is the entropy the same? In this case each
orse would have a probability of % The entropy of the choice of horses is

SN =3
' -_H(X)'mj—zlloglw_'_—'lbgl:Sbits _ _ (6.46)

N =T 8 g§ T o _ ;
- " The value 2¥ is called the-iperpleyzity (Telinek et al., 1977; Bahl et al.,
1983), Perplexity can be intuitively thought of as the weighted average num-
ber of choices a random variable has to make. Thus choosing between 8
qually likely horses (where H = 3 bits), the perplexity is 2° or 8. Choosing
- between the biased horses in the table above (where H = 2 bits), the perplex-
ity is 2% or 4. R

- Until now we have been computing the entropy of a single variable.
‘But most of what we will use entropy for involves sequences; for a grammar,
“for example, we will be computing the entropy of some sequence of words
W= {...wg,wr,wa;..;wy }» One way to do this is to have a variable that
ranges over sequences of words: For example we can compute the entropy
of a fandom variable that ranges over all finite sequences of words of length
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ENTROPY
RATE

STATIONARY

o of upcoming words can be dependent on events that were arbitrarily distant

' ways (to be exact if it is both statlonary and ergochc)

- quences will reoccur in the longer sequence according to their probabilitie

. assumptlons, we can compute the entropy of some stochastic process by tak—

b in some language L as follows:
H(wi,wa,. .., w,) = — Y p(W") log p(W]')
Wiel
We could define the entropy rate (we could also think of thls as the:
per-word entropy) as the entropy of this sequence divided by the number;

of words:
1 n A . R
~HW) = - 2 pW; )IOgP(W1 )
" wreL g

But to measure the true entropy of a language, we need to consider
sequences of infinite length, If we think of a language as a stochastic process;
L that produces a sequence of words, its entropy rate H(L) is defined as:

H(L) = lim ~1—H(w1,w2,... Wy, }

Ao n

:: ]1m z p(W], 10gP(W11 )
e ey

The Shannon-McMﬂlan—Brmman theorem (Algoet and Cover, 1988;:
Cover and Thomas, 1991) states that if the language is regular in certa.m-

(L) = hm %llogp(wiwz )

That is, we can take a single sequence that is long enough 1nstead
of_ summing over all possible sequences. The intuition of the Shannon-
McMillan-Breiman theorem is that a long enough sequence of words wi
contain in it many other shorter sequences, and that each of these shorter s

gt A stochastic process.is said to. be stationary if the probabilities it a
signs to a sequence are invariant with respect to shifts in the time index.-
other words, the probability distribution for words at time ¢ is the same as the
probabilitydistribution at time 7 + 1. ‘Markov models, and hence N -grams;
are stationary.. For example, in a bigram, F; is dependent only on P;_;. So.if
we shift our.time index by x, P is still dependent on Piy,_;. But natural
language is not stationary, since as we will see in Chapter 9, the probability

and time dependent. Thus our statistical models only give an approximation

to the correct distributions and éntropies of natural language. :
~.To summarize, by making some incorrect but convenient simplifying:
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a'very long sample of the output, and computing its average log probabil-
In'the next section we talk about the why and how; why we would want to
do_:_thiS (i.e., for what kinds of problems would the entropy tell us something
se‘ﬁﬂ),- and how to compute the probability of a very long sequence.

ross Entropy for Comparmg Models

I ﬂ'HS.SECUOIl we introduce the cross entropy, and discuss its usefulness in
ompanhg different probabilistic models. The cross entropy is useful when
edon’t know thé actual probability distribution p that generated some data.
1t all Ws us to use some #, which is a model of p (i.e., an approximation to
The cross entropy of m on p is defined by

(p, :—hm me, W) logmiGi, ow)  (65D)
e WEL

Thht‘ is We draw sequenc'es according to the probability distribution p,

-Agam following the Shannon- McM]llan-Brennan theorem, for a sta-
onary. ergochc process

H(p, m) = hm ——F;logm(wlwz -Wn-) B (6.52)
-_What makes the cross enttopy useful is'that.the cross entropy H(p,m)
‘an upper bound on the entropy H (p). For any model m:

H(py<H(p,m) . HEE (6.53)

~This means that we can use some simplified model m to help estimate
the true entropy of a sequence of symbols drawn according to probability
The miore accurate: m is, the closer the cross entropy H{p,m) will be to
e tiug entropy H (p). Thus the difference between H{p,m) and H(p) is
‘measure of how accurate a model is. Between two models my and mg,
the more accurate model will be the one with the lower cross-entropy. (The
ross-entropy can never be Tower than the t:rue ent:ropy, s0 a'model cannot
£ by underesumaUng the true entropy) S

he Entropy of Enghsh

As we suggested iy the prev1ous section, the Cross- entropy of some model

can use this method to get an estimate of the true entropy of English. Why
should we care about the entropy of English?

249

CROSS
ENTROPY

mican be used-as an upper bound on the true entropy of some process. We o




228

Chapter 6. N-gra

“million word WSJ test set according to each of these grainmars.

- without any knowledge. of the test set t.. Any kind of knowledge
- of the test set can cause the perplexity to be artificially Iow. For
- example, sometimes instead of mapping all unknown words to the
-<UNK> token, we use a closed-vocabulary test set in which we.

- thie perplexity. As long as this knowledge is provided equaily to each’.

* - test set; and so great care must be taken in interpreting the results. In.
"+ general, the perplexity of two language models is only comparable :

METHODOLOGY BOX: PERPLEXITY

The methodology box on page 204 mentioned the idea of com-
puting the perplexity of a test set as a way of comparing two
probabilistic models. (Despite the risk of ambiguity, we will fol-
low the speech and language processing literature in using the term
“perplexity” rather than the more technically correct term “cross-
perplexity”.) Here’s an example of perplexity computation as p
of 'a “business news dictation system”. We trained unigram,
gram, and trigram Katz-style backoff grammars with Good-Turing
discounting on 38 million words (including start-of-sentence tokens)
from the Wall Street Journal (from the WSJO0 corpus (LDC, 1993)).
We used a vocabulary of 19,979 words (i.e., the rest of the words
types were mapped to the unknown word token <UNK> in both
training and testing). We then computed the perplexity of each. of-
these models on a test set of 1.5 million words (where the perplexity .
is defiried as 2(P"}}, The table below shows the perplexity of a 1.5."

N-gram Order Perplexity

.- Unigram. 962
Bigram 170
Trigram 109

. In computing perplexities the model m must be constructed

know in advance what the set of words is. This can greatly reduce

of the models we are comparing, the closed-vocabulary perplexity is
still a useful metric for comparing models. But this cross-perplexity.
is no longer guaranteed to be greater than the true perplexity of the

if they use the same vocabulary.
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.. One reason is that the true entropy of English would give us a solid
lower bound for all of our future experiments on probabilistic grammars.
mother is that we can use the entropy values for English to help under-
and what parts of a language provide the most information (for example,
s the predictability of English mainly based on word order, on semantics,
n-morphology, on constituency, or on pragmatic cues?) This can help us
mensely in knowing where to focus our language-modeling efforts.

~. There are two common methods for computing the entropy of English.
te first was employed by Shannon (1951), as part of his groundbreaking
ork in defining the field of information theory. His idea was to use human
ubjects, and to construct a psychological experiment that requires them to
- guess strings of letters; by looking at how many guesses it takes them to
‘guess letters correctly we can estimate the probability of the letters, and
“Hence the entropy of the sequence.

. The actual experiment is designed as follows: we present a subject
th some English text and ask the subject to guess the next letter. The sub-
ts will use their knowledge of the language to guess the most probable
Tetter first, the next most probable nexi, and so on. We record the number of
esses it takes for the subject to guess correctly. Shannon’s insight was that
16 entropy of the number-of-guesses sequence is the same as the entropy
‘of English. (The intuition is that given the number-of-guesses sequence, we
ould reconstruct the original text by choosing the “ath most probable” letter
-whenever the subject took # guesses). This methodology requires the use of
Ietter guesses rather than word guesses (since the subject sometimes has to
_do an exhaustive search of all the possible letters!), and so Shannon com-
..'pn:ted the per-letter entropy of English rather than the per-word entropy.
e reported an entropy of 1.3 bits (for 27 characters (26 letters plus space)).
:Shannon’s estimate is likely to be too low, since it is based on a single text
' Jefferson the Virginian by Dumas Malone). Shannon notes that his subjects
-had worse guesses (hence higher entropies) on other texts (newspaper writ-
ing, scientific work; and poetry). More recently variations on the Shannon
::_e:)'(?eriments include the use of a gambling paradigm where the subjects get
“to'bet on the next letter (Cover and King, 1978; Cover and Thomas, 1991),
' 'The second method for computing the entropy of English helps avoid
the single-text problem that confounds Shannon’s results. This method is to
ake-a very: good stochastic: model, train it on a very large corpus, and use
o assign a log-probability to a very long sequence of English, using the
“Shannon-McMillan-Breiman theorem:

. H(English) < lgn —;logm(wlwz W) (6.54)
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o ~. of English since the Wall Street Journal looks very little like Shakespear

BIBLIOGRAPHICAL AND HISTORICAL NOTES

““ Shannon’s work; Markov models were commonly used in modeling wort

... guences by the 1950s: In a series of extremely influential papers starting’

. Chomsky:(1956) and including Chomsky (1957) and Miller and Chom. _

. (1963), Noam Chomsky: argued that “finite-state Markov processes”, while

- a possibly useful engineering heuristic, were incapable of being a comple

. cognitive model of human grammatical knowledge.  These arguments

- many linguists and ‘computational linguists away from statistical models
RN together :

- printable ASCII characters).

o feported at 5.5 letters (NAadas, 1984)..If this is correct, it means that the Sha

'. The underlymg mathemancs of the N-gram was first proposed by Mark

. grams) to predict whether an upcoming letter in Pushkin’s Eugene Oneg
-4 would be a vowel or a consonant. Markov classified 20,000 letters as °
+:''Cand computed the bigram and trigram probability that a given letter we

" be'a vowel given the previous one or two letters. Shannon (1948) app

For example, Brown et al. (1992) trained a trigram language model
on 583 million words of English, (293,181 different types) and used |
compute the probability of the entire Brown corpus (1,014,312 tokens). The
training data include newspapers, encyclopedias, novels, office correspo
dence, proceedmgs of the Canadian parliament, and other nuscellaneous
sources..

They then computed the character—entropy of the Brown corpus, by
ing their word-trigram grammar to assign probabilities to the Brown corpus,
considered as a sequence of individual letters. They obtained an entroj '
of 1.75 bhits- per character (where the set of characters included all tho

The average length of Enghsh written words (including space) has be

non estimate of 1.3 bits per letter corresponds to a per-word perplexity of
for general English. The numbers we report above for the WSJ experinien
are significantly lower since the training and. test set came from same
sampie of English. That is, those experiments underestimate the complexity

{1913), who. used what are now called Markov chains (bigrams and

N-grams to compute approximations to English word sequences. Base
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. The resurgence of N-gram models came from Jelinek, Mercer, Bahi,
-and colleagues at the IBM Thomas J. Watson Research Center, influenced
by Shannon, and Baker at CMU, influenced by the work of Baum and col-
-Ieagues These two labs independently successfully used N-grams in their
;peech recognition systems (Jelinek, 1976; Baker, 1975; Bahl et al., 1983).
The Good-Turing algorithm was first applied to the smoothing of N-gram
mmars at IBM by Katz, as cited in N4das (1984). Jelinek (1990) summa-
this and many other early language model innovations used in the IBM
"ng age models.

" “While smoothing had been applied as an engineering solution to the
. z'e o-frequency problem at least as eatly as Jeffreys (1948) (add-one smooth-
ing), it is only relatively recently that smoothing received serious atten-
Qri'.] Church and Gale (1991) gives a good description of the Good-Turing
hod, as well as the proof, and also gives a good description of the Deleted
rpolation method and a new smoothing method. Sampson (1996) also
has & useful discussion of Good-Turing. Problems with the Add-one algo-
_ thm are summarized in Gale and Church (1994). Method C in Witten and
Bell (1991) describes what we called Witten-Bell discounting. Chen and
‘Goodman (1996 give an empirical comparison of different smoothing algo-
thms, including two new methods, average-count and one-count, as well as
Church and Gale’s. Iyer and Ostendorf (1997) discuss a way of smoothing
adding in data from additional corpora.
"> Much recent work on langnage modeling has focused on ways to build
more sophisticated N-grams. These approaches include giving extra weight
to: N-grams which have already occurred recently (the cache LM of Kuhn
and'de Mori (1990)), choosing long-distance triggers instead of just local
_N grams (Rosenfeld, 1996; Niesler and Woodland, 1999; Zhou and Lua,
1998) and using variable-length N-grams (Ney et al., 1994; Kneser, 1996;
Niesler and Woodland, 1996). Another class of approaches use semantic in-
formation to enrich the N-gram, including semantic word associations based
‘on the latent semantic indexing described in Chapter 15 (Coccaro and Ju-
Iafsky 1998; Bellegarda, 1999)), and from on-line dictionaries or thesauri
3(Demetr1ou et al.; 1997). Class-based N-grams, based on word classes such
as'parts-of-specch, are described in Chapter 8. Language models based on
Iﬁor_'e structured linguistic knowledge (such as probabilistic parsers) are de-
scribed in Chapter 12. Finally, a number of augmentations to N-grams are
based on discourse knowledge, such as using knowledge of the current topic
(€henet al:; 1998; Seymore and Rosénfeld; 1997; Seymore et al., 1998; Flo-
tian and Yarowsky, 1999; Khudanpur and Wu,: 1999) or the current speech
dct in dialogue (see Cha.pter 19)

253

CACHE LM
TRIGGERS

VARIABLE-LENGTH
N-GRAMS

LATENT.
SEMANTIC
INDEXING

CLASS-BASED




232 Chapter 6. N-grams

6.8 SUMMARY

This chapter introduced the N-gram, one of the oldest and most broadly use-
ful practical tools in language processing. :

o An N-gram probability is the conditional probability of a Word g en

~ the previous N — 1 words. N- -gram probabilities can be computed b
. simply countmg in a corpus and normalizing (the Maximum Likel
‘hood Estimate) or they can be computed by more sophisticated alg
tithms. The advantage of N-grams is that they take advantage of
of rich Iexzcal knowledge. A disadvantage for some purposes is th
they are very dependent on the corpus they were trained on. E

. Smoothmg algorithms prov1c1e a better way of estimating the pro
. bility of N-grams which never occur, Commonly-used smoothing al-
.. gorithms include backoff or deleted interpolation, with Wltten-Be
- or Good-Turing discounting.

RN ¥ Corpus-based language models like N grams are evaluated by sep
.. rating the corpus into a training set and a test set, training the mo

-+ on the training set; and evaluating on the test set. The entropy H
U more commonly the perplexity 2 (more properly cross- entropy an
cross-perplexnty) of a test set are used to compare language mode

- '-'EXERCISES: S
6 I erte out’ the equatlon for tngram probablhty estlmatlon (modlfym

Equanon 6. 11)

6.2 Write out the equatwn for the dlscount d & for add one smoo!:hmg
Do the same for Witten-Bell smoothing. How do they differ?

6. 3 Write a program (Perl 1s sufﬁ01ent) to compute unsmoothed unig
and blgrams iy

6 4 Run your N—gram program- on two dlfferent sma.ll corpora of
choice (youmight use email text or newsgroups). Now compare the stat;
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of the two corpora. What are the differences in the most common unigrams
tween the two? How about interesting differences in bigrams?

6.5 " Add an option to your program to generate random sentences.
6.6 Addan option to your program to do Witten-Bell discounting.

67 -~ Add an option to your program to compute the entropy (or perplexity)
of a'test set.

6.8 Suppose someone took all the words in a sentence and reordered them
randomly. Write a program which take as input such a bag of words and
produces as output a guess at the original order. Use the Viterbi algorithm
nd an N-gram grammar produced by your N-gram program (on some cor-

pus}.

69 " The field of authorship attribution is concerned with discovering the
author of a particular text. Authorship attribution is important in many fields,
including history, literature, and forensic linguistics. For example Mosteller
1d Wallace (1964) applied authorship identification techniques to discover
who wrote The Federalist papers. The Federalist papers were written in
7-1788 by Alexander Hamilton, John Jay and Jarmes Madison to per-
suade New York to ratify the United States Constitution. They were pub-
lishéd anonymously, and as a result, although some of the 85 essays were
c'I:e'arIy attributable to one author or another, the authorship of 12 were in
dispute between Hamilton and Madison. Foster (1989) applied authorship
identification techniques to suggest that W.S.’s Funeral Elegy for William
?e‘tér was probably written by William Shakespeare, and that the anonymous
atthor of Primary Colors the roman i clef about the Clinton campaign for
the American presidency, was journalist Joe Klein (Foster, 1996).

- A standard technique for authorship attribution, first used by Mosteller
a‘nd__: Wallace, is a Bayesian approach. For example, they trained a proba-
bilistic model of the writing of Hamilton, and another model of the writings
of: Madison, and computed the maximum-likelihood author for each of the
dlsputed' essays. There are many complex factors that go into these models,
including vocabulary use, word-length, syllable structure, thyme, grammar;
see (Holmes, 1994) for a summary. This approach can also be used for iden-
t_lfying which genre a text comes from.

One factor in many models is the use of rare words. As a simple ap-
proximation to this one factor, apply the Bayesian method to the attribution
of ‘any particular text. You will need three things:: a text to-test, and two
;_)bt'ential authors or genres, with a largé on-line text sample of each. One of
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them should be the correct author Train a unigram language model on each
of the candidate authors. You are only going to use the singleton unigraing
in each Janguage model. You will compute P(T|4,), the probability of
text given author or genre A, by (1) Itaking the language model from Ap,
by multiplying together the probabilities  of all the unigrams that only: o¢
cur once in the “unknown” text and (3) taking the geometric mean of the
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" When Frederic was a little lad be proved so brave and daring,
His father thought he’d *prentice him to some career seafaring.
I was, alas! his nurs’rymaid, and so it fell to my lot
To take and bind the promising boy apprentice to a pilot —
A life not bad for a hardy lad, though surely not a high lot,
Though I'm a nurse, you might do worse than make your boy a pilot.
I was a stupid nurs’rymaid, on breakers always steering,
"And I did not catch the word aright, through being hard of hearing;
Mistaking my instructions, which within my brain did gyrate, -
I took and bound this promising boy apprentice to a pirate.
The Pirates of Penzance, Gilbert and Sullivan, 1877

“-Alas, this mistake by nurserymaid Ruth led to Frederic’s long indenture as
- a pirate and, due to a slight complication involving 21st birthdays and leap
- years, nearly led to 63 extra years of apprenticeship. The mistake was quite
- natural, in a Gilbert-and-Sullivan sort of way; as Ruth later noted, “The two
.. words were so much alike!” True, true; spoken language understanding is a
- difficult task, and it is remarkable that humans do as well at it as we do. The
. goal of automatic speech recognition (ASR) research is to address this prob-
- lem computationally by building systems that map from an acoustic signal to
- a string of words. Automatic speech understanding (ASU) extends this goal
~ to producing some sort of understanding of the sentence, rather than just the
words.. o e

. The general problem of automatic transcription of speech by any speaker
©in any environment 1s still far from solved. But recent years have seen ASR
* technology mature to the point where it is viable in certain limited domains.
- One major application area is in human-computer interaction. While many
.- tasks are better solved with visual or pointing interfaces, speech has the po-
- tential to be a better interface than the keyboard for tasks where full natural
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LVCSR

CONTINUOUS
ISOLATED-
WORD

SPEAKER:
INDEPENDENT

7L SPEEC’H REC'OGN;TI_QN ARCHITECTURE o

Previous chapters have introduced many of the core algorithms used 1_n"'p_e

language communication is useful, or for which keyboards are not appropri-
ate. This includes hands-busy or eyes-busy applications, such as where th
user has objects to manipulate or equipment to control. Another Important'
application area is telephony, where speech recogmtlon is already used for
example for entering digits, recognizing “yes’ to accept collect calls, or call
routing (“Accounting, please”, “Prof. Regier, please”). In some applications;
a multimodal interface combining speech and pointing can be more efficient
than a graphical user interface without speech (Cohen et al., 1998). Finall
ASR is being applied to dictation, that is, transcription of extended mono
logue by a single specific speaker. Dictation is common in fields such as ITaw:
and is also important as part of augmentatlve communication (interaction be-
tween computers and humans with some disability resulting in the inabili
to type, or the inability to speak). The blind Milton famously dictated Pa
adise Lost to his daughters and Henry J armes dictated his later novels after a
repetitive stress injury. _
. Diferent apphcatlons of speech technology necessanly place different
constraints on the problem and lead to different algorithms. We chose to fo
cus this chapter on the fundamentals of one crucial area: Large-Vocabulary'
Contmuous Speech Recogmtlon (LVCSRY), with a small section on aco
tic issues in $peech synthesis. Large—vocabulary generally means that. e
systems have a vocabulary of roughly 5,000 to 60,000 words. The term con :
tinuous means that the words are run together naturally; it contrasts wi
isolated-word speech- recognition, in which each word must be prece
and followed by a pause. Furthermore, the algorithms we will discuss.ar
generally speaker-independent; that is, they are able to recognize speech
from péople whose speech the system has never been exposed to befor
- The: chapter begins with an overview of speech recognition arc
ture and then proceeds to introduce the HMM, the use of the Viterbi an
A* algorithms for decoding, speech acoustics and features, and the u.
Gaussians and MLPs to.compute acoustic probabilities. Even relymg:o thi
previous three chapters; summarizing this much of the field in this chapte:
requires us: to omit many crucial areas; the reader is encouraged to se
suggested readings at the end of the chapter for useful textbooks and article
This chapter also includes-a short section on the acoustic component
speech synthesm aigonthms discussed in Chapter 4. :

recognition. Chapter 4 introduced the notions of phone and syllable.
O T .



237

-Section 7.1. Speech Recognition Architecture

“ter 5 introduced the noisy channel model, the use of the Bayes rule, and
‘the probabilistic automaton. Chapter 6 introduced the N-gram language
.:ﬁlodel and the perplexity metric. In this chapter we introduce the remaining
‘components of a modern speech recognizer: the Hidden Markov Model
(HMM), the idea of spectral features, the forward-backward algorithm
for HMM training, and the Viterbi and stack decoding (also called A* de-
‘coding algorithms for solving the decoding problem: mapping from strings
‘of phone probability vectors to strings of words.

.. Let’s begin by revisiting the noisy channel model that we saw in Chap-
er 5. Speech recognition systems treat the acoustic input as if it were a
‘noisy” version of the source sentence. In order to “decode” this noisy
“sentence, we consider all possible sentences, and for each one we compute
:the probability of it generating the noisy sentence. We then chose the sen-
tence with the maximum probability. Figure 7.1 shows this noisy-channel
“metaphor.

S L _ : vess at
. noisy X g .

.: zg]lll{;?ce L ' sentence  DECODER original

7Allce was beginning to get ) sentence

?Every happy tamily..,

?ln & hole in the ground...
71 music be the food of fove...
7If music be the foot of dove..,

F s C N
5 ;[é;&cngicﬁ:... = If music be the

food of love...

NOISY CHANNEL

‘Figure7.1  The noisy channel model applied to entire sentences (Figure 3.1
- showed its application to individual words). Modern speech recognizers work
. by searching through a huge space of potential “source” sentences and choos-
.. ing the one which has the highest probability of generating the “noisy” sen-
w tence. To do this they must have models that express the probability of
. sentences being realized as certain strings of words (N-grams), models that
- express the probability of words being realized as certain strings of phones
- (HMMSs) and models that express the probability of phones being realized as
- acoustic or spectral features (Gaussians/MLPs).

. Tmplementing the noisy-channel model as we have expressed it in Fig-
~ure 7.1 requires solutions to two problems. First, in order to pick the sentence
__'f_h'at best matches the noisy input we will need a complete metric for a “best
‘match”. Because speech is so variable, an acoustic input sentence will never
“exactly match any model we have for this sentence. As we have suggested
in previous chapters, we will use probability as our metric, and will show
- how to combine the various probabilistic estimators to get a complete esti-
‘mate for the probability of a noisy observation-sequence given a candidate
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sentence. Second, since the set of all English sentences is huge, we need
an efficient algorithm that wili not search through all possible sentences, b
only ones that have a good chance of matching the input. This is the dee
ing or search problem, and we will summarize two approaches: the Vite
or dynamic programming decoder, and the stack or A* decoder. '

In the rest of this introduction we will introduce the probabilistic
Bayesian model for speech recognition (or more accurately re-introduce j
since we first used the model in our discussions of spelling and pronuncia
in Chapter 5); we leave discussion of decoding/search for pages 244-251

The goal of the probabilistic noisy channel architecture for speee
recognition can be summarized as follows:

" “What is the most likely sentence out of all sentences in the lan—
guage L gwen some acoustzc mput O 2"

We can treat the acoustic mput O as a sequence of 1nd1v1dual ¢
bols” or “observations” (for example by slicing up the input every 10 mﬁ
liseconds, and representing each slice by floating-point values of the ener;
or frequencies of that slice). Each index then represents some time int
and successive o; indicate. temporally. consecutive slices of the mput (no
that cap1ta1 letters will stand for sequences of symbols and lower-case. lette
for individual symbols): '

o __0~e01,02,03, 0:__

" Similarly, we wﬂl treat a sentence as if it were composed snnpl of
strmg of words S

W Wl,W23W3, Wn

: Both of these are 51mphfymg assumptxom for example d1v1d1ng '
tences into words is sometimes too fine a division (we’d like to model f;
about groups of words rather than individual words) and sometimes too
a division {we’d like to talk about morphology). Usually in speech reco;
tion a word is defined. by orthography (after mapping every word to lov
case): oak is treated as a different word than oaks, but the auxiliary can (¢
you tell me....”) is treated as the same word as the noun can (*t need
of...” ). Recent: ASR research has begun to focus on building mo
phistibated'inodelq of ASR words incorporating the morphological insi
of Chapter 3 and the part 0f~Speech mformatmn that we will stody in €
ter 8 :
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The probabilistic implementation of our intuition above, then, can be
expressed as follows:

W = argmax P(W|0) (7.3)

Wer :

- Recall that the function argmax  f(x) means “the x such that f(x) is
afg'est”. Equation (7.3) is guaranteed to give us the optimal sentence W; we
w need to make the equation operational. That is, for a given sentence W
and acoustic sequence O we need to compute P(W|0). Recall that given any
probablhty P(x|y), we can use Bayes’ rule to break it down as follows:

P(ylx)P{x)
- Plxly) =
. 'We saw in Chapter 5 that we can substitute (7.4) into (7.3) as follows:

W = argmax D IOWEW)
5 WeL P(0)

- The probabilities on the right-hand side of (7.5) are for the most part
easier to compute than P(W!0). For example, P(W), the prior probability
of the word string itself is exactly what is estimated by the n-gram language
models of Chapter 6. And we will see below that P(O[W) turns out to be
casy | o estimate ‘as well. But P(0), the probability of the acoustic obset-
hon sequence turns out to be harder to estimaté. Luckily, we can ignore
P(O) Just as we saw in Chapter 5. Why‘? ‘Since we are maximizing over
all p0531b1e sentences, we will be computing M for each sentence in

(7.4)

(7.5)

the language But P(0O) doesn’t change for each eentence' For each potential
sentence we are still examining the same observations (), which must have
the same probablhty P{0). Thus'

P(OW)P(W). |
. WeL P(O) T M%He?XP(OEW) v ) 7o
+To summarize; the most probable sentence W given some observatlon
_seq'uence O can be computing by taking the product of two probabilities for
gach sentence, and choosing the sentence for which this product is greatest.
These two terms have names; P(W), the prior probability, is called the lan-
u'age medel. P(O|W), the observation likelihood, is called the acoustic

W:

NI S hkehhood pﬂOf

o Key Concept #5. W - argmax P(O]W) P( W) (1.7
: WeL :

: _We havc already seen in Chapter 6 how to compute the 1anguage model
prior P(W) by using N-gram grammars. The rest of this chapter will show
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' fems for a Slmphﬁed input consnstmg of strings of phones, we will show

-.den Markov Models and the phone-probability eéstimators, the forwar
- backward or Baum-Welch algorithm) (Baum, 1972), a special case of the

. nents of a speech recognition system. The figure shows a speech reco gnmon
“system: broken' down: into-three stages. In the signal processing or fea

- stage 15 a vector of probabilities over phones for each frame (i.e., “foi_

how to compute the acoustic model P(O|W), in two steps. First we will
make the simplifying assumption that the input sequence is a sequence of
phones F rather than a sequence of acoustic observations. Recall that w
introduced the forward algorithm in Chapter 5, which was given “obser-
vations” that were strings of phones, and produced the probability of these
phone observations given a single word. We will show that these probabilis-
tic phone automata are really a special case of the Hidden Markov Model,
and we will show how to extend these models to give the probab1hty of a
phone sequence given an entire sentence.

One problem with the forward algorithm as we presented it was that in
order to know which word was the most-likely word (the “decoding prob-
lem™), we had to run the forward algorithm again for each word. This i_s:
clearly intractable for sentences; we can’t possibly run the forward algo-
rithm separately for cach possible sentence of English. We will thus intr
duce two different algorithms which simultaneously compute the likelihood:
of an observation sequence given each sentence, and give us the most- hkely
sentence. Thesé are the Viterbl and the A* decoding algorithms.,
o 0nce we have solved the likelthood- computatlon and decodmg pro

how'the same algonthms can be applied to true dcoustic input rather than
pre—deﬁned phones This will 1nvolve a qulck introduction to acoustic 1nput
and feature extraction, the process of deriving meaningful features from
the input soundwave. Then we will introduce the two standard models’ for
comiputing phone-probabilities from these features: (zausstan models, and
neural net (muilti-layer perceptrons) models. '

- Finally, we will introduce the standard’ algorithm for training the Hid-

the Expectatmn-Max;mlzatwn or EM algorithm (Dempster et al., 1977).
..-As a preview of the chapter, Figure 7.2 shows an outline of the comp

extraction stage; the acoustic- waveform-is sliced up into frames (usually
of 10; 15, or 20 milliseconds} which are transformed into spectral featu
which give information about how much energy in the signal is at diffe;
frequencies. In the subword or phone recognition stage, we use stans
techniques like neural networks or Gauséian models to tentatively recogniz
individual speech sounds like p or 5. For a neural network, the output of this
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rame the probability of [p]is .8, the probability of [b] is. 1, the probability of
f]is .02, etc.”); for a Gaussian model the probabilities are slightly different.
Finally, in the decoding stage, we take a dictionary of word pronunciations
nd a language model (probabilistic grammar) and use a Viterbi or A* de-
‘coder to find the sequence of words which has the highest probability given
the acoustic events.

Speech
Waveform

Feature Extraction
{Signal Processing)

eural Net SpEctraE
e Feature
Vectors
Phone Likelihood

| * Estimation {Gaussians
D or Neural Networks)

Nghim Grammar L HODE LaR om0
{dag cat Likelihoods ar 0 ax 004 @ 004 m 047 20P
- vl (hUT el 63 ef 203 em (M)
i \ Plolq) o8008 o 007 o 205 e
03 o . :
Decoding {Viterbl 1 l l l
HMM Lexicon —>or Stack Dscoder) 4
8‘;)%?%. . | I ] . . JL |
T2 Words B ' need a: e

Figure 7.2 -~ Schematic architecture for a {simplified) speech recognizer.

- OVERVIEW OF HIDDEN MARKOV MODELS

In Chapter 5 wé used weighted finite-state automata or Markov chains to
odel the pronunciation of words. The automata consisted of a sequence
states ¢.= (qoq192 .+ qn), each corresponding to a phone, and a set of
nsition probablhues between states, do1,d13,d13, encoding the probability
) e'phone following another.: We represented the states as nodes, and
e transition probabilities as edges between nodes; an edge existed between
twonodes: if there was a non-zero transition probability between the two
des.- We also saw that we could use the forward algorithm to compute the
ikelihood of & sequence ‘of observed phones o = (010205...0;). Figure 7.3
“shows an antomaton for the word need Wlth sa.mple observation sequence of
_the'kind we saw in Chapter 5. '
- 'While we will see that these models ﬁgure meortantly in speech recog-
nition; they simplify the problem in two. ways. First, they assume that the
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HIDDEN
MARKOV
MODEL

input consists of a sequence of symbols! Obviously this is not true in’

_ representation of the sliced-up input signal, called features or spectral fe:
‘tures:: We will study the details of some of these features beginning’ on
‘page 259: acoustic features represent such information as how much ene
‘there is at different frequencies. The second simplifying assumption of the

' Wthh state to move to. The input symbois don’tuniquely determine the n

: ag; dy; axn=.
Word Model

Observation

Sequence " 0 ’
(pr?one symbols}) n y d

0 0; 03

Figure 7.3 A simple weighted automaton or Markov chain pronunciation

* network for the word need, showing the transition probabilities, and a sampie
observation sequence: The transition probabilities a,, between two states.

- and y are 1.0 unless otherwise specified.

real world, where speech input consists essentially of small movements
air particles. In speech recognition, the input is an ambiguous, real-valué:

wetghtcd automata of Chapter 5 was that the input symbols correspond
actly to the states of the machine. Thus when seeing an input symbol
we knew that we could move into a state Iabeled [b]. In a Hidden Markov
Model (HMM), by contrast, we can’t look at the input symbols and kno

State - . . . .
- Reécall that a Welghted automaton or smlple Markov model is speci xd
by the set of states O, the set of transition probabililies A, a defined st

state.and end state(s) and a set of observation likelihoods 5. For weigh
automata, we defined the probabilities b;(o,) as 1.0 if the state i matched
observatlon o; and 0 if they didn’t match. An HMM formally differs fro
Markov model by adding two. more requirements. First, it has a separate set
of Obser'vati'onisymbolk O, which is not drawn from the same alphabet as:t

I Actually, as we mentioned in passing, by this second criterion some of the automata v
saw in Chapter § were technically HMMs as well. This is because the first symbol in the
input string [r iy] was compatible with the [n] states i the words need or an. Seeing
symbols [n], we didn’t know which underlying state it was generated by, need-r or an-n;
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st.ate set . Second, the observation likelihood function B is not limited to
the values 1.0 and 0; in an HMM the probability b;(o, } can take on any value
“from 0 to 1.0.

Word Model

bilop  byloy PO Da0d b3(05)

| Observation '
' Sequence
I {spectral feature
" vectors)
. 0; 04 05

" “Figure 7.4  An HMM pronunciation network for the word need, showing
““the transition probabilities, and a sample observation sequence. Note the ad-
““dition of the output probabilities B. HMMs used in speech recognition usually
= use self-loops on the states to model variable phone durations.

" Figure 7.4 shows an HMM for the word need and a'sample observa-
tion sequénce. Note the differences from Figure 7.3. First, the observation
sequences are now vectors of spectral features representing the speech sig-
nal. Next, note that we’ve also allowed one state to generate multiple copies
of the same observation, by having a loop on the state. This loops allows
HMMs to model the variable duration of phones; longer phones require more
loops through the HMM.

" In summary, here are the parameters we need to define an HMM.:

< » states: a set of states O == q142...gn

e transition probabilities: a set of probablhtles A=uapiapz.. . dp) ... Ony
_ Each a;; ; represents the probability of transitioning from state i to state

" j. The set of these is the transition’ probability matrix

» observation likelihoods: a set of observation likelihoods B = b;(o/),

“+ each expressing the probab1hty of an observation ¢; being generated
- from a state {

- Inour example‘; so far we have used two ‘special” states (mon-emitting
states) as the start and end state; as we saw in Chapter 5 it is-also possible to
avoid the use of these states by specifying two more things:
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 initial distribution: an initial probability distribution over states, 7,
such that m; is the probability that the HMM will start in state i. Of:
course some states j may have ©t; = 0, meaning that they, cannot be:
initial states.

. acceptmg states: a set of legal accepting States

As was true for the welghted automata, the sequences of symbols th: :
are mnput to the model (if we are thinking of it as recognizer) or which are .
produced by the model (if we are thinking of it as a generator) are generally-
called the observation sequence referred to as O = (010203, .07).

7.3 THE VITERBI ALGQRITHM REVISITED

Chapter 5 showed how the forward algorithm could be used to compute the
probability of an observation sequence givern an automaton, and how the’
V1terb1 algonthm can be. used to find the most-likely path through the au-
tomaton, as well as the: probability of the observation sequence given this

‘most-likely path. In Chapter 5 the observation sequences consisted of a sin~:

gle word:: But in continuous speech; the input consists of sequences of words;

- and we aré not given the location of the word boundaries. Knowing whe

the word boundaries are massively simplifies the probiem of pronunciation;

Cim Chapter 5, since we were sure that the pronunciation [ni] came from one-

word, we- only had seven candidates fo compare But in actual speech we
don’t know whete the word boundaries are. For example, try to decode the:
followm g sentence from SW1tchboard (don t peek ahead')

[aydlh hherdSahmthlhngaxbawmuhvIhngrlhsenllh}

The answer is in the footnote The task is hard partly because of coar—'
ticulation and fast speech (e. g., fd] for the first phone of just!). But mamly'
it’s the lack of spaces indicating word boundaries that make the task difficult,
The task of ﬁndmg word boundaries in connected speech 1 is called segmen-
tation and we will solve it by using the Viterbi algorithm just as we did for.
Chinese word-segmentation in Chapter 5; recall that the algorithm for Chi-

- nese word—segmentanon relied on choosing the. segmentation. that resulted

in the sequence of words. with the highest frequency. For speech segmenta;
tion we use the more sophisticated N-gram language models introduced i i

E Chapter 6. In the rest of this section we show how the Viterbi algorithm ¢

- 21 just heard something about moving récently,
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be applied to the task of decoding and segmentation of a simple string of
observations phones, using an n-gram language model. We will show how
the algorithm is used to segment a very simple string of words. Here’s the
input and output we will work with:

Input Output
taa niy dh ax} [ need the

_ Figure 7.5 shows word models for I, need, the, and also, just to make
things difficult, the word on.

Word model for "on™

g

- Word modei for "nesd" ) _ o Word model for "I"

Figure 7.5 Pronunciation networks for the words I, on, need, and the. All
networks (especially the) are significantly simplified.

Recall that the goal of the Viterbi algorithm is to find the best state se-

A graphic ilustration of the output of the dynamic programming algorithm is
shown in Figure 7.6. Along the y-axis are all the words in the lexicon; inside
-_éééh word are its states. The x-axis is ordered by time, with one observed
'_“p:héné per time unit.* Each cell in the matrix will contain the probability of
the most-likely sequence ending at that state. We can find the most-likely
state seéquence for the entire observation string by looking at the cell in the
Tight-most column that has the highest probability, and tracing back the se-
quence that produced it.

: This' x-axis component of the model is simplified in two major ways that we will show
ow o fix in the next section. First, the observations will not be phones but extracted spectral
fe_atiirés, and sé¢cond, each phone consists of not time wnit observation but many obsefvations
(S_iiic'e phones can fast for more than one phone). The y-axis is also simplified in this example,
ince as we will see most ASR system use multiple “subphone” units for each phone.
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DYNAMIC
PROGRAMMING - -

INVARIANT

= happens to go through a state g;, that this best path must include the bes
L path up to and mcludmg state ;. ThlS doesn’t mean that the best path at'any

- observations and ends in state i of the HMM. This is the most-probable path
- out of all possrb]e sequences of states of length t—~ 1

begmnlng But turn out to be the best path. As we will see later, the Vite:

v of the mlmmum edrt distance algorlthm m Chapter 5, the reasor for makmg
_ the Vlterbl assumptlon is that 1t allows us to break down the computatron

‘Chapter.. 7. HMMs and Speech Recognition

“need i

- the

- “aamn i dh ax .

_ .-'Flg'ure 7.6 An illustration of the results of the Viterbi algorrthm used to.
- find the most hkely phone sequence (and hence estrmate the most hke]y wor
O sequence) : . - :

_ More formally, we are searchmg for the best state sequence

'(ngz .qr), given an’ observatrou sequence o= (010;...0r) and a mode
{a welghted automaton or “state graph”) A. Each cell vzrerbz[z t] of the 1
.tI‘lX cotitaiiis the probabrhty of the best path which accounts for the first:

o vzterbz[t z] = max. - (qlqz qt 15y ——l 01,02 o,{?t)
g G- 1

In order to compute vzterbt{t z], the Vrterbr algorrthm assumes the d'

_narmc programmmg invariant. This is the srmphfymg (but tncorrect) as
‘sumption: that if the ultimate best. path for the entire observation sequenc"

time £ is the’ best path for the whole sequence A path can look bad at th
' assumptron breaks’ down for certain kinds of grammars (1nc1udmg trigrar

' grammars) and SO some recogmzers have moved to another kind of decoder
the stack or A* decoder; more on that later. As we Saw in our discussion

_'_“z'ss
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f the optimal path probability in a simple way; each of the best paths at
e ¢ is the best extension of each of the paths ending at time £ — 1. Tn
ther words, the recurrence relation for the best path at time ¢ ending in state
viterbi(t,j], is the maximum of the possible extensions of every possible
ious path from time # — 1 to time ¢: ‘

viterbilt, j| = max(viterbi[t — 1,1)a;;) b;(o;) (7.9)

- The algorithm as we describe it in Figure 7.9 takes a sequence of ob-

ough the automaton. Since the algorithm requires a single automaton, we
1"need to combine the different probabilistic phone networks for the, 1,
eed; and a into one automaton. In order to build this new automaton we
need to add arcs with probablhues between any two words: bigram
robabilities. Fi gure 7.7 shows simple bigram probabilities computed from
he'combmed Brown and Switchboard corpus.

0.0016 need need 0.000047] #Need 0.000018
000018 . | needthe 0012 | #The 0016
0.000047 | needon . 0.000047| #On . 0.00077
0.039. . poneedI.. . 0.000016; #I 0.079
0.00051 onneed  0.000055

0.0099 .| onthe. 0.094

0.00022 onon  0.0031

0.00051 | onI _  0.00085

Bigram probabilities for the words the, on, need, and I following
ch other, and starting a sentence (i.e., following #). Compuied from the
combmed Brown and Switchboard corpora with add-0.5 smoothing.

- Figure 7.8 shows the combined pronunciation networks for the 4 words
-fogether with a few of the new arcs with the bigram probabilities. For read-
nility of the diagram, most of the arcs aren’t shown; the reader should imag-
ne¢ that each probability in Figure 7.7 is inserted as an arc between every two
.ordﬁ :

o The algonthm is given in Flgure 519 1in Chapter 5 and is repcated
ere’ for convenience as Figure.7.9.. We see in Figure 7.9 that the Viterbi
“algorithm sets up a probability matrix, with one column for each time index
¢ and. one tow for each state in the state graph. - The algorithm first creates
42 columns; Figure. 7.9 shows the first six columns. The first column is
-an initial pseudo-observation, the next corresponds to the first observation
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000018
0005

020,020
0005

Figure 7.8  Single automaton made from the words I, need, on, and the. Th
- arcs between words have probabilities computed from Figure 7.7. For lack of:

phong :[a'a],"and s on, We begin in the first column by setting the probabilit

find this in Figure 7.10. Cells with probability 0 are simply left blank fo
o readablhty For each column of the matrix, that is, for each time mdex
: each cell viterbi[t, 7], will contain the probability of the most likely path: t;
“end in that cell. We will calculate this probability recursively, by maximizin,
~over the probablhty of coming from all possible preceding states. Then i
- move to the next state: for each ‘of the i states viterbi[0,i] in column O, Wi

column 1, according to the recurrence relation in (7.9). In the column fo

~vation dh, we could have arrived from either the iy of need or the iy of the

space the figure only shows a few of the between-word arcs.

of the start state to' 1.0, and the other probabilities to 0; the reader shot

cornpute. the probability of moving into each of the j states viterbill,j]

the input aa, only two cells have non-zero entries, since b {aa) is zero fo
every other state except the two states labeled aa. The value of viterbi(t,aa
of the word £ is the’ product of the transition. probability from # to [ and: th
probability: of I being pronounced with the vowel aa.
. Notice that if we look at the column for the observation n, that the'wor
on is currently the “most-probable” word. But since there is no word or-s¢
of words in this lexicon which is pronounced i dh ax, the path starting witk
on is a dead end; that is, this hypothesm can never be extended to cover |
whole utterance. PSR .
- By the time we see the observatlon iy, there are two compe‘ung path'
I'need and I the; T reed is: curréntly more likely. When we get to the obser
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fzjncﬁon VITERBI{wbservations of len T, state-graph) returns best-path

‘num-states < NUM-OF-STATES(state-graph)
*Create a path probability matrix viterbi[num-states+2,T+2]
“yiterbif0,0]+ 1.0
~for each time step ¢ from O to T do
. for each state s from 0 to num-states do
~ for each transition s* from s specified by state-graph
new-score ¢ viterbils, 1] * als.s'] * ba{o;)
if ((viterbils #+1] = 0) || {new-score > viterbi[s', t+11))
then -

" viterbi[s', t+1] 4 new-score

back-pointerls’, t+1]+s

_Backtrace from highest probability state in the final column of viterbi[] and
return path.

Figure 7.9  Viterbi algorithm for finding optimal sequence of states in con-
“tinuous speech recognition, simplified by using phones as inputs (duplicate of
guire 5.19).- Given an observation sequence of phones and a weighted an-
tomaton (state graph), the algorithm returns the path through the automaton
vhich has minimum probability and accepts the observation sequence. als, s']
is the transition probability from current state s to next state s’ and by (o) is
he observation likeliliood of 5’ given oy.

The probability of the max of these two paths, in this case the path through 7
need, will go into the cell for dh.

Fmally, the probability for the best path will appear in the final ax
columin, - In this example, only one: cell is non-zero in this column; the ax
state of the word the (a real example wouldn’t be this simple; many other
cells would be non-zero). .

. If the sentence had actually ended here, we would now need to back-
trace to find the path that gave us this probability. We can’t just pick the
highest probability state for each state column. Why not? Because the most
likely path early on is not necessarily the most likely path for the whole sen-
tence: Recall that the most likely path after sceing # was the word on. But
the most likely path for the whole sentence is / need the. Thus we had to
rely in Figure 7.10 on the “Hansel and Gretel” method (or the “Jason and
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plified; “actual implementations of Viterbi decoding are more complex in

-.Figure 7.10 - . The entries in the individual state columns for the Viterbi a
. gorithm; Each cell keeps the probability of the best path so far and a pointer
to the’ prevu)us cell along that path. Backtracmg from the successful last word-.--
- (z‘he) we can reconstruct the WDl’d sequence I'need rhe o

The pfesentati'on' of the Viterbi algorithim in this section has been st

three key ways that we have mentioned already. First, in an actnal HMM
for speech’ recognition,: the input would not be phones. Instead, the input
is a feature vector- of spectral and acoustic features: Thus the observa
likelihood probabilities ;(¢) of an observation o, given a state i will not
sitnply take on the values 0 or 1, but will be more fine-grained probabili
estimates; computed via mixtures of Gaussian probability estimators or ne
ral nets: The next section will show how these probabilities are computed.

- Second, the'HMM states in most speech recognition systems are not
simple phones but rather subphones. - In these systems each phone is d
vided into-three states: the beginning; middie and final portions of the ph_o_n
Dividing up ‘a phone in this way captures the intuition that the significa
changes: in the acoustic input happen at a finer granularity than the phon
for example the closure and release of a stop consonant. Furthermore, man
systems use a separate instance of each of these subphones for each trlp dh_ :
context (Schwartz et al.; 1985; Deng et ak, 1990). Thus instead of around
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0’-phone units, there could be as many as 607 context-dependent triphones.
In practice, many possible sequences of phones never occur or are very rare,
50 systems create a much smaller number of triphones models by clustering
e possible triphones (Young and Woodland, 1994). Figure 7.11 shows an
fc'a’_mple of the complete phone model for the (riphone b{ax,aw).

Figure 711  An example of the context-dependent triphone b{ax,aw) (the
~phone [b] preceded by a [ax] and followed by a [aw], as in the beginning of
“-abont, showing its left, middle, and right subphones.

'Finally, in practice in large-vocabulary recognition it is too expensive
_ n31der all possxble words when the algorithm is extending paths from

ne tate .column to the next. Tnstead, low-probability paths are pruned at
ach tlme step and not extended to the next state column. This is usually im-
5 plemented via beam search: for each state column (time step), the algorithm  seau searcn
1i 'tai'ns a short list of high-probability words whose path probabilities are
ithin'some percentage (beam width) of the most probable word path. Only  seauwom
__‘transmons from these words are extended when moving to the next time step.
ince the words are ranked by the probability of the path so far, which words
are-within the beam (active) will change from time step to time step. Making
this beam search approximation allows a significant speed-up at the cost of
dégradation to the decoding performance.. This beam search strategy was
Ist 1mplemented by Lowerre (1968). Because in practice most implemen-
tations of Viterbi use beam search, some of the literature uses the term beam
arch or time-synchronous beam search instead of Viterbi.

- ADVANCED METHODS FOR DECODING
Thereare two main limitations of the Viterbi decoder. First, the Viterbi
decoder does not actually compute the sequence of words which is most

probable given the input-acoustics: Instead, it computes an approximation to
the sequence of states (i.e:, phones. or subphones). which is most prob-
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" N-BEST -

'wzth all possible language models. In fact, the Viterbi algorithm as we hav

- variant that makes dynamic programming algorithms possible, Recall that
 this invariant is the simplifying (but incorrect) assumption that if the ultimate

-g;» that this best path must include the best path up to and including: sta

‘gram: probability. given: Wy, W3, but that conversely the best path to w, chd.n

~ - which returns the N-best sentences (word sequences) for a given spee

able given the input. This difference may not always be important; the m
probable sequence of phones may very well correspond exactly to the mo
probable sequence of words, But sometimes the most probable sequence
of phones does not correspond to the most probable word sequence. T
example consider a speech recbgnition system whose lexicon has multip.
pronunciations for each word. Suppose the correct word sequence includes
a word with very many pronunciations. Since the probabilities leaving
start arc of each word must sum to 1.0, each of these pronunciation-paths
through this multiple-pronunciation HMM word model will have a sma
probability than the path through a word with only a single pronunciatic
path. Thus because the Viterbi decoder can only follow one of these pronii_'
ciation paths, it may ignore this word in favor of an incorrect word with on
one pronunciation path. .

- A second problem W1th the Vlterbl decoder is that it cannot be use

defined it cannot take complete advantage of any language model more corm:
plex than a bigram grammar. This is because of the fact mentioned eatly th
a trigram grammar; for example, violates- the dynamic programming

best path for the éntire observation sequence happens to go through a s

g5 Since atrigram grammar allows the probability of a word to be based:o
the two previous words, it is possible that the best trigram-probability -
for the sentence may go through a word but not include the best path to-
word: - Such: a-situation: could occur if a particular word w, has a high t

include w; (i.¢.; P(wy|wy, w,) was low for all g).

-+ There are two classes of solutions to these problems with V1terb1 d
codmg._ - One class involves ‘modifying the Viterbi decoder.to return: mu
tiple potential utterances and:then using other high-level language mod
or pronunciation-modeling: algorithins to re-rank these multiple outputs'
general this kind of multiple-pass decoding allows a computationally- efﬁ
cient, but perhaps unsophisticated, langtiage model like a bigram to perf 1
arough first decoding pass, allowing more sophisticated but slower decod
algonthms to-tin on a reduced search space::

- For example; Schwartz and Chow (1990) give a V1terb1 hke algo thy

put. Suppose for example a'bigram grammar is used with this N -best- Vit el

274



Advanced Methods for Decoding

Section 7.4.

253

o return the 10,000 most highly-probable sentences, each with their likeli-
hood score. A trigram-grammar can then be used to assign a new language-
1odel prior probability to each of these seniences. These priors can be
ombined with the acoustic likelihood of each sentence to generate a pos-
or probability for each sentence. Sentences can then be rescored using
this' more sophisticated probability. Figure 7.12 shows an intuition for this

Simple Smarter
Knowledge Knowledge
Source Source

N-Best List

“Afice was beginning lo get.
2 Every happy family...

N'BeSt 2In a hole In the ground...

Decoder | 71 musiobathe food of love..

FIf music be the foat of dove..

1-Best Utterance

.
#*_If masic be the
?  food of love...

Rescoring

~food of love...

igure 7.12  The use of N-best decoding as part of .a two-stage decoding
-model, Efficient but unsophisticated knowledge sources are used to return the
" N-best utterances. This significantly reduces the search space for the second

‘pass models, which are thus free to be very sophisticated but slow.

“~An augmentation of N-best, still part of this first class of extensions to
Witerbi, is to return, not a list of sentences, but a word lattice. A word lattice
s a directed graph of words and links between them which can compactly
encode a large number of possible sentences. Each word in the lattice is aug-
mented with its observation likelihood, so that any particular path through
the Tattice can then be combined with the prior probability derived from a
niore sophisticated language model. For example Murveit et al. (1993) de-
__sc_ﬁbe an algorithm vsed in the SRl recognizer Decipher which uses a bigram
“grammar in a rough first pass, producing a word lattice which is then refined
v & more sophisticated fanguage model.

-+ The second solution to the problems with Viterbi decodmg isto employ
completely different decoding algorithm, The most common alternative
gorithm is the stack decoder; also called the A* decoder (Jelinek, 1969;
linek et al., 1975). We will describe the algorithm in terms of the A*
‘search used in the artificial intelligence literature; although the development
of stack decoding actually came from the communications theory literature
“and the link with AT best-first search was noticed only later (Jelinek, 1976).
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PRIOR{TY
QUEUE

~tional probability of this next word given the part of the sentence we've seen

- each clement - has-a score, and the pop- operation returns the element with

aigonthm PP

Chapter 7. HMMs and Speech Recognition
A* Decoding

To see how the A* decoding method works, we need to revisit the Viterbi al=
gorithm. Recall that the Viterbi algorithm computed an approximation of the
forward algorithm. Viterbi computes the observation likelihood of the single
best (MAX) path through the HMM, while the forward algorithm computes
the observation likelihood of the total (SUM) of all the paths through the
HMM. But we accepted this approximation because Viterbi computed this
likelihood and searched for the optimal path simultancously. The A* decod
ing algorithm, on the other hand, will rely on the complete forward algorithm
rather than an approximation. This will ensure that we compute the correct
observation likelihood.. Furthermore, the A* decoding algorithm allows us
to use any arbitrary language model. _

The A* decoding algorithm is a kind of best-first search of the lattice o
tree which implicitly defines the sequence of allowable words in a Eanguagﬁ'
Consider the tree in Figure 7.13, rooted in the START ncde on the left. Each
leaf of this tree defines one sentence of the language: the one formed by
concatenating all the words along the path from START to the leaf. We
don’t represent this tree explicitly, but the stack decoding algorithm uses the
trec implicitly as'a way to structure the decodlng search. .

~The algorithm performs a search from the root ‘of the tree toward the
leaves, looking for the highest probability path, and hence the highest prob:
ability sentence:  As we proceed from root toward the leaves, each branch
leaving a given word node represent a word which may follow the curren
word, Each of these branches has a probability, which expresses the condi

so-far. In’ addition, we will use the forward algorithm to assign each word
likelihood of producing some part of the observed acoustic data. The A* de
codet must thus find the path (word sequence) from the root to a leaf whi
has the highest probability, where a path probability is defined as the prod-
uct of its. language model probability (prior) and its acoustic match to: the
data (likelihood).- It does this by keeping a priority queue of partial path
(i.e.; prefixes of sentences, each annotated with a score). In a priority que_u'

the highest score. The A* decoding algorithm iteratively chooses the bes

prefix-so-far, computes all the possible next words for that prefix, and adds
these extended sentences to the queue. The Figure 7.14 shows the complet
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to
intention
my
bequeath
~do - - not
I :
want believe )
- the '
; ; can’t .
lives
START: i underwriter
of :
typically
are )
: ; " mice
dogs:
. exceptional
Figure 7.13 A visual representation of the implicit lattice of allowable
- word sequences that defines a language. The set of sentences of a language
=+ 1s far too large to represent explicitly, but the lattice gives a metaphor for ex-
- ploring substrings of these sentences. J

Let’s consider a stylized example of a A* decoder working on a wave-
“form for which the correct transcription is If music be the food of love. Tig-
ure 7.15 shows the search space after the decoder has examined paths of
length one from the root. A fast match is used to select the likely next
words. A fast match is one of a class of heuristics designed to efficiently
“winnow down the number of possible following words, often by comput-
ing some approximation to the forward probability (see below for further
discussion of fast matching).

Al this point in our example, we've done the fast match, selected a sub-
set of the possible next words, and assigned each of them a score, The word
~Alice has the highest score. We haven’t vet said exactly how the scoring
works, although it will involve as a component the probability of the hypoth-
“esized sentence given the acoustic input P(WIA), which itself is composed
-’of the language model probability P(W) and the acoustic likelibood P{A[W).
- Figure 7.16 show the next stage in the search. We have expanded the
:“Alice node. This means that the Alice node is no longer on the queue, but its
- children are. Note that now the node labeled if actually has a higher score
. than any of the children of Alice.
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function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence:
Pop the best (highest score) sentence s off the queue,
If (s 13 marked end-of-sentence (EOS) ) output 5 and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:
Create a new candidate sentence s+ w. :
Use forward algonthm to compute acoustic likelihood Lof s+w
Compute language model probability P of extended sentence s+ w
Compute “score” for s +w (a function of L, P, and 777)
if (end-of-sentence) set EOS flag for s+ w.
Insert s + w into the quene together with its score and EOS flag

Figure 7.14 - The A" decoding algorithm (modified from Paul (1991) and
* Jelinek (1997)). The evaliration function that is used to compute the score fi

a sentence is not compietely deﬁned here; p0331bly evaluation functions are
dlSClJSSed below - : -

Placoustic [ "if" J =
forward probability

Ir -

©P("if" | START) )

- (ndnéj.

_ P(nISTART)

F;gure 7 15 The begmmng of the search for the sentence Jf music be the
food of love " At this early stage Alice i i1s the most likely hypothe31s (It has
h1gher score than the other hypotheses )

Figure.7.17 shows the state of the search after expanditig the if nod
“rémoving it, and adding if music, if muscle, and if messy on to the queue.
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- Placoustics] "if" ) =

forward probabitity

if
P("if" ISTART) 30 was 2 ;
% wants
o 24
(none) Every walls
] 29 5
In
4

‘Figure 7.16  The next step of the search for the sentence If music be the
“food of love. We've now expanded the Alice node and added three extensions
which have a relatively high score (was, wants, and walls). Note that now the
‘node with the highest score is START if, which is not along the START Alice
: path at all!

P(acoustic | music}= -
music forward probability

32

P(music | if ) )
e muscle
P(acoustic | whether) 31
forward probability,

™ | miessy
" 25
PC'if* | START) 0

lwas

29

wants

(none) 24,

i 1

walls

In 2

Figure 7.17 = We’ve now expanded the if node. The hypothesis START if
music currently has the highest score.

We’ve implied that the scoring critérion for a hypothesis s related to its
robablhty Indeed it might seem that the score for a string of words w} given
an acous‘uc strmg yl ﬂhould be the product of the pnor and the ]1kehh00d

yﬂwl W1)
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TREE-
STRUCTURED
LEXICON

.'eo'dmg algorithms require the use of a fast match for quickly finding whict

- hankar; 1996). Each tree root represents the first phone of all words begln_-

Alas, the score cannot be this probability because the probability wil
be much smaller for a longer path than a shorter one. This is due to a sim-
ple fact about probabilities and substrings; any prefix of a string fust have
a higher probability than the string itself (e.g., P(START the ...) will be
greater than P(START the book)). Thus if we used probability as the score
the A* decoding algorithm would get stuck on the single-word hypotheses.

Instead, we use what is called the A* evaluation function (Nilsson,
1980; Pearl, 1984) called f*(p), given a partial path p: :

Hp)= +h* (p)

F*(p) is the estimated score of the best complete path (complete se'n-
tence) which starts with the partial path p. In other words, it is an estimate 0
how well this path would do if we let it continue through the sentence. The
A* algonthm buﬂds thlq estlmate from two components

e g(p) is the score from the begmmng of utterance to the end of the par—
- tial path p. This g function can be nicely estimated by the probablhty
of p given the acoustics so far (i.e., as P(A|W)P(W) for the word string
W constituting p).

e 1*(p) is an estimate of the best scormg extension of the partial path to
the end of the utterance.

Coming up with a good estimate of A* is an unsolved and interesti
problem. One approach is to choose as 2 an estimate which correlates with
the number of words remaining in the sentence (Paul, 1991); see Jeline
(1997} for further discussion. o

We mentioned above that both the A* 'and various other two-stage de

words in the Texicon are Tikely candidates for matching some portion of the
acoustic input. Many fast match algorithms are based on the use of a tr
stractured lexicon, which stores the pronunciations of all the words in such
a way:that. the: computation of the. forward probability can be shared
words which: start with the same sequence of phones.- The tree-structur
lexicon was first suggested by Klovstad and Mondshein (1975); fast match
aIgonthms ‘which’ make use of it include Gupta et al. (1988), Bahl et al "
(1992) in the context of A~ decoding, and Ney et al. (1992) and Nguyen an
Schwartz (1999) in the context of Viterbi decodmg Figure 7.18 shows: an
example of a tree-structured lexicon from the Sphinx-II recognizer (Ravi
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ing with that context dependent phone (phone context may or may not be
reserved across word boundaries), and each leaf is associated with a word.

AW(B,N) HN(AW,DD} |——[ DD(N.# | ABOUND

AW(B,ID) |{TD(AWX)]  ABOUT

B(AX,AH) H AH(B,V) |_-} VAHX) [ ABOVE

KDEY.# | BAKE

EY(B,KD) _
— KD(EY,TD) HTD(KD,#)] BAKED

BAEY) | [REY.0 |-KENG) |—{NGIX# | BAKING

[EY(BK) |
BAKER

} AXR(KIY) HIY(AXR,#) | BAKERY

Figure 7.18 A tree-structured lexicon from the Sphinx-II recognizer (af-
ot Ravishankar (1996)). Fach node cotrésponds to a particular triphone in a
slightly modified version of the ARPAbet; thus EY(B,KD) means the phone
EY preceded by a B and followed by the closure of a K.

“There are many other kinds of multiple-stage search, such as the for-
srd-backward search algorithm (not to be confused with the forward-
2 ]ﬁwﬁrd algorithm for HMM parameter setting) (Austin et al., 1991) which
fforts a simple forward search followed by a detailed backward (ie.,
me—reversed) search

15 AC'OUs*fic' PROCESSING OF SPEECH

his: _séction' presents a very brief overview of the kind of acoustic processing
comimonly called feature extraction or signal analysis in the speech recog-
nition literature. . The term features refers to the vector of numbers which
epresent one time-slice of a speech signal: A number of kinds of features
re commonly used, such'as LPC features and PLP features. All of these are
Spectral featares; which means that they represent the waveform in terms of
¢ distribution of different frequencies which make up the waveform; such
distribution of frequencies is called a spectrum. We will begin with a brief
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introduction to the acoustic waveform and how it is digitized, summarize the
idea of frequency analysis and spectra, and then sketch out different kinds of
extracted features. This will be an extremely brief overview; the interested
reader should refer to other books on the linguistics aspects of acoustic ph
netics (Johnson, 1997; Ladefoged, 1996) or on the engineering aspects o
digital signal processing of speech (Rabiner and Juang, 1993).

Sound Waves

The input to a speech recognizer, like the input to the human ear, is a compl
series of changes in air pressure. These changes in air pressure obvious'-ly‘
originate with the speaker, and are caused by the specific way that air passes
through the glottis and out the oral or nasal cavities. We represent sound
waves by plotting the change in air pressure over time. One metaphor whi
sometimes helps in understanding these graphs is to imagine a vertical plate
which is blocking the air pressure waves (perhaps in a microphone in front of
a speaker’s mouth, ‘or the eardrum in a hearer’s ear). The graph measures t
amount of compress:on or rarefaction (uncompression) of the air molecul
at this plate. Fipure 7.19 shows the waveform taken from the Sw1tchb_o_a
corpus of telephone speech of someone saying “she just had a baby”.

N e . s i . o { . |
0470 0430 0.490 ) 0.504 €510 0.5 0530 {1540

Figure 7.19 . | A waveform of the vowel [iy] from the uiterance shown in Figure 7.20, Th
y-axis shows the changes in air pressure above and below normal atmospheric pressure.
x-axis shows time. Notice that the wave repeats regularly, . - :

FREQUENGY

AMPLITUDE

CYCLES PER
SECOND

HERTZ

- itself, or:cycles. Note in Figure 7.19 that there are 28 repetitions of the wave

- Twe tmportant characteristics of a wave are its frequency and am
tude. The frequency. is:the number of times a second that a wave rep'ea

in the .11 seconds we have captured.. Thus the frequency of this segmen
the wave is 28/.11 or 255 cycles: per second. Cycles per second are usu
called Hertz (shortened to Hz), so the frequency in Flgure 7.19 would
descnbed as 255 Hz... o

. The vertical axis in Flgure 7 19 measures the amount of air pres
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riation. A high value on the vertical axis (a high amplitude) indicates
there is more air pressure at that point in time, a zero value means there
fmal (atmospheric) air pressure, while a negative value means there is
Wer than normal air pressure (rarefdctlon)

Two important perceptual properties are related to frequency and am-
itude: The pitch of a sound is the perceptual correlate of frequency; in
eral if a sound has a higher frequency we perceive it as having a higher
'tch;.'élthough the relationship is not linear, since human hearing has differ-
1t acuities for different frequencies. Similarly, the loudness of a sound is
ﬂié“p_é_féeptual correlate of the power, which is related to the square of the
amplitude. So sounds with higher amplitudes are perceived as Iouder, but
agaii t'he: relationship is not linear. .

How t'b Interpret a Waveform

Sifce humans (and to some extent machines) can transcribe and understand
cch just given the sound wave, the waveform must contain enough infor-
ation o make the task possible. In most cases this information is hard to
X just by looking at the waveform, but such visual inspection is still
t to learn some things. For example, the difference between vowels
t consonants is relatively clear on a waveform. Recall that vowels
¢ voiced, tend to be long, and are relatively foud. Length in time manifests
self. directly as length in space on a waveform plot. Loudness manifests
self as high amplitude. How do we recognize voicing? Recall that voicing
15 caused by régular openings and closing of the vocal folds. When the vocal
folds are vzbratmg, we can see regular peaks in amplitude of the kind we saw
in F1gure 7.19. During a stop consonant, for example the closure of a [p}, [t],
|, -we should expect no peaks at all; in fact we expect silence.

= N0t1ce in Figure 7.20 the places where there are regular amplitude
peaks indicating voicing; from second .46 to .58 (the vowel [iy]), from sec-
}:65.to .74 (the vowel [ax]) and so ‘on. The places where there is no
amplitude indicate the silence of a stop closure; for example from second
06:to second 1.08 (the closure for the first [b}; or from second 1.26 to 1.28
¢ closurc for the second [b}).:
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2000

2000

Figure 7. 20 A wavyeform of the sentence “She justhad a baby” from the Sw1tchb0ard (Ve
pus (conversauon 4325). The speaker is female, was 20 years old in 1991, which is app
imately when the recording was made, and speaks the South Midlands dialect of Americ,
English. The phone labels show where each phone ends. The last bit of the final [iy] VOW
is cut off in this figure.

Spectra

While ‘some broad phonetlc features (presence of voicing; stop closures
fricatives) can be interpreted from:'a waveform, more detailed classifi ati
(which vowel? which fricative?) requires a different representation’
SPECTRAL input in terms of spectral features. Spectral features are based on' th
sight of Fourier that every complex wave can be represented as a sum
many simple waves of different frequencies. A musical analogy for ﬂ']lS
the chord; just as a chord is composed of multiple notes, any wavefor
composed of the waves corresponding to its individual “notes™. '

L2000

o=

200 3 . 5 .
0505 0,919 i 0915 [0EN 093 [C

.- Figure 7.21.. .. The waveform of part of the vowel [] from the word kﬁ_z:d :
.. out from the waveform shown in Figure 7.20.

smaller repeated wave which repeats four times for every larger p'ait'e' _ {
tice the four small peaks inside cach repeated wave). The complex wave
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sency of about 250 Hz (we can figure this out since it repeats roughty
-in.036 seconds, and 9 cycles/.036 seconds = 250 Hz). The smaller
hen ‘should have a frequency of roughly four times the frequency of

pectrum is a representation of these different frequency compo-
“of a wave. It can be computed by a Fourier transform, a mathematical
edure: Wthh separates out each of the frequency components of a wave.
the than usmg the Fourier transform spectrum directly, most speech ap-
hcatmns tise a smoothed version of the spectrum called the LPC spectrum
\ tal and-Hanauer, 1971; Ttakura, 1973).

Flgure 7.22 shows an LPC spectrum for the waveform in Figure 7.21.
LP _(L 'ear Predictive Coding) is a way of coding the spectrum that makes
sier to ce ‘where the spectral peaks are..

dessbuah o s

11000 - 20000 30007

: thmlc measure of amplitude). Thus Figure 7.22 shows that there are
an 'frequency components at 930 Hz, 1860 Hz, and 3020 HZ along

__ponénts at roughly 1000 Hz and 2000 ‘Hz are just what we predlcted by
king at the Wwave in: Flgure 7. 21' :
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Why is a spectrum useful? It turns out that these spectral peaks
are easily visible in a spectrum are very characteristic of different sound
phones have characteristic spectral “signatures”. For example differeft che _
ical elements give off different wavelengths of light when they burn, all '
ing us to detect elements in stars light-years away by looking at the spectru
of the light. Similarly, by looking at the spectrum of a waveform, we can'd
tect the characteristic signature of the different phones that are present. Thi
use of spectral information is essential to both human and machine speech

COCHLEA. recognition. In human audition, the function of the cochlea or inner ea
WEREAR 10 compute a spectrum’ of the incoming waveform. Similarly, the features
used as input to the HMMSs in speech recognition are all mpresentation’s
' spectra usually variants of LPC spectra; as we will see. _ :
S _ - 'While a spectrum shows the frequency components of a wave at on
| SPECTROGRAM pomt i time, a spectrogram is a way of envisioning how the different fr
quenczes which make up a waveform change over time:. The x-axis sho
time, as it did for the waveform; but the: y-axis now shows frequencies:i

Hertz. The darkness of a point on a spectrogram cotresponding to the amp
* “tude of the frequency component. For example, look in Figure 7.23 around
- second 0.9 and notice the dark bar at around 1000 Hz. This means that the
[iy] of the word ske has an important component around 1000 Hz (1000 H
_ o - just between the notés B and C): The dark horizontal bars on a spectrogra
" ForwaNts .. representing spectral peaks, usually of vowels, are called formants.

- Figure 7.23 A spectrogram of the sentence “Shé just had a baby” whose waveform was)
- shown in Figitre 7.20. One way to think of d spectrogra:m is as a collection of spectra (mne
- slices) hke Flgure 7 22 p]aced end to end ' L

R What speciﬁc-'cluesﬁ-ican:spe(:tral representations give for phone idénti
-~ fication?: First; differerit vowel$ have their formants at characteristic places:
We've scen that [ae] in the sample waveform had formants at 930 Hz, 1860
- Hz, and'3020 Hz. Consider the vowel [iy], at the beginning of the utterance
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in Figure 7.20. The spectrum for this vowel is shown in Figure 7.24. The first
rmant of [iy] is 540 Hz; much lower than the first formant for [&], while the
second formant (2581 Fiz) is much higher than the second formant for [e)].
If you look carefully you can see these formants as dark bars in Figure 7.23
ist around 0.5 seconds.

A N B W |

o 1000 2000 3000

Figure 7.24 A smoothed (I.PC) spectrum for the vowel [iy] at the start of
- She just had a baby. Note that the first formant (540 Hz} is much lower than
- the firsi formant for [&] shown in Figure 7.22, while the second formant (2581
: HZ) 1§ much hlgher than the sécond formant for [ee].

= The location of the first two formants (called F1 and F2) plays a large
role'in determining vowel identity, although the formants still differ from
' -speaker to speaker. Formanis also can be used to identify the nasal phones
1} {m], and [g], the lateral phone [1}, and [r]. Why do different vowels have
different spectral signatures? The formants are caused by the resonant cav-
ities of the mouth: The oral cavity can be thought of as a filter which se-
lectively passes through some of the harmonics of the vocal cord vibrations.
Moving ihe tongue creates spaces of different size inside the mouth which
selectively amplify waves of the appropriate wavelength, hence amplifying
 different frequency bands.

Yur survey of the features of Waveforms and spectra was necessarily brief,
but the reader should have the basic idea of the importance of spectral fea-
res and their relation to the original waveform. Let’s now summarize the
- process of extraction of spectral features, beginning with the sound wave
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o Wthh are closer together than this quantum size are represenied identicall;

B spectral features. An LPC spectrum is represented by a ‘Vector of featur

‘CEPSTRAL
CORFFICIENTS

PP

‘work, and only frequencies less than 4,000 Hz are transmitted by telephone:

'ments for eachi sécond of speéch; and so it is important to store the amphtude'_
‘measurement efficiently... They ate usually stored as integers, either 8-b

. ficients by taking the Fourier transform of the spectrum. Another feature
-'PLP (Perceptual Linear Predictive anaiysis (Hermansky, 1990)), takes

' Chapter 7. HMMs and Speech Recognitio

itself and ending with a feature vector.* An input soundwave is first dig
itized. This process of analog-to-digital conversion has two steps: sam-
pling and quantization. A signal is sampled by measuring its amplitude
at a particular time; the sampling rate is the number of samples taken per.
second. Common sampling rates are 8,000 Hz and 16,000 Hz. In orderto
accurately measure a wave, it is necessary to have at least two samples
each cycle: one measuring the positive part of the wave and one measuri
the negative part. More than two samples per cycle increases the amplitu
accuracy, but less than two samples will cause the frequency of the wave to
be completely missed. Thus the maximum frequency wave that can be mea
sured is one whose frequency is half the sample rate (since every cycle needs:
two samples), This maximum frequency for a given sampling rate is calle
the Nyquist frequency. Most information in human speech is in freque:
cies below 10,000 Hz; thus a 20,000 Hz sampling rate would be necessary
for complete accuracy. But telephone speech is filtered by the switching ne

Thus an 8,000 Hz sampling rate is sufficient for telephone—bandw1dth speec
hke the Switchboard corpus.. ' :
. Bveéri an 8,000 Hz sarnphng rate requires 8000 amplitude measure

(values: from -128-127) or 16 bit (values from -32768-32767). This p:
cess of representing a réal-valued number as a integer is called quantizat
because there 18 a2 minimum granularity (the quantum size) and all val

“Once a: waveform has been drgmzed it is converted to some S&t

each formant i is represented by two’ features; plus twd additional features
represent spectral tilt. Thus five formants can be represented by 12 (5 x 2+
features. It is possible to nse LPC features directly as the observation sy
bols of an HMM. However, further processing is often done to the features
One popular feature set is cepstral, which are computed from the LPC coe,

LPC features and modifies them in ways consistent with human hearlng Fo

4 The reader might want to bear in mind Piconie’s (1993) teminder that the lise of the work
extract:on should not be thought of as encouragmg the metaphor of features as somel:hm
“in the signal” warting to be extracted.
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xample, the spectral resolution of human hearing is worse at high frequen-
:c;"e:':s', and the perceived loudness of a sound is related to the cube rate of its
‘intensity. So PLP applies various filters to the LPC spectrum and takes the
cube root of the features.

.6 COMPUTING ACOUSTIC PROBABILITIES

The Tast section showed how the speech input can be passed through signal
‘processing transformations and turned into a series of vectors of features,
each:vector representing one time-slice of the input signal. How are these
eature vectors turned into probabilities?

- One way to compute probabilities on feature vectors is to first cluster
hem into discrete symbols that we can count; we can then compute the
:piobabﬂlty of a given cluster just by counting the number of times it occurs in
:some training set. This method is usually called vector quantization. Vector
'Quantlzatlon was quite common in early speech recognition algorithms but
has mainly been replaced by a more direct but compute-intensive approach:
computing observation probabilities on a real-valued (‘continuous’) input
vector.. This method thus computes a probability density function or pdf
over a continuous space.

_ There are two popular versions of the continuous approach. The most
w1despread of the two is the use of Gaussian pdfs, in the simplest ver-
sion of which each state has a single Gaussian functiorn which maps the
‘observation vector oy to a probability. An alternative approach is the use
‘of neural networks or multi-layer perceptrons which can also be trained
to assign-a probability to a real-valued feature vector. . HMMs with Gaus-
sian observation-probability-estimators are trained by a simple extension to
the forward-backward algorithm (discussed in Appendix. D). HMMs with
neural-net observation-probability-estimators are trained by a completely
dlfferent algorithm known as error back-propagation.

: Tn the simplest use of Gaussians, we assume that the possible values
ot_"- the observation feature vector o; are normally distributed, and so we rep-
1esent the observation probability function b;(o;) as a Gaussian curve with
mean vector uj and covariance matrix . ;; {prime denotes vector transpose).
We present the equation here for completeness, although we will not cover
 the details of the mathematics:

(t)__ L [(Os—m)’ (m—#;)}._”. T dawy

(2ﬂ)12ﬂ
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- ances T could then be estimated by averaging:

i But since there are multlple hldden states, we don t know which o
Vation' vector: oy was produced by which state. Appendix D will show ho
- the forward-backward algorithm can be modified to assign each observatior

: -welghted links. The network is given a vector of input values and comp

Usually we make the simplifying assumption that the covariance
trix X; is diagonal, i.e., that it contains the simple variance of cepstral fea.
ture 1, the simple variance of cepstral feature 2, and so on, without wo
about the effect of cepatral feature 1 on the variance of cepstral feature
This means that in practice we are keeping only a single separate mearn:ang
variance for each feature in the feature vector. L

Most recognizers do something even more complicated; they: -
multiple Gaussians for each state, so that the probability of each feature o
the observation vector is computed by adding together a variety of Gauss
curves. This technique is called Gaussian mixtures. In addition, many AS!
systems share Gaussians between states in a technique known as parameter
tying (or tied mixtures) (Huang and Jack, 1989). For example acoustic'aﬂ.
simifar- phone states might share (i.e., use the same) Gaussians for som
features. - v

How - are the mean and covariance of the Gaussians estunated7 I
helpful: again to consider the simpler case of a non-hidden Markov Mode]
with only one state i. The vector of feature means u and the vector of cov.

vector o; to every possible state i, prorated by the probability that the HMM
was inr state i at-time #. :

~An alternativé way to model continuous- valued features is the use ¢
neural network, multilayer. perceptron (MLP) or Artificial Neural Net
works (ANNs).: Neural networks are far too complex for us to introduc
in a page or two:here;. thus: we. will just give the intuition of how
are' used in probability estimation as an alternative to (Gaussian estima
The interested reader should consult basic neural network textbooks (Ander:
son; 1995; Hertz et al:; 1991) as well as references specifically focusirig o1
neural-network speech recognition (Bourlard and Morgan, 1994). :

“A ‘neural network is a set of small computation units connected
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ector of output values. The computation proceeds by each computational
mputing some non-linear function of its input units and passing the
resulting value on to its output units.
- “The use of neural networks we will describe here is often called a hy-
HMM-MLP approach, since it uses some elements of the HMM (such
the state-graph representation of the pronunciation of a word) but the
crvation-probability computation is done by an MLP instead of a mix-
re.of Gaussians. The input to these MLPs is a representation of the signal
af a time ¢ and some surrounding window; for example this might mean a
ector of spectral features for a time ¢ and eight additional vectors for times
P ' ()ms, t+ 20ms, t -+ 30ms, t +40ms, t — 10ms, and so on. Thus the input
network is a set of nine vectors, each vector having the complete set of
-valued spectral features for one time slice, The network has one output
nit-for ‘each phone; by constraining the values of all the output units to sum
the net can be used to compute the probability of a state j given an
ctvation vector oy, or P(j|o;). Figure 7.25 shows a sample of such a net.
This MLP computes the probability of the FIMM state j given an ob-
serv t1 'n' o, or P{q ;lOr) But the observation likelihood we need for the
HMM, bi(0/), is P(o]g;). The Bayes rule can help us see how to compute
oy from the other. The net is computing: .
(q i r}—" _P(Othj) ( )

! - p(o.t)
We can'rea;rrange the terms as follows:
plolg;)  Plgslor)
plo) . play) |
'The two terms on the rlght—hand S1de of (7 14) can he directly com-
from the MLP the pumerator is the output of the MLP, and the de-
il mmator is the total probability of a given state, summing over all obser-
vations (i.e., the sum over all £ of G;(t)). Thus although we cannot directly

(7.13)

(7.14)

co pute P(0;1g;), we can use (7.14) to compute ~ ﬁ-o’|—qi— , which is known as
a aled likelihoed (the likelihood divided by the probabihty of the observa-
"uon) In fact, the scaled likelihood is just as good as the regular likelihood,
since. the probability of the observation p(o;) is a constant durmg recogmtlon
and doesn t hurt us to have in the equation. © - o

The error-back- propagatlon algorithm’ for tramlng an MLP requires
:that we know the correct ‘phone label g, for each observation o;. Given a
l__arga training set of observations and correct labels, the algorithm iteratively
adjusts the weights in the MLP to minimize the error with this training set.
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7.7 .TRAINING A SPEECH RECOGNIZER

: : .} - These nets are trained using the error-back-propagation algorithm as part o
© | the same embedded training algorithi that is used for Gaussians.

- In'the néxt section we will see where this labeled training set comes from,
- .and how this' training fits in with the embedded training algorithm u
~ for HMMs. Neural nets seem to achieve roughly the same performance as

_' the most probable string of words. But we have not seen how all the pré_b
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Output Layer -
54-61 Phones

Hidden Layer:
500-4000 Fully
Connected Units

Input Layer: _
9 Frames of 20 RASTA or P
features, total of 180 units

\Righr Context

T Lo
1 1 11

- —4lms ~30ms - =20ms - 1ons Iy - 20ms 30mr 0wy, -

Left Contexr. .

 Figure 7.25 A ncural net used to estimate phone state probabilities. Such
“anet can be used in an HMM model as an alternative to the Gaussian mode

| This particular net is from the MIP systems described in Bourlard and Morg:
(1994); it is given a vector of features for a frame and for the four fram

" 'oneither side, and estimates p(g;|or). This probability is then converted:to
-‘an ‘estimate’ of the observation likelihood b = p(o;|g;) using the Bayes rule;

a Gaussian model but have the advantage of using less parameters and the
disddvantage of taking somewhat longer to train. :

We have now introduced all the algorithms which make up the standard
speech Trecognition system that was sketched in Figure 7.2 on page:241
We’ve: séeri how: to build: a. Viterbi decoder, and how it takes 3 inputs: (the
observation likelihoods (via Gaussian or MLP estimation from the specir:
features). the HMM lexicon, and the M-gram language model) and prodt
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METHODOLOGY BOX: WORD ERROR RATE

The standard evaluation metric for speech recognition systerns
is the word error rate. The word error rate is based on low much
the word string returned by the recognizer (often called the hypoth-
esized word string) differs from a correct or reference transcription.
Given such a correct transcription, the first step in computing word
error is to compute the minimum edit distance in words between
the hypothesized and correct strings. The result of this computation
will be the minimum number of word substitations, word inser-
tions, and word deletions necessary {o map hetween the correct and
hypothesized strings. The word error rate is then defined as follows
(note that because the equation includes insertions, the error rate can
be great than 100%):

Insertions + Substitutions + Deletions
Total Words in Correct Transcript

Word Frror Rate_ = 100

Here is an example of alignments between a reference and a
hypothesized utterance from the CALLHOME corpus, showing the
counts used to compute the word erfor rate;

REF: i *** #* [JM. the PHONE IS. i LEFT THE portable

HYP: i GOT IT TO the ***** FULLEST i LGVE TO portable
Eval: 1 1 8§ D s 5 S

REF: ****  PHONE UPSTAIRS last night so the battery ran out
HYP: FORM OF STORES last night so the battery ran out
Eval: 1 ... S S

‘This utterance has six substitutions, three insertions, and one dele-

tion:

_ . e
WordError Rate = 100—?5— — 56%

'As of the time of this writing, state-of-the-art” speech recognition

systems were achieving around 20% word error rate on natural-
speech tasks like the National Institute of Standards and Technology

"(NIST)’s Hub4 test set from the Broadcast News corpus (Chen et al.,

1999), and ‘around 40% word ertor rate on NIST s Hub5 test set from
the combined Switchboard, Sw1tchboard 11, and CALLHOME cor-

' pora (Ham etal 1999)
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bilistic models that make up a recognizer get trained.

EMBEDSED In this section we give a brief sketch of the embedded training proce
dure that is used by most ASR systems, whether based on Gaussians, MLP

or even vector quantization. Some of the details of the algorithm (like th
forward-backward algorithm for training HMM probabilities} have beer re-:

moved to Appendix D. '

Let’s begin by surmarizing the four probab1l1st1c models we need t

train in a basic speech recognition system:

language model probablllt:es: P(wilwim;w,:,g)
observation likelihoods: 5, ( ‘)
transmon pI‘Obabl].ltlES ai;

pronunmatlon lex1con HMM state graph structure
In order to train these component% we usually have

e atraining corpus of speech wavefiles, together with a word-transcri ﬁo

" w3 much larger corpus of text for training the language model, includ

*ing'the word—transcnptlons from the speech corpus together W1th man
-other similar texts - :

‘o often d stallér trammg corpus ‘of speech which is phonetlcally labele
(1 €., frarnes of the acoustic signal are hand-annotated with phonemes

B ‘Let’s ‘begin with the N-gram laniguage model. This is trained in tt _

"way we described in ‘Chapter 6; by counting N-gram occurrences in a la:rg

corpus, then: smoothmg and normalizing the counts. The corpus used fo

. training the language model is usually much larger than the corpus used t

train the HMM a and b parameters.: This is because the. larger the trainin

~ corpus the more accurate the models. Since N-gram models are much faste

to train than TMM observation probabilities, and since text just takes:1

space than speech, it turns out to be feasible to train language models ¢

huge corpora of as much as haif a billion words of text, Generally the corpu

.. used for training the HMM parameters is included as part of the Ianguag_

' rnodel training data; it is anortant that the acoustm and language mode

traimng be conSIStent _ S

‘The HMM lex1con Structure is bu11t by hand by takmg an off- the—

'pronunmahon dlctlonary such as the PRONLEX dictionary (LDC; 199 D

_ the CMUdict dictionary, both descnbed in Chapter 4. In some systems; eac

phone in the dictionary maps into a state in the HMM. So the word cat

have thrée states corresponding to [k], [ae]; and [t]. Many systems, howeve
use the more complex subphone structure described on page 251, m'w_
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‘phone is divided into 3 states: the beginning, middle and final portions
f the phone, and in which furthermore there are separate instances of each
f__'t_hése subphones for each friphone contexi.

i The details of the embedded training of the HMM parameters varies;
o'Il present a simplified version. First, we need some initial estimate of
the transition and observation probabilities a;; and b;(o;). For the transi-
tion probabilities, we start by assuming that for any state all the possible
following states are all equiprobable. The observation probabilitics can be
hootstrapped from a small hand-labeled training corpus. For example, the
IMI-T or Switchboard corpora contain approximately 4 hours each of pho-
netically labeled speech. They supply a “correct” phone state label ¢ for
each frame of speech. These can be fed to an MLP or averaged to give initial
aussian means and variances: For MLPs this initial estimate is important,
ik 50 a hand-labeled bootstrap is the norm. For Gaussian models the initial
alue of the parameters seems. to be less important and so the initial mean
and:variances for Gaussians often are just set identically for all states by
wsing the mean and variances of the entire training set.

“‘Now we have initial estimates for the a and b probabilities. The next
age of the algorithm differs for Gaussian and MLP systems. For MLP sys-
eins we apply what is called a forced Viterbi alignment. . A forced Viterbi
alignment takes as input the correct words in an utterance, along with the
"spe't:tral feature vectors. It produces the best sequence of HMM states, with
each state aligned with the feature vectors. A forced Viterbi is thus a simpli-
fication of the regular Viterbi decoding algorithm, since it only has to figure
ut the correct phone sequence, but doesn’t have to discover the word se-
qucﬁ'ce.._ Tt is called forced because we constrain the algorithm by requiring
the best path to go: through a particular sequence of words. It still requires
thfe Viterbi algorithm since words have muitiple pronunciations, and since
the duration of each phone is not fixed. The result of the forced Viterbi is a
set' of features vectors with “correct” phone labels, which can then be used
to'retrain the neural network. The counts of the transitions which are taken
iri'the forced alignments can be used to estimate the HMM transition proba-
bilities.
= -For the Gaussmn HMMS 1nstead of using forced V1terb1 we use the
forward-backward algorithm described in Appendix D. We compute the for-
ward and backward. probabilities. for each sentence given the initial a and
b'probabilities, and use them to re-estimate the g and b probabilities.. Just
as for the MLP situation, the forward-backward algorithm needs to be con-
“strained by our knowledge of the correct words.. The forward-backward. al-
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gorithm computes its probabilities given a model L. We use the “kl]qu_i
words sequence in a transcribed sentence to tell us which word models:
string together to get the model A that we use to compute the forward an
backward probabilities for each sentence.

7.8 WAVEFORM GENERATION FOR SPEECH SYNTHESIS

Now that we have covered acoustic processing we can return to the acoustic
component of a text-to-speech (TTS) system. Recall from Chapter 4 that th

output of the linguistic processirig component of a TTS system is a sequenc

of phones, each with a duration, and a FO contour that specifies the pitc

TARGET This specification is often called the target, as it is this that we want.th
synthesizer to produce. -

- The most commonly used type of algonthm works by waveform con

a4 catenation. Stch concatenative synthesis is based on a database of s spe
that has been recorded by a single speakér. This database is then segmente

~ into a number of short units, which can be phones, diphones, syllables, word

. or other units. The simplest sort of synthesizer would have phone units:an

.. the database would have a single unit for each phone in the phone inve

By selecting: units: appropriately, we can generate a series of units' whic

match the phone sequence in the input. By using signal processing to smoot

joins at the unit edges, we can simply concatenate the waveforms for eacl

these units to form a single synthetic speech waveform.

- Experience has shown. that single phone concatenative systems doun

* - produce: good- quality speech. -Just as in speech recognition, the contexi

the phone plays an important role in its acoustic pattern and hence a /t/ befor

a fa/ sounds very different from a /t/ before an /s/. '

~ The triphone models described in Figure 7.11 on page 251 are'a pop

ular’ ch01ce of unit in-speech recognition, because they cover both the. le
and-right-contexts: of a phone.. Unfortunately, a language typically has

. “ " very large number of triphones: (tens- of thousands) and it is currently pr
orroNes - hibitive to-collect so-many units for speech synthesis. Hence diphones:a
- “often used in speech synthesis as they provide a reasonable balance betwee
context-dependency and size (typically-1000-2000 in a language). In spé

» synthesis; diphone units niormally start half-way through the first phone an

' end half-way through the second. This is because it is known that phones

- more stable in: the middle than at the edges; so that the middles of most /
‘phones in a-diphone are réasonably similar, even if the acoustic patterns_ sts
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to differ substantially after that. If diphones are concatenated in the middles
- phones, the discontinuities between adjacent units are often negligible.

ié_di and Duration Modification

he';'-'diphone synthesizer as just described will produce a reasonable qual-
ity speech waveform corresponding to the requested phone sequence. But
jitch and duration (i.e., the prosody) of each phone in the concatenated
aveform will be the same as when the diphones were recorded and will not
rrespond to the pitch and durations requested in the input. The next stage
f the synthesis process therefore is to use signal processing techniques to
ge the prosody of the concatenated waveform.

‘The linear prediction (LPC) model described earlier can be used for
prosody modification as it explicitly separates the pitch of a signal from its
spectral envelope If the concatenated waveform is represented by a sequence
of linear: predictlon coefﬁments aset of pulses can be generated correspond-

Another technique- for achieving the same goal is the time-domain
pitch-synchronous overlap and add (FD-PSOLA) technique. TD-PSOLA
works pitch-synchronously in that each frame is centered around a pitch-
mark in the speech, rather than at regular intervals as in normal speech sig-
1l processing. The concatenated waveform is split into a number of frames,
each centered: around a pitchmark and extending a pitch petiod either side.
osody 1is changed by recombining these frames at a new set of pitchmarks
de n_mned by the requested pitch and duration of the input. The synthetic
aveform is created by simply overlapping and adding the frames. Pitch is
_efeased by making the new pitchmarks closer together (shorter pitch peri-
s-implies higher frequency pitch), and decreased by making them further
. Speech is'made longer by duplication frames and shorter by leaving
frames out.- The operation: of TD-PSOLA can be compared to that of a tape
order with variable speed — if you play back a tape faster than it was
recorded,: the pitch periods. will come closer together and hence the pitch
will'increase. But speeding up a tape recording effectively increases the fre-
quency: of all the components of the speech (inchuding the formants which
characterize the vowels) and will give the impression of a “squeaky”, unnat-
ural voice, TD-PSOLA differs because it separates each frame first and then
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decreases the distance between the frames. Because the internals o
frame aren’t changed, the frequency of the non-pitch components is har
altered, and the resultant speech sounds the same as the original except wi
a different pitch.

Unit Selection

While signal processing and diphone concatenation can produce reasonab
quality speech, the result is not ideal. There are a number of reasons for thi
but they all boil down to the fact that having a single example of each di
is not enough. . First of all, signal processing inevitably incurs distortic
and the quality of the speech gets worse when the signal processing has
stretch the pitch and duration by large amounts. Furthermore, there are m:
other subtle effects which are outside the scope of most signal processin
algorithms. For instance, the amount of vocal effort decreases aver tin
the utterance is spoken, producing weaker speech at the end of the utte’fan__
If diphones are taken from near the start of an utterance, they will:sou
unnatural in phrase-final positions. o

- Unit-selection synthesis is an attempt to address this problem by
lecting.several examples of each unit at different pitches and duration
linguistic situations, so that the unit is close tO the target in the first place
and hence the signal processing needs to do less work. One techmq' _
unit-selection (Hunt and Black, 1996) works as follows: .

The input to the algorithm is the same as other concatenative synth
sizers, with the addition that the FO contour is now specified as thréee E(
values per phone, rather than as a contour. The technique uses pho
its units, indexing phones in a large database of naturally occurring spee
Each: phone in the database is also marked with a duration and three p
values. The algorithm works in two stages. Fitst, for each phone in the target
word, a set of candidate units which match closely in terms of phone identi
duration and FO is selected from the database. These candidates are rank
using a target cost function, which specifies just how close each unit act
ally is to the target.. The second part of the algorithm works by meaSuri_
how well each candidate for each unit joins with its neighbor’s candidat:
Various locations for the joins are assessed, which allows the potential:
units to be joined in the middle, as with diphones. . These potential Joms z
ranked using a concatenatjon cost function. The final step is to pick the:
set of units which minimize the overall target and concatenation cost for th
whole sentence: This step is performed using the Viterbi algorithm in a sim:
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jlar way to HMM speech recognition: here the target cost is the observation
_pfobabil.ity and the concatenation cost is the transition probability.

- By using a much larger database which contains many examples of
‘each unit, unit-selection synthesis often produces more natural speech than
't'rajght diphone synthesis. Some systems then use signal processing to make
"sure the prosody matches the target, while others simply concatenate the
inits following the idea that a utterance which only roughly matches the
‘target is better than one that exactly matches it but also has some signal
processing distortion.

9 HUMAN SPEECH RECOGNITION

Speech recognition in humans. shares some features with the automatic
speech. recognition models we have presented. We mentioned above that
signal processing algorithms like PLP analysis (Hermansky, 1990) were in
‘fact inspired by properties of the human auditory system. In addition, four
properties of human lexical access (the process of retrieving a word from
‘the' mental lexicon) are also true of ASR models: frequency, parallelism,
eighborhood effects, and cue-based processing. For example, as in ASR
‘With its N-gram language models, human lexical access is sensitive to word
quency. High-frequency spoken words are accessed faster or with less
‘information than low-frequency words. They are successfully recognized
in noisier environments than low frequency words, or when only parts of
he words are presented (Howes, 1957; Grosjean, 1980; Tyler, 1984, inter
“alia). Like ASR models, human lexical access is parallel: multiple words
‘are dctive at the same time (Marsien-Wilson and Welsh, 1978; Salasoo and
isoni, 1985, inter alia). Human lexical access exhibits neighborhood ef-
ects (the neighborhood of a word is the set of words which closely resem-
ble it). Words with large frequency-weighted neighborhoods are accessed
slower than words with less neighbors (Luce et al., 1990). Jurafsky (1996)
hows that the effect of neighborhood on access can be explamed by the
Bayesxan models used in ASR.

7. Finally, human speech perceptlon is cue based speech input is inter-
“preted by integrating cues at many different: levels: For example, there is
evidence that human perception: of individual phones is based on the inte-
‘gration of multiple cues, including acoustic cues, such as formant structure
“or the exact timing of voicing, (Oden and Massaro, 1978; Miller, 1994), vi-
sual cues, such as lip movement (Massaro and Cohen, 1983; Massaro, 1998),
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- WORD:
ASSOCIAFICN

REPETITION -

PRIMING

. chological models- of human speech perception (such-as the Cohort model

- semantic: word association (words are accessed more quickly if a semanti

. are accessed more quickly if they themselves have just been heard). The

. and the LSA models of Coccaro-and Jurafsky (1998) and Bellegarda (1999

_ which model word association. Tn'a fascinating reminder that good ideas are
. never discovered only once, Cole and Rudnicky-(1983) point out that many
L of these msughts about context effects on word and phone processing were

_ 'mcludlng an early version: of the phoneme restoration effect,. by recordmg
EERA speech on Edison phonograph cylinders, modifying it, and presenting it o
e subjects Bagley s results were forgotten and only rediscovered much:late

S mtlon 18 the time: -course of the model: Tt is important for the performance of
o ‘the: ASR algorlthm that: the the decoding search optimizes over the entire ut:
- terance: This means that the best sentenice hypothesis returned by a decoder

s at the: end: of the sentence may be wvery different than the current-best: h:
i pothesis, haifway into the sentence. By contrast, there is extensive evidence
_'-that human processmg is-on-line: people incrementally segment and utte:
.- ance. into words and assign: it an interpretation as they hear it. For examp

- shadow: (repeat back) a passage as they hear it with lags as short as 250 111

* Marslen-Wilson found that when these shadowers made errors, they were
- syntactically and'semantically appropriate with the context, indicating that
- word segmentation, parsing, and interpretation took place within these 250
'ms: Cole (1973 and Cole and Jakimik: (1980) found similar effects in their

e S Recall the discassion on page’15 ef.'mu'ltiple independent discovery in sciénce. -

and lexical cues such as the identity of the word in which the phone is place:d
(Warren, 1970; Samuel, 1981; Connine and Clifton, 1987; Connine, 1990):
For example, in what is often called the phoneme restoration effect, Warren
(1970) took a speech sample and replaced one phone (e.g. the [s] in legzsla_—_
turey with a cough. Warren found that subjects listening to the resulting tap'e
typically heard the entire word legislature including the [s], and perceived
the cough as background. Other cues in human speech perception include

cally related word has been heard recently) and repetition priming (words

intuitions of both-these results are incorporated into recent language models
discussed in Chapter 6, such as the cache model of Kuhn and de Mori (1990},
which models repetition. priming, or the trigger model of Rosenfeld (1996)

actually dlscovered by Wﬂllam Bagley (1901). Bagley achieved his results

- Otie dlfference between current ASR models and human speech recog-

Marslen—Wﬂson (1973) studied close shadowers: people: who are able: to

work on' the detection: of mispronunciationis. These results have led ps
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(Marslen-Wilson and Welsh, 1978) and the computational TRACE model
(McClelland and Elman, 1986)) to focus on the time-course of word selec-
tion and segmentation. The TRACE model, for example, is a connectionist
ot neural network interactive-activation mode], based on independent com-
putauonal units organized into three levels: feature, phoneme, and word,
Sach unit represents a hypothesis about its presence in the input. Units are
activated in parallel by the input, and activation flows between units; con-
n:ei_:'tions between units on different levels are excitatory, while connections
between uniis on single level are inhibitatory. Thus the activation of a word

1ght1y inhibits all other words.

. We have focused on the similarities between human and machine
speech recognition; there are also many differences. In particular, many
ther cues have been shown to play a role in human speech recognition but
have_ yet to be successfully integrated into ASR. The most important class
~of these missing cues is prosody. To give only one example, Cutler and
Norris (1988), Cutler and Carter (1987) note that most multisyllabic English
-'w'ord tokens have stress on the initial syllable, suggesting in their metrical
Segmentatlon strategy (MSS) ‘that stress should be used as a cue for word
:segmentatlon. R

710 SUMMARY

“Together with Chapters 4--6; this chapter introduced the fundamental algo-

rithms for addressing the problem of Large Vocabulary Continuous Speech

Recognition and Text-To-Speech synthesis.

e The input to a speech tecognizer is ‘a series of acoustic waves. The

" waveform, ‘spectrogram and spectrum are among the Vlsuahzauon
 tools used to understand the information in the signal. '

e In the first step in speech recognition, wound waves are sampled,
quantlzed and converted to some sort of spectral representation; A

" commonly used spectral representatlon is the LPC cepstrum, which
prov1des a vector of features for each tlme—shce of the input. '

o These feature vectors are used to estimate the phonetlc hkehhoods
- {also called observation likelihoods) ¢ither by a mixture of Gaussian

. estimators or by a neural net. : ,

o' Decoding or search is the process of ﬁnchng the optlmal sequence of
model states. which matches a sequence of input observations. (The
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e _'IBLIOGRAPHICAL AND , HISTORICAL NOTES

g }'The ﬁrst machme Wthh recogmzed speech was probably a commercml 10

fact that are two terms for this process is a hint that speech recogni
tion is inherently inter-disciplinary, and draws its metaphors from moi:
than one field; decoding comes from information theory, and searc_'
from artificial intelligence).

¢ We introduced two decoding algorithms: time-synchronous Viterly
decoding (which is usually implemented with pruning and can the

be called beam search) and stack or A* decoding. Both algorithm
take as input a series of feature vectors, and two ancillary algorithms

one for assigning likelihoods (e.g., Gaussians or MLP) and one fo
assigning priors {e.g., an N-gram language model). Both give as ottpu

a string of words.

e The embedded training paradigm is the normal method for trainin
" speech recognizers. Given an initial lexicon with hand-built proniiﬁf_:'i
ation stractuges, it will train the HMM transition probabilities and th

- HMM observation probabilities. This HMM observation probab1

" estimation ‘can be done via a Gaussian or an MLP.
o One way to Implement the acoustic component of a TTS system is wi
' : “concatenative synthems in which an utterafice is built by concatenal
- ""ﬁ'mg and then smoothmg diphones taken from a large database of spe_ :
"recorded by a smgle speaker

* named “Radio Rex” which was sold in the 1920s. Rex was a celtuloid do
: -:'that moved. (VIa a spnng) when the spring was released by 500 Hz acousti
energy -Since 500 Hz is roughly the first formant of the vowel in “Rex”; th
dog scemed to come when he was called (David and Seliridge, 1962).

By the late 1940s and early 1950s, a number of machine speech recog
nltlon systems had been built..'An early Bell Labs system could recogmz
any of the 10 digits from a single speaker (Davis et al., 1952). This sys_tc_m
had- 10 speaker-dependent stored pattetns, one for each digit, each of whic
roughly represented the first two vowel formants in the digit. They achie

97-99% acciiracy by choosing the pattern which had the highest relativi
correlation coefficient with the input. Fry (1959) and Denes (1959) built
phoneme recognizer at University College, London, which recognized fot
vowels and nine consonants based on a similar pattern-recognition principle
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-'Fty and Denes’s system was the first to use phoneme transition probabilities
1o constrain the recognizer.

== The late 1960s and early 1970s produced a number of important para-
chgm shifts. First were a number of feature-extraction algorithms, include
the efficient Fast Fourier Transform (FFT) (Cooley and Tukey, 1963), the
pplication of cepstral processing to speech (Oppenheim et al., 1968), and
& development of LPC for speech coding (Atal and Hanauer, 1971). Sec-
' 'ﬂd_:wcre a number of ways of handling warping; stretching or shrinking
ttﬁé-'input signal to handle differences in speaking rate and segment length
‘when matching against stored patterns. The natural algorithm for solving
his problem was dynamic programming, and, as we saw in Chapter 5, the
algorithm was reinvented multiple times to address this problem. The first
-'applit:ation to speech processing was by Vintsyuk (1968), although his re-
ult was not picked up by other researchers, and was reinvented by Velichko
and Zagoruyko (1970) and Sakoe and Chiba (1971) (and (1984)). Soon af-
‘terwards, Ttakura (1975) combined this dynamic programming idea with the
PC coefficients that had previously been used only for speech coding. The
:resul_tmg system extracted LPC features for incoming words and used dy-
:':nélr'hic”programming to match them against stored LPC templates.
s 'The third innovation of this period was the rise of the HMM. Hid-
--den Markov-Models seem. to have been applied to speech independently
t:t_wo laboratories around 1972.. One application arose from the work of
tatisticians, in particular Baum and colleagues at the Institute for Defense
.Analyses in Princeton on HMMs and their application to various predic-
on problems (Baum and Petrie, 1966; Baum and Eagon, 1967). James
-Baker learned of this work and applied the algorithm to speech process-
ng (Baker, 1975) during his graduate work at CMU. Independently, Freder-
ck Jelinek, Robert Mercer, and Lalit Bahl (drawing from their research in
nformation-theoretical models influenced by the work of Shannon (1948))
: apphed HMMS to speech at the IBM Thomas J. Watson Research Center
Jehnek et al., 1975). IBM'’s and Baker’s systems were very similar, par-

ticularly in their use of the Bayesian framework described in this chapter.
; :ne carly difference was the decoding algorithm; Baker’s DRAGON system
-'_used Viterbi (dynamic programming) decoding, while the IBM system ap-
plied Jelinek’s stack decoding algorithm (Jelinek; 1969). Baker then joined
he IBM group for a brief time before founding the speech-recognition com-
pany Dragon Systems.. The HMM approach to speech recognition would
tuzn out to completely dominate the field by the end of the century; indeed
the IBM lab was the driving force: in extending statistical models to natu-
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" BAKE-OFF .

.. research’ programs ‘The first was the “Resource Management” (RM) ta
-+ (Price et al., 1988, “which like the earlier ARPA task involved transcri
o tion: (recognmon) of read-speech (speakers reading sentences constructé

o 5 from a-1000-word Vocabulary) but which now included a component that
"mvolved speaket-independent recognition. Later tasks included reco gniti
~of sentences read from the Wall Street Journal (WST) beginning with limit

" recognition tasks moved away from read-speech to more natural domain

word error rate or semantic error rate. In the early evaluations, for-profit ¢o

Chapter 7. HMMs and Speech Recognjti_"

ral language processing as well, including the development of class—ba‘s"
N-grams, HMM-based part-of-speech tagging, statistical machine trans}
tion, and the use of entropy/perplexity as an evaluation metric.

The use of the HMM slowly spread through the speech communi
One cause was a number of research and development programs sponsored
by the Advanced Research Projects Agency of the U.S. Department of 1)
fense (ARPA). The first five-year program starting in 1971, and is reviev
in Klatt (1977). The goal of this first program was to buiid speech unde
standing systems based on a few speakers, a constrained grammar and lex
con (1000 words), and less than 10% semantic error rate. Four systems we:
funded and compared against each other: the System Development Cofp'
ration (SDC)-system, Bolt, Beranck & Newman (BBN)Y's HWIM systet
Carnegie-Mellon University’s Hearsay-II system, and Carnegie-Mellon’s H
system (Lowerre, 1968). The Harpy system used a simplified version ‘of
Baker’s HMM-based DRAGON system and was the best of the tested sy:
tems; and according to Klatt the only one to meet the original goals of th
ARPA project (with a semantic error rate of 94% on a simple task).

:Beginning in the: mid-1980s, ARPA funded a number of new spee

systems of 15,000 words, and finally with systems of unlimited vocabula
(in'practice most systems use approximately 60,000 words). Later speec

the Broadcast News (also- called Hub-4) domain (LDC, 1998; Graff, 199
(transcription of actual news broadcasts, including quite difficult passag
such as on-the-street interviews) and the CALLHOME and CALLFRTEND
domain: (1.DC;-1999) (natural telephone conversations between friends); p'
of what was also called Hub-5. The Air Traffic Information System (ATIS)
task (Hemphill et al.;: 1990} was a speech understanding task whose: go
was to simulate helping a user book a flight, by answering questions about
potontlal airlines; times, dates, and so forth.

- Each of the ARPA tasks involved an apprommately annual bake off_
Whlch all:ARPA-funded systems, and many other ‘volunteer’ systems fro
North' American and Europe, were evaluated against each other in terms:

- 304



283

poratlons did not generally compete, but eventually many (especially IBM
d ATT) competed regularly. The ARPA competitions resulted in widescale
hortowing of techniques among labs, since it was easy to see which ideas
ad provided an error-reduction the previous year, and were probably an im-
61"'tant factor in the eventual spread of the HMM paradigm to virtual every-
major speech recognition lab. The ARPA program also resulted in a number
of useful databases, originally designed for training and testing systems for
.ach_ evaluation (TIMIT, RM, WSJ, ATIS, BN, CALLHOME, Switchboard)
but then made available for general research use.

There are a number of textbooks on speech recognition that are good
hoices for readers who seek a more in-depth understanding of the material
m-"'t_ﬁi's chapter: Jelinek (1997), Gold and Morgan (1999), and Rabiner and
fuang (1993} are the most comprehensive. The last two textbooks also have
E_)'mprehensive discussions of the history of the field, and together with the
urvey paper of Levinson (1995) have influenced our short history discussion
h'ﬁhﬁ's'chapter. Our description of the forward-backward algorithm was mod-
led after Rabiner (1989). Another useful tutorial paper is Knill and Young
1997). - Research in the speech recognition field often appears in the pro-
eedings of the biennial EUROSPEECH Conference and the Tnternational
' Co’nference on Spoken Language Processing (ICSLP), held in alternating
years, as well as the annual IEEE International Conference on Acoustics,
S_pe'ech, and Signal Processing (ICASSP). Journals include Speech Com-
munication, Computer Speech and Language, IEEE Transactions on Pattern
Analysis and Machine Intelligence, and IEEE Transactions on Acoustics,
Speech, and Signal Processing.

“EXERCISES

7.1 Analyze each of the errors in the incorrectly recognized transcription
: of “um the phone is I left the...” on page 271. For each one, give your best
uess as to whether you thlnk it is caused by a problem in signal process-
: _mg, pronunciation modeling, fexicon size, language model, or pruning in the
decoding search.

7.2 In practice, speech recognizers do all their probability computation us-
ng the log probability (or logprob) rather than actual probabilities. This
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algorithm very efficient, since all probability muitiplications can be imple;
mented by adding log probabilities. Rewrite the pseudocode for the Vite _
algorithm in Figure 7.9 on page 249 to make use of logprobs instead of brob
abilities. . . =

74 . Finaliy; modify the Viterbi_ aigorithm in Figure 7.9 on page 249 Wlth
more detailed pseudocode implementing the array of backtrace pointers.

in the sentence, - _
76 Mddjfy the forward algoriffuﬁ of Figﬁré 5.16 to use the tree—si:rﬁétu_
lexicon of Figure 7.18 on page 259. e L .
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Oh are you from Wales?
Do you know a fella named Jonah?
He used to live in whales for a while.

Groucho Marx

This chapter introduces a number of topics related to Iexical semantic pro-
cessing. By this, we have in mind applications that make use of word mean-
ings, but which are to varying degrees decoupled from the more complex
tasks of compositional sentence analysis and discourse understanding.

The first topic we cover, word sense disambiguation, is of consider-
able theoretical and practical interest. Recall from Chapter 16 that the task of
word sense disambiguation is to examine word tokens in context and specify
exactly which sense of each word is being used. As we will see, this is a
non-trivial undertaking given the somewhat illusive nature of a word sense.
Nevertheless, there are robust algorithms that can achieve high levels of ac-
curacy given certain reasonable assumptions.

- The second topic we cover, information retrlevai is an extremely
broad field, encompassing a wide-range of topics pertaining to the storage,
analysis, and retrieval of all manner of media (Baeza-Yates and-Ribeiro-
Neto, 1999). Our concern in this chapter is solely with the storage and re-
trieval of text documents in response to users’ requests for information. We
are interested in approaches in which users’ needs are expressed as words,
and documents are represented in terms of the words they contain. Section
17.3 pre';ents the vector space model, some varlant of which i is used in many
current Systerns, including most Web search engmes

307

LEXICAL
SEMANTIC
PF[OCESS]NG

WORD SENSE
DISAMBIGUATICN

INFORMATION
RETRIEVAL




632 Chapter 17. Word Sense Disambiguation and Information Retrieval
17.1 SELECTIONAL RESTRICTION-BASED DISAMBIGUATIO

For the most part, our discussions of compositional semantic analyzers in
Chapier 15 ignored the issue of lexical ambiguity. By now it should
clear that this is not a reasonable approach. - Without some means of se-
lecting correct senses for the words in the input, the enormous amount of

- homonymy and polysemy-in the lexicon will quickly overwhelm any a
g proach 1 an avalanche of competlng 1nterp1’etatlons As with syntactic part-
“of-$peech fagging, there are two fiindamental approaches to handling this
ambiguity problem. In an integrated rule-to-rule approach to semantic anal:

- ysis, the selection of comeet word senses occurs during semantic analj sis
" as a side-effect of the elimination of ill-formed semantic representations: Tn
coa stand—alone approach sense d.rsamb1guatlon is performed independent of;
o andg prior to, composrtlonal semantic analysis. This section discusses the tole
S of seIectxona] restrictions in the former approach. The stand-alone approach
' f. is dlscussed in detail in Section 17.2.
Selectlonal restrictions and type hterarchles are the pmmary knowle

L _' sources used to perform dlsamblguanon in most integrated approaches. They
- are used to rule out inappropriate-senses and thereby reduce the amount of
- :"ambIgnrty present dnrrng semantic analysrs Inan integrated rule-to-rule a
i proach to semantic. analysls selectronai restrictions: are used to block
* formation of component meamng representatlons that contain selectiona
'stncuon violations. ‘By blocking such ill-formed components, the semartic
analyzer will find itself dealing with fewer ambiguous meaning repre
. tions, This: ablhty to focus on correct senses by eliminating flawed repi se
- fations that result’ from mcorrect senises can be viewed as'a form of indire
- word sense ‘disambiguation. While the lmgulsnc basis for this approach ¢:
be traced back to the work of Katz and Fodor (1963), the most sophisticat
cornputahonal exploration of it is due to Hirst (1987), _ :

S As an example of this approach -consider the following pair of
L examples focusmg soler on their’ use of the lexeme dish: . SN

- ( 17 1) “In our house; everybody has a career and none of thern 1nc1ud’
I Waqhmg dlshes he says. . ' “ e
- . ( 172) o her tlny kitchen at home, Me Chen works efﬁcrently, stir-fry

S several simple dlshes mcludmg bralsed prg S gars and chrcken
L hvers with’ green peppers : -

_ ; These exampies make t use of two po]ysemous senses of the lexeme dish T
ﬁrst refers to the physn:al Ob_]f:CtS that we eat from while the second re
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the actual meals or recipes. The fact that we perceive no ambiguity in these
examples can be attributed to the selectional restrictions imposed by wash
and stir-fry on their PATIENT roles, along with the semantic type information
associated with the two senses of dish. The restrictions imposed by wash
conflict with the food sense of dish since it does not denote something that
is normally washable. Similarly, the restrictions on stir-fry conflict with the
artifact sense of dish, since it does not dencte something edible. Thercfore,
in both of these cases the predicate selects the correct sense of an ambiguous
argumment by eliminating the sense that fails to match one of its selectional
restrictions.

Now consider the following WSJ and ATIS examples, focusing on the
ambiguous predicate serve:

(17.3) Well, there was the time they served green—hpped mussels from
New Zealand. : .

(17.4) Which airlines serve Denver? =

(17 5) Wthh ones serve breakfast‘?

Here the sense. of serve in example (17 3) reqmres some klnd of food as its

PATIENT, the sense in example (17.4) requires some kind of geographical or
political entity, and the sense in the last example requires a meal designator.
if we assume that mussels, Denver and breakfast are unambiguous, then it is
the arguments in these examples that select the appropriate sense of the verb.
Of course, there are also cases where both the predicate and the argu-
ment have multipie senses. Consider the following BERP example:
(17.6) T'm looking for & restaurant that serves vegetarian dishes.
Restricting ourselves to three senses of serve and two senses of dish vields
six possible sense combinations in this example. However, since only one
combination of the six is free from a selectional restriction violation, de-
termining the correct sense of both serve and dish is stra:lghtforward the
predicate and argument mutually select the correct senses. S
Although there are a wide variety of ways to mtegrate this thle of
" disambiguation into a semantic analyzer, the most stra1ghtforward approach
follows the rule-to-rule strategy introduced in Chapter 15. In this integrated
approach, fragments of meaning representations are composed and checked
for selectional restriction violations as soon as their corresponding syntac-
tic constituents are created. - Those representations. that contain selectional
restriction violations: are eliminated from further consideration. .




Chapter 17. . Word Sense Disambiguation and Information Retrieval

i 'Wl]l_ be discussed in- Chapter 18

** This approach requires two additions to the knowledge structutes us
in semantic analyzers: access to hierarchical type information about af;
ments, arid semantic selectlonal restriction information about the arguments
- to predrcates Recall from Chapter 16 that both of these can be encoded 1
ing knowledge from WordNet: The type information is available in the fo
of the hypernym mformatron about the heads of the meaning strictures
ing used’ as arguments to predrcates The selectional. restriction informa
“about argument roles can be encoded by assocratmg the appropriate Wor
g N et synsets wrth the arguments to each predrcate-bearmg lexical item..

leltatlons of Selectlonal Restrlctlons |

'There are 'a nnmber of practlcal and theoretical problems with this use: of

" selectional restnctrons The’ first symptom of these problems is the fact th

o there are ‘examples like the following where the available seleetlonal restn
" tions are too general o umquely select a correct sense e

' : _:(17 7) What krnd of dlshes do you recommend?

In cases hke thls we e1ther have to rely on the stand—alone methods ¢
: drscussed in Sectlon 17.2; or knowledge of the broader d1scourse contex

_ - ‘Mote problematlc are examples that contam obwous vrolatrons f
- ]eet1ona1 restrictions: but are nevertheless perfectly well-formed and mte
h pretable Therefore any’ approach based on a strict elimination of such i

' terpretatrons is m serlous trouble Consider the followmg WSI example

_'(17 8) But it fell apart in- 1931 perhaps because people realized you an
5 eat gold for lunch if you 're hungry.

The phrase eat gold clearly violates the selectional restriction that eat places
on. its PATIENT rtole. Nevertheless; this example is perfectly well- form
The key is the negatlve enwronment set up by can tpnor {o the violation of
' _the restriction, This example makes it clear that any purely local, or rule 1
riile, analysrs of selectional resmc‘uons will fail When a w1der context ma
the Vlolatlon of 4 selectrona.l restriction acceptable L
A second problem with select1onal restrlctlons is 111ustrated by the fc
-lowmg example : -

-'(17 9 In his two champ1onsh1p trlals Mr Ku]karnl ate glass of an emp
R stomach accompamed only by water and tea.

_' ._ Although the’ evert descnbed in this example is somewhat unusual the se
- tence 1tsel_f__1s not_s_emantleally ill-formed; despite the violation of eaf’s sel_e
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tional restriction. Examples such as this illustrate the fact that thematic roles
and selectional restrictions are merely loose approximations of the deeper
concepts they represent. They cannot hope to account for uses that require
deeper commonsense knowledge about what eating is all about. Atbest, they
reflect the idea that the things that are eaten are normally edible.

Finally, as discussed in Chapter 16, metaphoric and metonymic uses
challenge this approach as well. Consider the following WSJ example:

(17.10) Tf you want to Kill the Soviet Union, get it to try to eat Afghanistan.

Here the typical selectional restrictions on the PATIENTS of both kil and eat
- will eliminate all possible literal senses leaving the system with no possible
'meamngs In many systems, such a situation serves to tngger alternative
“mechanisms for interpreting metaphor and metonymy (Fass, 1997)
As Hirst (1987) observes, examples like these often result in the elim—
nation of all senses, bringing semantic analysis fo-a halt. One approach
to alleviating this problem is to adopt the view of selectional restrictions as
- preferences, rather than rigid requirements. Although there have been many
- instantiations of this approach over the years (Wilks, 1975¢, 1975b, 1978),
" the one that has received the most thorough empirical evaluation is Resnik’s
(1997 work, which uses the notion of a selectional association. A sclec-
tional association is a probabilistic measure of the strength of association
between a predicate and a class dominating the argument to the predicate.
~Resnik (1997) gives a method for'deriving these associations using Word-
Net’s hyponiymy rélations combined with a tagged corpus contr:umng verb-
© argument relations. o SRR :
Resnik (1998) shows that these sclectmnal assomatlons can be used to
- perform a limited form of word sense disambiguation. Roughly speaking
the algorithm selects as the correct sense for an argument, the one that has
the highest selectional association between one of its ancestor hypernyms®
“and the predicate. Resnik (1997) reports an average of 44% correct with
this technique for verb-object relationships, a result that is an improvement
- over the most frequent sense baseline which performs at 28%. A limitation
+of this approach is that it only addresses the case where the predicate is
unambiguous and selects the correct sense of the argument. A more complex
- decision criteria would be needed for the situation where both the predicate
and argument are ambiguous. . o :
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- WordNet, the reqmrements of complete selectional Testriction informatio
for all predlcate foles, and complete type information for the senses of

' 12, and 15; the avarlablhty of a complete and accurate parse for all mputs i
' 'unhkely to be met in env1ronments involving unrestricted text.

o HOH systerns with more modest reqmrements have been developed over the

B _3_years As ‘with part- of—speech taggers, these systems are’ des1gned to- of
' _'-_erate in a stand-alone fashion and make nummal assumptions. about wha
- information will be available' from other processes The following sectlon
"-"'explore the apphcahon of superwsed bootstrappmg, and unsupervised ma
. ‘chine leammg approaches to th1s problem We then consider the role of
- “machme readable dlctlonarres 1n the constructlon of stand alone taggers

| '_.'Machlne Learnmg Approaches

5 :.'In machme leammg approaches systems are tmmea’ fo; perform the tas
- of word sense: dlsamblguatron In these approaches, what is learned is
-clasmﬁer that can be used to assign as yet unseen examples to one of a ﬁxe

- nurnber of senses.. As we will see, these approaches vary as to the natur

- of the trammg matenal how much miaterial is needed; the degree of hi

e intervention, the kmd of lin; gutstrc lcnowledge used; and the output prod
L What they all share i is'an’ emphasis on acquiring the knowledge needed fo

= _to keep in mind: as we explore these systems is whether the'method ‘scal
o that is; would 1t be poss1ble to apply the rnethod toa substantral part of th
i 'entlre vocabulary of a language'? i - SRR P

s The Inputs Feature Vectors

LoIn most of these approaches the 1n1t1a1 1nput consists of the word to be :
- amblguated WhJCh weé will refer to as the target word, along with a po
G 'of the text:in whrch It is' embedded; which’ we: will call its: context Thl
;'mmal mput is then processed in the fcllowmg ways '

17.2: - ROBUST WORD SENSE DISAMBIGUATION = .-

The selectional restriction approach fo disambiguation has too many requi
ments to be useful in large-scale practical applications. Even with the use ¢

possrble fillets are unlikely to be miet. In addition, as we saw in Chapters 10,

“To addréss these concerns, a number of robust stand-alone drsa.mb1gua

the task from data, rather than from human analysts. The principal questio
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¢ The input is normally part-of-speech tagged using one of the high ac-
curacy methods described in Chapter 8.

¢ The original context may be replaced with larger or smaller segments
surrounding the target word.

¢ Often some amount of stemming, or more sophisticated morphologlcal
processing, is performed on all the words in the context.

¢ Less often, some form of partial parsing, or dependency parsing, is
perfonned to ascertain thematic or grammatical roles and relations.

After this nitial processing, the input is then boiled down to a fixed set
of feattires that capture information relevant to the learning task. This task
consists of two steps: selecting the relevant linguistic features, and encoding

. nthms
" The linguistic features used in trammg WSD systerns can be roughly
d1v1ded into two classes: collocational features and co-occurrence features.
- In general, the term collocation refers to a quantifiable position-specific re-
lationship between. two Iéxical items. Collocational features encode infor-
mation about the lexical inhabitants of specific positions located to the left
“or right of the target word. Typical features include the word, the root form
~of the word, and the word’s part-of-speech. Such features are effective at en-
codmg local lexical and grammatical information that can often accurately
“isolate a given sense, | ..

o0 As an example of this type of feature- encodmg, consider the situation
Where We need to disamb1guate the word bass in the followmg example

8 (17 11) “Ani electric gmtar and bass pIayer stand off to one side; not rcally
' part of the scene, just as a sort of nod to gringo expectations -
perhaps.

_[_guita:r NN, and CJC player, NNl ‘stand, .V.VB]:

- The second type of feature consists of co-occurrence data about neigh-
f'bormg. words; ignoring-their. exact: position, - In this approach;. the words
themselves (or their roots) serve as features. The value of the feature is the
- number of times the word occurs in a region surrounding the target word.

313

them in a form usable in a learning algorithm. A simple feature vector corn- -
“sisting of numeric or nominal values can easily encode the most frequently
used hngu1st10 mformatlon and is approprlate for use in most 1eammg algo— o

.;A feature-vector consisting of the two words to the right and 1eft of the target N
: Word along w1th their respectlve parts of—speech would y1eld the followmg -

FEATURE
VECTOR . -

COLLOCATION
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" WAIVE BAYES

L NGRS
' IS that choosmg the best sense for an input vector amounts to choosing the m
; pr__obable serise given that vector. Tn other words: R

: content words from a Collectlon of bass sentences drawn from the wsJ cor
e pus would have the followmg Words as features: fishing, big, sound, playe
o rod, pound double runs playmg, guitar, band." Using these Words a
S features with'a W‘mdow S1ze of 10 example (17 11) wou]d be represented b

o the followmg vector

: use of a combmatlon of both coIlocatlonal and co- occurrence features

e '_ Superv:sed Learmng Approaches

:' _' In superwsect approaches, a'sense dlsambxguanon system is learned frot

R TR representatlve set of labeled 1nstances drawn from the samie distributio

- SUPERVISER -

R LEARNENG T
: presented with trammg set con51st1ng ‘of feature-encoded inputs along
their appropridte Iabel, or category. The output of the system is a clas ]

S system capable of assigning labels to new feature-enceded inputs.

e : dec1s10n trées: (Qumlan 1986); neural networks (Rumelhart et. al.;
~and Hart, 1967} all fit into this paradigm. We will restrict our discussion

- of conS1derab1e work in word sense disambiguation. .

o In thls fortnula S denotes the set of senses approprlate for the. target asso
= ciated ‘with. this vectot, 5 denotes each "of the possible senses in S, and
EREEaN stands for the Vector representatxon of the mput context.. As is almost alw

Chapter 17.  Word Sense Disambiguation and Information Retrieval .

This region is most often defined 4s a fixed size window with the target word:
at the center. To make this approach manageable, a small number of fre
quently used content words are selected for use as features. This kind o
feature is effective at captunng the general top1c of the discourse in whi
the target Word has occurred Th1s in turn, tends to 1dent1fy senses of a word_.
that are specific to certain domams :

For eXampIe a co- occurrence vector consust:lng of the 12 most frequen

[000100000010]

As we w1ll see; ‘most robust approaches to sense d1samb1 guatlon m

the test set to be used. ‘This is an “application of the supervised lear
approach to creahng a classifier.” In such approaches; a learning syste

Bayes1a.n classifiers (Duda and Hart, 1973); ‘decision lists (Rivest; 19

logic learmng systems’ (Mooney, 1995), and nearest neighbor methods (Cov'
the:naive Bayes and decision list approaches; since they have been the f t

The naive: Bayes ciass;ﬁer approach to WSD is besed on the p rm

= rgmaxP(st)
PR T\
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METHODOLOGY BOX: EVALUATING WSD SYSTEMS

The basic metric used in evaluating sense disambiguation sys-
tems is simple precision: the percentage of words that are tagged
correctly. The primary baseline against which this metric is com-
pared is the most frequent sense metric (Gale et al., 1992): how
well a system would perform if it simply chose the most frequent
sense of a word. :

. The use of precision requires access to the correct senses for the
words in a test set. Fortunately, two large sense-tagged corpora are
now available: the SEMCOR corpus (Landes et al:, 1998), which con-
sists of a portion of the Brown corpus tagged with WordNet senses,
and the SENSEVAL corpus (Kilgarriff and Rosenzweig, 2000), which
is a tagged corpus derived from the HECTOR corpus and dictionary
project. . . . e

One complication arising from the use of simple precision is
that the nature of the senses used in an evaluation has a huge effect
on the results.. In particular, results derived from the use of coarse
distinctions among homographs, such as the musical and fish senses
of bass, can not easily be compared to results based on the use of
fine-grained sense distinctions such as those found in traditional dic-
tionaries, or lexical resources like WordNet.

A second complication has to do with mefrics that go beyond
simple precision and make use of partial credit. For example, con-
fusing a particular musical sense of bass with a fish sense, is clearly
worse than confusing it with another musical sense. With such a
meiric, an exact sense-match would receive full credit, while select-
ing a broader sense would receive partial credit. Of course, this kind
of scheme is entirely dependent on the organization of senses in the
particular dictionary being used. o

Standardized evaluation frameworks for word sense disam-
biguation systems: are now available. - In particular, the SENSEVAL
effort (Kilgarriff and Palmer; 2000), provides the same kind of eval-
uation framework for sense disambiguation, that the MUC (Sund-
heim, 1995b) and TREC (Voorhees and Harman, 1998) evaluations

- have provided for information extraction and information retrieval.
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the case, it would be dtfﬁcult o collect statistics for this equation drrecﬂy
Instead, we rewrite it in the usual Bayeman manner as follows: R

: P(VIs)P(s )
argmax g
sES P(V)
Of course ‘the data avallable that associates spe01ﬁc vectors w1th sense

i5 t00 sparse to be useful. However; what is available in abundance in -
: tagged training set is ‘information about individual feature-value pairs in t

" context of speolﬁc senses. Therefore,” we can’ make the mdependence as

. sumption that gives this method its name, ‘and that has‘sérved us we]l in part
' '_:"'of—speech tagging, speech’ recogmtlon and probabﬂlstrc parsing —~ naivels
+ assuming that the features are independent ‘of one another.’ Making thi

L sumptlon yleids the followrng apprommatmn for P Vf

P(Vls) = HP vji

In other Words We can estmlate the probabrllty of an entire vector glven
- .-.'-sense by the. product of the probablhtles of rts mdlvrdual features gwen €

G1ven th1s equat;on tralmng & naive Bayes cla%srﬁer amounts to.col

lectmg counts of the mdmdual feature-value statistics with respect t 'eac

' sense of the target word in a sense—tagged training corpus. To make this con
“créte;: let’s: retutn: o example (17.11)." The individual statistics’ needed

this example might include the probablhty of the word player occurring

S medlately to the nght of a use of each of the bass senses, or the probab
' .'-'of the word guztar one place to'the left of d tisé of one of the bass sense

Retuxmng 10’ equatlon (17.13); the térm P(s) is the' priof for each's

' which just corresponds to the proportion ‘of each sense in the sense-tagge:

trammg corpus:- Finally, since P(V) is the same for all possible sense_s-

e does not effect the ﬁnal ranlqng of senses, leavmg us w1th the fo]Iowr

- argmaxP(s HP vj|
'31555 TQ_ ]—1 3

Of cotirse, all the i issues chscussed in Chapter 6 thh respect to zerc'count

' . and Smoothmg appiy here as well: .

- In'a large éxperiment evaluatmg a number of superv1sed learmng al

gonthms, Mooney (1996) reports that a naive-Bayes classifier and a neu

[k network achleved the highest performance both achieving around 73‘?

7 DEQISION
1 CLASBIFIERS -

: rect 1n asSIgmng one of. six senses to.a corpus of examples of the word lin

Declsmn llst claSSIﬁers are equtvalent to s1mp1e case: statements
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Rule Sense
fish within window = bass!
striped bass = bass!
guitar within window = bass”
bass player = bass”
piano within window = bass?
fenor within window = bass?
seda bass = bass!
playiV bass = bass”
river within window = bass'
violin within window = bass®
salmon within window = bass'.
. on bass = bass?
bass are = _bass’.
Figure 17.1 " An abbreviatéd decision list for disambiguating the fish sense
of bass from the music sense. Adapted from Yarowsky (1996).

 most programming languages. In' a decision list classifier, a sequence of
" tests is applied to each vector encoded input. If a test succeeds, then the
sense associated with that test is returned. If the test fails, then the next test
in the sequence i3 apphed This continues until the end of the list, where a
default test simply returns the majority sense. :

- Figure 17.1 shows a portion of a decision list for the task of discrim-
- inating the fish sense of bass from the music sense. The first test says that
- if the word fish occurs anywhere within the input context then bass! is the
- correct answer. If it doesn’t then each of the subsequent tests is consulted in
turn until one retiirns trie; as with case statements a defau}t test that rcturns
" true is included at the end of the list.

Learning a decision list classifier consists of generating and ordering
individual tests based on the characteristics of the training data. There are
a wide number of methods that can. be used to create such lists. In the ap-
proach used by Yarowsky (1994} every individual feature-value pair consti-

“tutes a test. These tests are then ordered according to their individual accu-
racy on the entire training set, where the accuracy of a test is based on its
log hkehhood ratio: _ L

P(Sense;|fi =v,)\,
P(Senseﬂfiﬁyj))) _
The decision list is created from these tests by simply ordering the tests in the

‘Abs(Log ( - (17.16)
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 BCOTSTRAPPING .
APPROACH

ik from a small’ set of seeds To succeed it must include only those. instancy
e _'1n whlch the initial classrﬁer has a high degree of conﬁdence “This
" tra_mmg set is then used to Create a new more accurate classrﬁer Wlth br ad
. coverage: W1th each 1terat10n of this process the training corpus grows and

. can be repeated until some sufficiently low error-rate on the trammg_s
. feached, or. untll no further examples from the untagged corpus are
- threshold e : : :

" 'm a number of ways. Hearst (1991) generates a seed set by 31mply hadn

e three ‘major advantages

' Bootstrappmg Approaches

-__1995) eliminates the need for a large training set by relying on a relatt
small number of mstances of each sense for each lexéme of interest. These

' “the supervrsed learnmg methods mentioned in the last section. This ir
- classifier i is then be used to extract a larger training set from the rem
untagged corpus Repeatmg thrs process results in a series of class1ﬁer Wi
Zrmprovrng accuracy and ¢ coverage '

' 1ng words or phrases that are strongly - associated with the target” sense

list according to this measure, with each test returning the appropriate sens
Yarowsky (1996) reports that this technique consistently achieves over 9 %
correct on a wide variety of binary decision tasks.

We should note that this training method differs quite a bit from st
dard decision list learning algorithms. For the details and theoretical mic
vation for these approaches see Rivest ( 1987) or Russell and Norvig (19 ).

A major problem with supervrsed approaches is the need for a large sens
tagged training set. The bootstrapping approach (Hearst, 1991; Yarows

labeled instances are used as seeds to train an initial classifier using any of
. The key to this approach lies in its abﬂrty to create a larger tralmn

the untagged corpus shrinks. As with most iterative methods, this proce

The 1n1t1a1 seeds used it these bootstrappmg methods can be generat

labeling a small set of examples from the initial corpus ‘This approach h

‘. There 1s a reasonable certalnty that the seed instances are correct :
ensurmg that the learner cioes not get off on the wrong foot. .

' . The analyst can make some effort to choose examples that are not
" ¢orrect; but in some sense prototypical of each sense. :

. i 1s Ieasonably easy 1o carry out

An effective alternative techmque is to search for sentences cO

Yarowsky (1995) calls tlns the 0ne Sense per Collocanon constrat t:
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Klucevsek plays Giulietti or Titano piano accordions with the more flexible, more
difficult free bass rather than the traditional Stradella bass with its preset chords
designed mainly for accompaniment,

‘We need more good teachers - right now, there are only a half a dozen who can
play the free bass with ease.

An electric guitar and bass player stand off to one side, not really part of the scene,
just as a sort of nod to gringo expectations perhaps.

‘When the New Jersey Jazz Society, in a fund-raiser for the American Jazz Hall of
Fame, honors this historic night next Saturday, Harry Goodman, Mr. Goodman's
| brother and bass player at the original concert, will be in the andience with other
[ family members.

The researchers said the worms spend part of their life cycle in such fish as Pacific
[ salmon and striped bass and Pacific rockfish or snapper.

- Associates describe Mr. Whltacre as a guiet, disciplined and assertlve manager
 whose favorite form of escape is bass fishing.

Atid it all started when fishérmen decided the striped bass in Lake Mead were too
skinny. : Co - _

‘Though still a far cry from the lake’s fecbrd'ﬁZ—p’buhd bass of a decade ago, “you
could fillet these ﬁsh agam ‘and that made peopIe very, very happy, Mzr. Paulson
Fsays. :

Saturday morning I arise af 8:30 and click on “America’s best-kriown ﬁshe’rmzm ¢
giving advice on catch;ng bass in cold weather from the seat of a bass boat in
‘Louisiana. - o :

Figure 17.2°  Samples of bass senténces extracted from the WSI using the

simple correlates play and fish.

‘presents results that show it yields remarkably good results. As an illustra-
tion of this technique, consider the situation where we would like to generate
a reasonable set of seed sentences for the fish and musical senses of bass.
Without too much thought, we might come up with fish as a reasonable in-
dicator of bass', and play as a reasonable indicator of bass." Figure 17.2
~ shows a partial result of a such a search for the smngs “ﬁsh” and “play” in a
corpus of bass examples drawn from the WSJ. .

- Of course, we might also want some way' to: automatlcally suggest
‘these associated words. Yarowsky (1995) suggests two methods to select ef-
fective comrelates: - deriving them from machine readable dictionary entrics,
“and selecting seeds using. collocational statistics such: as those described in
‘Chapter 6. Yarowsky (1995) reports an average performance of 96.5% on a
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coarse binary sense assignment involving 12 words, In these experimie
a training set derived using bootstrapping with seed sentences disco
using correlates was used to train a decision list classifier for each word.

Unsupervnsed Methods' Dlscovermg Word Senses .
Unsupervised approaches to sense disambiguation eschew the use of sens
tagged data of any kind during training. In thése approaches, feature—vecto
- representations of unlabeled instances are taken as input and are then grou
into clusters ‘according to a similarity metric. These clusters can then be re
- resented as the average of their constituent feature-vectors, and labele
S hand with known word senses.  Unseen feature-encoded instances ¢
. _clasmﬂed by assigning them the word sense from the cluster to Wthh the

.- are closest according to the similarity metric: SRR
o Fortimately, clustering is' a well-stadied problem thh S w1de numb
= Eof standard algorithms that can be applied to inputs structired as vectors o
E : ' 3:'numer1cal values' (Duda and Hart; 1973). A frequently used-techniq
. éEESL%EMHEQéT'VF language applications is known as agglomerative clustering. Tn this
- niqueé, each'of the NV training 1nstances is initially assigned to its own cl te
N :New clusters are then formied in: a bottom-up fashion by successrvely mer,
" ing the two clusters that are most similar. This process continues until eit
a spe01ﬁed number of clusters is reached, or some global goodness meas
" among the clusters is achieved, “In cases where the number of training:
stanices makes this methed too expensive, random sampling can be used o
the. ongmal trammg set (Cutﬂng et al., 1992b) to achieve similar result
i 'The fact that these unsuperwsed methods do not ‘make use 0
N Iabelcd data poses a number of challenges for evaJuatmg any clustering re
sult. The following problems are among the most important ones that hiav
to be addressed i in unsupervised approaches: :

e The correct eenses of the 1nstances used in the tralmng data may not b
O khown, N AR
e The c}usters are - almost certamly heterogeneous wrth respect

_ senses of the tralmng instances contalned within them _
"« The number of clusters is almost always different from the numbe

. senses of the target word beirig’ msambr guated. - :

Schutze s expenments (Schiitze,” 1992 1998) constitate an extensrv
apphcatlon of unsupervised clustering to word sense disambiguatio
though the' actual: technique: is’ quite involved, unsupervised clustering
the core of the method Schutze § results indicate that for coarse bmary dis

- _3.20 :
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tinctions, unsupervised technigues can achieve results approaching those of
supervised and bootstrap methods, in most instances approaching the 90%
range. As with most of the supervised methods, this method was tested on a
small sample of words.

| Dictionary-Based Approaches

A major drawback with all of these approaches is the problem of scale. All
- require a considerable amount of work to create a classifier for each ambigu-
" ous entry in the lexicon. For this reason, most of the experiments with these
methods report results ranging from 2 to 12 lexical items (The work of Ng
-and Lee (1996) is a notable exception reporting results disambiguating 121
“nouns and 70 verbs). Scaling up any of these approaches to deal with all
“the ambiguous words in a language would be a large undertaking. -Instead,
attempts to perform large-scale disambiguation have focused on the use of

‘machine readable dictionaries, of the kind discussed in Chapter 16. Ii this -
“style of approach, the dictionary provides both the means for constructmg a

sense tagger; and the target senses to be used.

: The first implementation of this approach is due to Lesk (1986) In
~this approach, all the sense definitioris of the word to be disambiguated are
“retrieved from the dictionary. Each of these senses is then compared to the
~dictionary definitions of all the remaining words in the context. The sense
‘with the highest overlap with these context words is chosen as the correct
“sense. Note that the various sense definitions of the context words are all
- simply lumped together in this approach.

P To make this more concrete, consider Lesk’s example of selecting the
appropriate sense of cone in the phrase pme cone given the followmg defini-
tions for pine and cone.
pine 1 kinds of evergreen tree with needle—shaped leaves
_ 2 waste away through sorrow or illness
cone 1 solid body which narfows to a point
2" something of this shape whether solid or hollow
3 fruit of cértain evergreen trees
* T this example, Lesk’s method would select cone” as the correct sense
since two of the words in its entry, evergreen and free, overlap with words
“in the entry for pire, whereas neither of the other entries have any overlap
‘with words in the definition of pire. Lesk reports accuracies of 50-70% on
'short samples of text selected from Austen’s Pride and Prejudzce and an AP
“néwswire article: SRR : :
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W shdegT
- CODES.

: -"--1-{7,3?-.;--mp-oa-mmm'R‘Emm-..-._:__--.-- |

terial to. create adequate classifiers since the words used in the context and

'accomphshed by including words whose definitions make use of the targ__

- word. For examp}e the word-deposit does niot occur in the definition of bar
= Vi the Amencan Herltage Dictionary: (Morris, 1985).: However, bank doe
. occur in the definition of deposzt Therefore, the: cIassnﬁer for bank can '
o 'expanded to lnclude deposzr as a relevant feature :

'rnuch since ‘we. dont kriow. to- WInch sense, of bank it is related.: Spec'

. _'cally, to make use: of deposzt as a feature WE have to know- which sense o
_bank was bemg used: in its. deﬁmtron Fortunately, many dlctlonanes
i “thesauri 1nclude tags known as. subject codes in their entries that correspor _
L roughly to broad ‘conceptual: categories.. For example,. the entry: for

- in the Longman s chnonary of Contemporary Engl:sh (LDOCE) (P
[T 1978) includes: the subject. code EC: (Econormcs) for the. ﬁnancral sen,
L bank: leen such. subject: codes; we can guess that expanded terms: wi

: "the subJect code EC wiil be related: to.this sense of bank rather than an

: the others: Guthrie et al., (19913 report results ranging from 47% corréc fo'
"ﬁne~gra1ned LDOCE dlstmctlons to 72% for more coarse d1st1nct10ns '

e Information: retneval isa growmg ﬁeld that encompasses a Wrde ran
N 'toplcs related to the Storage and retrieval of all manner of media. The focus
- of this’ sectron is: w1th the storage of text ‘documents. and_ thieir subseu

“ s the wrdespread adoption of word-based indexing and retrieval metho

' Most current 1nfor1nat10n retneval systems: are based on an extreme int

: pretauon of the pnnmple of composmonal semantics. In these systems

o _ '_"'meanmg of documents reeldes solely m the words that are contamed wi

e o Indeed Tesk (1986) note‘; that the performance of h15 system seeris to roughly correl
o wrth the length of the chctronary entrles o RN B
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- The primary problem with this approach is that the dictionary entrie_
for the target words are relatively short, and may not provide sufficient ma:

their definitions must have direct overlap with the words contained in- the
appropriate senise definition in order to be useful.! One way to remedy thi;

problem is to expand the list of words used in the classifier to include w 1d:
related to, but not contained in their individual sense definitions. This can b

Of course, just knowmg that deposzt is ‘related to bank does niot hel

retneval in response to users’ reqnests for 1nformat10n Of particular inter
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- them. To revisit the Mad Hatter’s quote from the beginning of Chapter 16,
- in these systems [ see what [ eat and I eat what I see mean precisely the
same thing. The ordering and constituency of the words that make up the
sentences that make up documents play no role in determining their megn-
ing. Because they ignore syntactic information, these approaches are often
referred to as bag of words methods.
Before moving on, we need to introduce some new terminology. In in-
- formation retrieval, a document refers generically to the unit of text indexed
. in the system and available for retrieval. Depending on the application, a
document can refer to anything from intuitive notions like newspaper arti-
“cles, or encyclopedia entries, to smaller units such as paragraphs and sen-
"t tences. In Web-based applications, it can refer to a Web page, a part of a
© page, or to an entire Website. A collection refers to a set of documents being
- used to satisfy user requests. A term refers to a lexical item that occurs in
a collection, but it may also include phrases. Finally, a query represents a
~user’s information need expressed as a set of terms,
' The specific information retrieval task that we will conmder in detail is
_.known as ad hoc retrieval. In this task, it is assumed that an unaided user
“poses a query to a retrieval system, which then returns a possibly ordered
- set of potentially useful documents. Several other related, lexically oriented,
" information retrieval tasks will be discussed in Section 17.4,

“ The Vector Space Model

In the vector space model of information retrieval, documents and queries
- are represented as vectors of features representing the terms that occur within
- them (Salton, 1971). More properly, they are represented as vectors of fea-
- tures consisting of the terms that occur within the collection, with the value
of each feature indicating the presence or absence of a given term m a given
document. These vectors can be represented as follows:

dj = (It jota o 51N, )

. édk = (tl,f(aIZ,katlk.: e }rNJ.{) .
In this notation, d; and §; denote a particular document and query, while
the various ¢ features represent the N terms that occur in the collection as a
whole. Let’s first consider the case where these features take on the value
of one or zero, indicating the presence or absence of a term in a document

or query. Given this approach, a simple way to determine the relevance of
a document to a query is to determine the number of terms they have in
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WEIGHTS

UTERMBY
DOGUMENT - -

L MATRIX

- it fails fo capture the fact that some terms are more important to the mear
- of a document-than. others. - A’ useful- generalization is to replace the one
" and zeroes with numerical weights that.indicate the importance of the vari
- ous terms in parncular documents and quenes . We can thus generahze Rel)
-:-'Vectors as follows e

Cus to view the document: collection as a whole as a matrix of weights, wh
":w, g represents the: welght of term i.in document. j. This weight ma
'typ1caily called a term by-document matrix matrix. Under this view: :
'~ columns: of the: mattix ‘represent’ the. documents in the collectlon 'an the

TOWS represent the terms. - L :

Ciin th1s model as dimensions in a multi-dimensional space. Corresponding
- - the weights that serve as values for those features serve to locate docume
.+ in that space When a user’s query is translated into a vector it denote

g pomt in that space “Docuinents that are located closé to the” query can T
s be Judged as bemg more relevant than documents that are farther away.

' pare it against ‘the vectors representing all known documents, and sort.
' results The result isa lrst of documents ra.nk ordered by the1r sumlan 3’4
the query

' '17 3. This figure shows a simplified space consisting of the three dirension
g correspondmg to the terms speech language and processmg “The three vec
- tors illustrated in this space represent’ doctiments' derived from the chapte
oand, sectlon headmgs of Chapters 1,7, and 13 of this text, which we wil

i note as Doel Doc’7 and Doc13 respectrvely If We use raw term frequenc

common. This can be ac'cornplished by the following similarity metric:

Y7 qk, Zt,erw -

In tlns equat1on the srmilarlty between the query vector G and the documen
vector, d;, is measured by simply summing the number of terms they share
Of course; a problem with the use of binary values for features is:the

s

...:...dJ (Wl,JaWZJJ:W&n B WW)
Gk “_(Wl kaW2k3W3k: 2 Wn,k) -

ThlS characterization: of docurnents as vectors of term werghts allo
- Ttisuseful to view the features used to represent documents (and querics

' This characterization of documents and queries as vectors provides
the basic parts for an ad hoc retrieval system. A document retrieval syste
can srmply accept a user § query, create a vector representation for it; co 1

Con51der as-an example of this approach the. space shown in F
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in document as a weight, then Doel is represented by the vector (1,2,1),
~Doc7 by (6,0,1), and Docl3 by (0,5,1). As is clear from the figure, this
space captures certain intuitions about how these chapters are related. Chap-
“ter 1, being general, is fairly similar to both Chapters 7 and 13. Chapters 7
and 13, on the other hand, are distant from one another since they cover a
different set of topics.

Ch13(05.1)

Language )
Processing |

0.0.0)

-Figure 17.3 A siniple vector space representation of documents derived
from the text of the chapter and section headings of Chapters 1, 7, and 13 in
three dimenstons,

Unfortunately, this instantiation of a vector space places too much em-
phasis on the absolute values of the various coordinates of each document.
For example, what is important about the speech dimension of the Doc7, is
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. DOTPRODUCT

GosiNe

' normalizin g, we simply mean converting all the vectors to a standard I

. dimensions by the overall length of the vector, which is defined as T,
.+ This; in effect, eliminates the importance of the exact length of a docume:
" “yector in’ the space, and emphasizes instead the direction of the doc

_ _-:Ifollowmg term- by—document malfrix, A, where the columns represent D
S :'_D0c7 and D0c13 and the rows represent the terins Speech language
o processmg i : :

. : You should Venfy that Wlth thlS Scheme the normahzed vectors for Do
~ and our hypothetlcal (3,6,3) document end up as identical vectors..

= :-'tors Updatmg the similarity metric: given earlier with numencal ‘weigh
rather than bmary Values glves us: the followmg equatlon L

-;'_sensmve ta: the absolute magmtudes of the various d1mens1ons Ho
the dot: product between vectors that have been normahzed has a useful d

'_vectors ' When two documents. are- identical- they. will receive: a cos
one; when they are’ orthogonal (share noé common terms) they will r_ _

L cosme of zero.

i _' form then the normalzzatlon can be mcorporated d1rect1y mnto the snml

Chapter 17. Word Sense Disambiguation and Information Retrieva

riot the value 6 but rather: that it is the dominant contributor to the meai
of that document. Similarly, the specific values of 1, 2, and 1 for Doci
not important, what is important is that the three dimensions have rougl
similar. weights. - Tt would bé sensible; for: example, to assume that'a e
document- with weights-3, 6; and: 3 would be quite similar to Docl 'desp_
the magnitude differences in the term weights. : :

We-can accomplish this effect by normalizing document vectors. :

Converting to a unit length can be accomplished by dividing each of . th

vector with respect to the origin. :
Applymg this technique to our three sample documents results in

o asma
A= 98 016
N0

. Now let’s return to the topic of determining the similarity between ve

sim(?jk,d-) =G-d, zwfk X Wi i

1ntu1t1ve mterpreta‘uon it computes the cosine of the angle between

N ote that. 1f for some reason the vectors are not stored in-a norm ]
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- measure as follows:

N
> Dl Wik X Wy

sim(g,d;) = m ’——__ZI,lw

Of course, in situations where the document collection is relatively static and
 many queries are being performed, it makes sense to normalize the document

similarity metric.

Let’s consider how this similarity metric would work in the context
- of some small examples. Consider the carefully selected query consisting
'solely of the terms speech, language and processing. Converting this query

.67, and finally Doc7 with a cosine of .65. Not surprisingly, this ranking is
in close accord with our intuitions about the relatlonshlp between thlS query
- and these documents. - : :

_ processing. Processing this query vields the normalized vector (.70,0,.70).
 ‘When' the cosines are computed betweéen this vector and our documents,

-of .58, with Docl3 coming in a distant third with a cosine of .13.

-~ Term Weighting

In practice,-_.the method used to assign terms weights in the document and
' weights: term frequency within a single document, and the distribution of
~which: occur frequently within a document may reflect its. meaning: more
“strongly than terms that occur less frequently and should thus have higher
. 'weights.  In its simplest form, this factor is called term frequency and is
simply the raw frequency of a term within a decument (Luhn, 1957).

- collection as a whole. Terms that are limited to a few documents are useful

~other hand, terms that occur frequently across the entire collection are less
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“vectors once and store them, rather than include the normalization in the "

“to a vector and pormalizing it results in the vector (.57,.57,.57). Computing -
“'the cosines between this vector and our three document vectors shows that .0
“Docl is closest with a cosine of .92, followed by Doel3 with a cosine of .

query- vectors has an enormous impact on the effectiveness of a retrieval
“system.. Two factors. have proven to be critical in deriving effective term

terms across a collection. We can begin with the simple notion that terms

. The second factor to consider is the distribution of terms across the

useful in' discriminating among documents.. What is needed therefore is a

651

(17.19) .

Now consider a shorter query consisting solely of the terms speech and R

“Doc7 is now the closest with a cosine of .80, followed by Deocl with a score

TERM : :
FREQUENCY

- for discriminating those documents from the rest of the collection. On the .. g
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METHODOLOGY BOX: EVALUATING INFORMATION ;RE-
TRIEVAL SYSTEMS

- Information retrieval $ystems are evaluated with respect to the:
notion of relevance — a judgment by g human that a document is’
relevant to a query: ‘A system’s ability to retrieve relevant documents .

is assessed with a recall measure, as in Chapter 13.
Recall ... # of relevant documents returned.
total # of relevant documents 1n the Collectlon

_ Of Course a system can achieve. 100% recall by smlply return
mg aII the documents in the collectlon A system § accuracy is base
. oh how many of the documents returned fora given query are actu

' aIly relevant Wh1ch can be assessed by a precisfon metric.

# of reIevant documients returned
H# of documents retumed

S These measures are comphcated by the fact that most system :
. do not make explicit relevance judgments, but rather rank their col
: Iec‘uon with respect to'a query. To deal with this we can specify
set’ of cutoffs in the output and measure average precision for th
documents-_ ranked. above. the cutoff. Alternatively, we can specify.
a set of recall levels and measure average precision at those levels
This latter miethod gives rise to what are known as precision-recall
curves as shown in Figure 17.4. As these curves show, comparing :
 the pérformance of two systems can be difficult. In this comparison
- .-':-'o'ne' systeri is better at both high and low levels of recall, while the
~other i§ better in the middle region. An alternative to these cu:rves_ﬁ
are metrics that attempt to combine recall and precision into a single
- value: The F measure introduced on page 578 is one such measure. -
- The U.S. government-sponsored TREC (Text REtrieval Confer-
~ence). evaluations have provided: a rigorous testbed for the evalu'a'
- tion'of a variety. of information retrieval tasks and techniques. Like’
“the MUC evaluations, TREC provides large document sets for both
_ tra:imng_ and testing, along with a uniform scoring system. Train-
:.--ing'materials'-‘consi_st of sets' of documents: accompanied by sets of
" queries: (called topics in TREC) and relevance judgments. Voorhees'
. -and Harman (1998) provide the details for the most recent meeting:
+. Details of all of the meetings can be found at the TREC page on the
. National Institate of Stardards and Technology Website. .

Premsmn =
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. Precision
;
[
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Recall . .

Figure 17.4  Precision-recall curves for two hypothetical systems. These
" curves plot the average precision of a set of returned documents at a given
. level of recall: For example, with both of these systems, drawing a cutoff in
the return set at the document where they achieve 30% recall results in an
~-average precision of 35%.

measure that favors termis which occur in fewer documents. The fraction
N/n;, where N is the total number of documents in the collection, and n;
i$: the number: of documents in' which term f occurs, provides exactly this
measure.” The fewer documents a term occurs in, the higher this weight.
~ The lowest weight of 1 is assighed to terms that occur in all the docurments.
" Due to the large number of documents in many collections, this measure is
- usually squashed with a log function leaving us with the followmg inverse
document frequency term weight (Sparck Jones, 1972):

ldf—log(n) 120
)

Combmmg the term frequency factor w1th this factor results in a scheme
known as tf - 1df weighting: _ _ _

' w,,—tf”><1df (T2
__That is, the weight of term iin the vector for document jis the product of
itg overall frequency in j: with the log of its inverse: document frequency in
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‘the collection. With some minor variations, this weighting scheme is used |
assign term weights to documents in nearly all vector space retrieval model
- i Despite the fact that we use the same representations for documen
" ‘and queries, it is not at all clear that the same weighting scheme should
* . used for both. In many ad hoc retrieval settings, such as Web search engine
- i’ Tiser queries are not very much like documents at all. For example, an aﬁ'ai.
. sisof a very large set of queries (1,000,000,000 actually) from the AltaVis
o Search engine reveals that the average query length is around 2.3 words (Sl
verstem et'al.,; 1998). In such an environment, the raw term frequency in'th
SR query is not hkeiy to bé & very useful factor. Instead, Salton and Buck]'
17(1988) recommend the followmg formula for Welghtmg query terms, whe
miax; i denotes the frequency of the most frequent term in docu.ment k
W,k = (O 5% —Oé-tfl—k) X 1dfi'-_ :

maxjtfjk

(R -Term Selecuon and Creatlon L
S -Thus far ‘we: have been assummg that 1t is’ prec:1se1y the words that Ocel
cioina cellectlon that are ‘used to' index the documents in the collectio
- ‘common Vanations on thls assumptmn mvolve the use of stemmmg, '
.___._____'stophst . : ' ERICE, :
STEMMING The notton of stemmmg takes us back to Chapter 3 and the opi
i of ‘morphological analysis. The basic question addressed by stemmi ng
- whether the ‘morphological variants of a lexical item should be listed
_ : counted) separate}y, or whether they should be collapsed into a smgIe
L form. For example; without- stemmmg, the terms process, procéssing :
pmcessed w111 be treated as dlstmct items Wlth separate term freque 'ele

- vantage to usmg stemmmg is that it allows a part1cular query term. {o 1
"' documents containing any of thé: morphological variants of the term.
S - Porter stemimet (Porter, 1980}) described in Chapter 3 is frequently used
" retrieval from collections of English documents.
: - - A problem with this approach is that it: throws away useful d1s
Y tions.- For example, consider the use’ ‘of the Porter sternmier on dociimen
[ “and quenes contalmng the words stocks and stockings. In this ca
Porter stemmer reduees these surface forms to the smgle term- stock::
L cotirse; the result of this i i§ that queries concerning stock prices will Te
o -'documents about Stockmgs and quenes about stockmgs will find" docum
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about stocks.> More technically, stemming may increase recall by finding
documents with termns that are morphologically related to queries, but it may
also reduce precision by returning semantically unrelated documents. For
this reason, foew Web search engines currently make use of stemming. Hull
{1996) presents results from a series of experiments that explore the efficacy
of stemming.

A second common technique involves the use of stop lists, which ad-
dress the issue of what words should be allowed into the index. A stop list
is simply a list of high frequency words that are eliminated from the rep-
resentation of both documents and queries. Two motivations are normally
given for this strategy: high frequency. closed-class terms are seen as car-
rying little semantic weight and are thus unlikely to help with retrieval, and
eliminating them can save considerable space in the inverted index files used
to map from terms to the documents that contain them. The downside of
using a stop list is that it makes it difficult to search for phrases that contain
words in the stop list. For example, a common stop list derived from the
Brown corpus presented in Frakes and Baeza-Yates (1992), would reduce
the phrase to be or not to be to the phrase not.

Homonymy, Polysemy, and Synonymy

' Smcc the vector space miodel is baséd: solely on the use of simple terms, it
_ is useful to consider the effect that various lexical semantic phenomena may
have on the model. Consider a query containing the word canine with its
tooth and dog senses. A query containing canine will be judged similar to
 documents making use of either of these senses. However, given that users
are probably only interested in one of these senses; the doecuments contain-
- ing the other sense will be judged non-relevant. Homonymy and polysemy,
* therefore; can have the effect of reducing precision by leading a system to
return documents irrelevant to the user’s information need.

Now consider a query consisting of the lexeme dog. This query will be
“judged close to documents that make frequent use of the term dog, but may
. fail to match documents that use close synonyms like canine, as well as doc-
uments that use hyponyms such as Malamute:  Synonymy and hyponymy,
therefore, can have the effect of reducing recall by causing the retrieval sys-

2 This example is motivated by some bad pubhclty received by a well known search engine,
- when it returned some rather salacious sites containing extensivé use of the term stockirigs in
© Tesponse to queries coricerning stock prices: Tr response; a spokesman announced: that their
engineers were working hard on a solution to this strange problem with words. -
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o 1992; Sandérson,: 1994';}voor_hees-;. 1998). -

- One of the most effectlve Ways to 1mpr0ve retrleval perfonnance isto ﬁnd
E way ta nnprove user queries.. The techniques presented in thrs sectro
. .- been shown to varymg degrees to be effective at this task.

- RELEVANGE |
FEEDBACK . .

: precrsron as well:

:'-_isense disambiguation: can' help in: information retrieval. - The current ev
" dence or this point is mixed; with somie experiments reporting a gain usin

Improvmg User Querres B

- small st of retrieved: documents. The user is then asked to specify whic
cooof these documents appears ‘relevant to their need. The user’s original qiier
s then reformulated based on the chstrrbutlon of terms-in the relevant_an

- the user, Typrcally an enormous 1mpr0vement is seen after a srngle iter.
5 of this techniqiie. - : - :

'rectly from some of the basic geometric intuitions of the vector model:

“nal query toward thé documents that have been found to be relevant ;

. '--'away from the documents Judged not relevant. This can be accomplished b

L addmg an averaged vector represennng the relevant documments: to the orig
© . nal query; and subtractmg an averaged veetor representmg the non- re ev;

g documents B ORI :

tem to miss relevant doeuments

‘Note that it is inaccurate o state flatly that polysemy reduces precision,
and synonymy reduces recall since, as we discussed on page 652, both meas-
sures are relative to a fixed cutoff. As a result, every non-relevant documeiit
that rises above. the cutoff due to polysemy: takes up a slot in the fixed siz
return set, and may thus push a relevant document below threshold, thus re
ducing recall: Similarly, when a document is missed due to synenymy. a sl
is'opened in the return set for a non-relevant document, potennally reduc1ng3

" These issues lead: naturally o the questlon of whether or not word

disambiguation-like techmques (Schiitze and Pedersen, 1995); and others re
porting either no gain, or a degradation in performance (Krovetz and Crof

The smg]e most effective way to improve retrieval performanee in th
vector space: model is the use of relevance feedback (Rocchio, 1971);:
this method; a- user presents a-query to the system and is presented with:

nof-relevant documents that the user examined. This reformulated query.
then passed to the system as a new query with the new results being shown to.

The formal basts for the 1mp1ementat10n of thls techmque falls out

partlcular we Would like to push the vector representing the user’s
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More formally, let’s assume that g; represents the user’s original query,
R is the number of relevant documents returned from the original query, S
is the number of non-relevant documents, and documents in the relevant and
pon-relevant sets are denoted as 7 and §, respectively. In addition, assume
that B and y range from 0 to 1 and that p+7 = 1. Given these assumptions,
the following represents a standard relevance feedback update formula:- ..

QH—I“"Q.!+ er_“ESk

The factors P and 7y in this formula represent parameters that can be
adjusted experimentally.. Intuitively, B represents how far the new vector
should be pushed towards the relevant documents, and 7y represents how far
it should be pushed away from the non-relevant ones. Salton and Buckley
(1990} report good results with B = .75 and v~ .25.

We should note that evaluating systems that use relevance feedback is
rather tricky. In particular, an epormous improvement is often seen in' the
documents retrieved by the first reformulated query. This should not be too
surprising since it includes the documents that the user told the system were
relevant on the first round:. The preferred way to avoid this inflation is to only
compute recall and precision measures for what is called the residual collec-
tion, the original collection without any of the documents shown to the user
on any previous round. This usunafly has the effect of driving the system’s
raw performance below. that achieved with the first query, since the most
highly relevant documents have now been eliminated. Nevertheless, this is
an effective technique to use when comparing distinct relevance feedback
mechanisms. :

An alternative: approach to query Improvement focuses on the terms
that comprise the query. vector, rather than the query vector itself. In query
expansion, the user’s original query is expanded to include terms related to
the original texrms. This has typically been accomplished by adding terms
chosen from lists of terms that are highly correlated with the user’s original
terms in the collection. : Such highly correlated terms are listed in what is
typically called a thesaurus, although since it is based on correlation; rather
than synonymy, it is only. loosely comnected to the standard references that
carry the same name:: : :

. Unfortunately, it is usually the case that avaﬂable thesaurus—hke re-
sources are not suitable - for most collections. - In . thesanras generation, a
correlation-based thesaurus is generated automaticaily from all or a portion
of the documents in the collection. Not surprisingly; one of the most popular
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TERM.
CLUSTERING

174 OTHER I’NFORMA’_T_I_ON;_RE’TRrEVAL. TASKS.
::'.As- 'rrdtef:'l.;_-eériier,' ad-hoc retrieval is not the only'werd.—based- task in i

" mation retrieval: Some of the other more important ones include doc
- categorization, document clustering; text segmentation; and: summarizati

" DOCUMENT -
* CATEGORIZATIN

" ROUTING - -
“FIETERING

) DOCUMENT
CLUSTERENG

L the case in word serise discovery, a teasonable cluster is:defined as’on th
pE maxnmzes the within-cluster document: similarity, and minimizes betwee
' _;'cluster srmﬂanty There are two pnnmpal motivations for the use: of his

~ columns in the matrix represent: the documents and the rows represe
~ terms. Therefore in thesaurus generation; the rows can be clustered to: ornt

can be generated once from the document collection as a whole (Crouc
Yang, 1992), or sets of synonym-hke termis can be generated dynamrcally'
_:. -from the returned’ set for the original query. (Attar and Fraenkel, 1977): No
:that thls second. approach entalls far:more effort, since in effect a smal
~“saurus is generated: for the, documents retumed for every query, :rather'
5 'once for the entrre Colfectmn AR : .

:+ documents that belong in each class. - Although this can be done by hani
. the standard approach is to use: superv1sed machine learning. In partica
._c}ass1ﬁers can beé trained on'a set'of documents that have been labeled

“the corréct class. Any of the supervised learning methods introduced on'pa

: -categonzatron is. performed with the intent of transmitting a document to
- usér, or set of interested users; it is usually referred to as routing. The
- filtering is used in the special case where the categorization task is to-eithe
"-accept g re]ect a document as in“e-mail ﬁlters that attempt to. screen'f'

: junk mail:

: mg, of documents.. By contrast, the task of document clustering is to creat

methods used in thesaurus 'gerreration involves the use of term chusterin;
Recall: from our characterization. of the term-by-document matrix that the

sets-of synonyms, which can then be added to the user’s ongmal que
1mpr0ve its recall. L FEETE S S : :
This technique is typlcally rnstantrated in one of two ways: a thesauru

"The docament categorization: task is to assign’a new docUtrten_t
one:of a pre-existing set-of document classes.: In this setting,. the ta
creating a classifier consists of discovering a useful characterization of th

638 for word sense disambiguation can be applied to this task as welt. Whe

-.The categonzatlon task assumes an exrstmg classuﬁcatton or cluste

or dlscover a reasonable set of clusters for a given set of documents. A
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technique in an ad hoc retrieval setting: efficiency, and the cluster hypothe-
sis.

The efficiency motivation arises from the enormous size of many mod-
ern document collections. Recall that the retrieval method described in the
last section requires every query to be compared against every document in
the collection. If a collection can be divided up into a set of N conceptually
coherent clusters, then queries could first be compared against representa-
tions of each of the N clusters. Ordinary retrieval could then be applied only
within the top cluster or clusters, thus saving the cost of comparing the query
_ to the documents in all of the other more distant clusters.

The cluster hypothesis (Jardine and van Rijsbergen, 1971) takes this

argument a step further by asserting that retrieval from a clustered collection
will not only be more efficient, but will in fact improve retrieval performance
. in terms of recall and precision. The basic notion behind this hypothesis is
that by separating documents according to topic, relevant documents will
* be found together in the same cluster,- and non-relevant: documents. will be
avoided since they will reside in clusters that are not used for retrieval, De-
spite the plausibility of this hypothesis, there is only mixed empirical support
for it. Results vary considerably based on the clustermg aigonthm and doc-
ument collection in nse (Willett, 1988; Shaw et al., 1996).. '
- A promising alternative application of clustering is to cluster the doc-
uments returned in Tesponse to a user’s query; rather than the document col-
lection as whole. Hearst and Pedérsen (1996) present evidence that this tech-
nique provides many of benefits promised by the cluster hypothesis.

In text segmentation, larger documents are automatically broken down
“into smaller semantically coherent chunks. This is useful in domains where
there are a significant number of large documents that cover a wide variety
of topics. Text segmentation can be used to either perform retrieval below
the document level, or to visually guide the user to relevant patts of retrieved
documents. Again, not surprisingly, segmentation algorithms often make use
of vector-like representations for the subparts of a larger documert. “Adja-

cent subparts that have similar cosines are more likely to be about the: same:
- topic than adjacent segments with more distant cosines. Roughly speaking,

‘stich discontinuities in the similarity between adjacent text segments can be
used to divide larger documents into subparts (Salton et al., 1993; Hearst,
1997}, .. _ . _ L .
F1na11y, the task of text summarization (Sparck Jones -1997) is to
produce a shorter, summary version of an original document.. In. general,
two- approaches. have been taken: to this problem." In the knowledge-based
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approach, the original document undergoes a semantic analysis which pro-
duces a representation of the meaning of the text. This representation is then
passed to a text generator which produces a summmary text that conveys _th'
important points of the original and satisfies given lehgth restrictions. More
details on text generation are présented in Chapter 20. In selection-base
SELECTONBASED. summarization, a summary document is created by first assigning a ir
portance weight to all the sentences from the original document accordin
to very: simple word: frequency and discourse structure heuristics. A'si_jm
mary document is then generated. by determining a threshold such that th
inclusion of all séntences above the threshold results in a document w1th th

: desned size.-

17.5_ | SUMMARY i

ThlS chapter has explored tWo rnajor areas of lex1ca1 semantic processmg
: word sense dlsambtguanon and 1nfonnat10n retrieval:.

e Word sense dlsamblguatlon systems assrgn word tokene m context.t
: _f one of 4 pre spemﬁcd set of senses.

e 'Selectlonal restrlctlon-based approaches can be dsedto dlsamblguat
o ':_both predlcates and arguments but require con51derab1e mforma‘no
. about semantic roles restnctlons and h1erarchlcal type mformat

' 'about role fillers.

. Machme learmng approaches to sense dtsamblguatlon make it ‘possi
i bIe to automatrcally create Tobust sense dlsamblguatlon systems.

—.Superwsed approaches use collections of texts annotated 'vmth

o their correct senses to train ‘classifiers.

- Bootstrappmg approaches permit the use of superv1sed metho'
“with far fewer résources: :

g Unsuperwsed clustermg—based approaches attempt to drsc Ve
representatlons of word senses from unannotated texts. -

o Machlne readable dlctlonarles facﬂltate the creatton of broad— :
'sense dlsamb1 guators '

: 3__0. The donnnant models of mformatlon retneval represent the meani
_of docurnents and quieries as bags of words. -

e The vector space model views documients and- quenes as: vectors
2o adarge mnitld_lmensmna_l space. In this model, the similarity bet



Section 17.5. Summary

661

documents and queries, or other documents, can be measured by the
cosine of the angle between the vectors.

e User queries can be improved through query reformulation using either
relevance feedback or thesaurus-based query expansion. :

-~ BIBLIOGRAPHICAL-AND'HISTORICAL NOTES

Word sense dlsamblguatlon traces its roots to some of the earliest applica-
- tions of digital computers.. The notion of disambiguating a word by look-
ing at a small window around it was apparently first suggested by Warren
Weaver (1955), in the context of machine translation. Among the notions
first proposed in this early period were the use of a thesaurus. for disam-
~ biguation (Masterman, 1957), supervised training of Bayesian models for

‘sense analysis (Sparck Jones, 1986). .
= An enormous amount of work on disambiguation has been conducted
within the context of Al-oriented natural language processing systems. Most
natural language analysis systems of this type exhibit some form of lexical
disambiguation capability, however, a number of these efforts made word
sense disambiguation. a larger focus- of their work. Among the most in-
fluential efforts were the efforts of Quillian (1968) and Simmons (1973)
with semantic networks, the work of Wilks with Preference Semantics Wilks
(1975¢, 1975b, 19754), and the work of Small and Rieger {1982) and Ries-
beck (1975) on word-based understanding systems. Hirst’s ABSITY system
{Hirst and Charniak; 1982; Hirst, 1987,-1988); which used a technique based
on semantic networks called marker passing, represents the most advanced
system of this type. As with these largely symbolic approaches, most con-
- nectionist approaches to word sense disambiguation have relied on smalllex-
icons with hand-coded representations (Cottrell, 1985; Kawamoto, 1988). :
We should note that considerable work on sense disambiguation has
- been conducted in the areas of Cognitive Science and psycholinguistics.: Ap-
propriately enough, itis generally described using a different name: lexical
‘ambiguity resolution.” Small et al. (1988) present a variety of papers from
this perspective.: : : :
o The earliest zmplementatlon of & robust empitical approach to sense
'dlsamblguatlon is due to- Kelly and Stone (1975) who directed a team that
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- disambiguation (Madhu and Lytel, 1965), and the use of clustermg in: word- .

hand-crafted a set of disambiguation rules for.1790 ambigucus English words.
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. are.among the most. extensive___exploratio_ns.. of the use of machine reada

. ‘and Chang (1998).

S brguatlon began with Black (1988); who apphed decision tree learning to'th
" task. Theneed for large amounts of annotated text in these methods led
L ve%tlgattons mto the use of bootstrapping methods (Hearst 1991; Yarowsky,
11995). The problem of how to weight and combine the disparate sources o
R _fevtdence used in many. robust systems is'explored in Ng and Lee (1996)
e -McRoy (1992) “There has beén consrderably less work in the area of un
o 'pervrqed methods. The carliest atternpt to use clustering in the study of Wi
. Usenses s dife to! Sparck Jones. (1986) Zernik (1991): successfully apphe
- standard mformatlon retrreval chistering algorithm to the problem; and pr¢
-+ vided an evaluation based on. improvements in retrieval performance: Mor
- extensive recent work: on: clusterrng can be found in Pedersen and
L (1997) and Schutze (1997 1998) ' v

; system deserrbed in Kelly and Stone (1975) makeés multiple passes ove
s sentence to take later advantage of eaery dlsamhrguated Words Cowre et

drcttondry

; _: “a more focused review from a machine: Iearnmg perspective.. Wilks et
RS (1996) describe a wide array: of dlctlonary and: eorpus—based experrments
' along with detailed descnpttons of some very early work..

SRR fuily automaue mdexmg of documents based on their contents.~ Ové
L -'years Salton § SMART project (Salton 1971 at Cornell developed ‘or ev ]
¢ uated many of the most: important notions it information retrieval includin
i ‘the s vector rnodel term werghtrng schemes relevance feedback;: and theuis
of cosine as-a sumlarlty metnc The notion of usmg inverse documen fre

Eesk (1986) was the first to use a machine readable dictionary for word Sens
disambiguation. The efforts at New Mexico State University using LDOC

dictionaries. - Much of this work-is described in Wilks et al. (1996).
problem of dictionary senses being too fine-grained or lacking an appropri
ate organization has been addressed in the work of Dolan (1994) and Che'

- Modern 1nterest in ';uperwsed maehme learnmg approaches to d1

Note that of al] of these robust efferts oniy three have attempte

- Ide: and Veroms (1998) provrde a comprehensrve review of the htsto ;
and current state of word sense disambiguation. Ng and Zelle (1997) pr

- Luhn (1957) is: generally ‘credited with first advancmg the notioh

j3'38.: |
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quency in term weighting is due to Sparck Jones (1972). The original notion
of relevance feedback is due to Rocchio (1971). An alternative {o the vec-
tor model that we have not covered is the probabilistic model. Originally

version of the probabilistic model is the basis for the widely used INQUERY
system (Callan et al., 1992). Crestani et al. {1998) present a comprehensive
‘review of probabilistic models in information retrieval.

The cluster hypothesis was introduced in Jardine and van Rijsbergen
(1971). Willett (1988) provides a critical review of the major efforts in this
area. Mather (1998) presents an algorithm-independent clustering metric
that can be used to evaluate the performance of various clustering algorithms.
A collection of papers on document categorization and its close siblings,
filtering and routing, can be found in Lewis and Hayes (1994). A recent
example of routing is AT&T’s “How May I Help You?” task where the
goal is to classify a user’s utterance into one of fifteen possible categories,

‘the call, the system routes the caller to an appropriate human operator. The
“classification accuracy on this task approaches 80%, despite the fact that the
_'s'peech recognizer has a word accuracy rate of only around 50% (Gorin et al.,
1997 . :
Text segmentation has generally been 1nvest1gated from one of two per-
spectlvesi approaches based on strong theories of discourse structure, and
approaches based on lexical text cohesion (Morris and Hirst, 1991). Hearst
(1997) describes a robust technique based on a vector model of lexical cohe-
-sion. Techniques based on strong dxqcourse models are discussed in Chap—
-ter 18 'and Chapter 20, x

B Research on text summarization began with the work of Luhn (1958}
on the automatic generation of abstracts. A collection of papers on text sum-
marization can be found in Hovy and Radev (1998).

- .. An important extension of the vector space model known as Latent
Semantic Indexing (I.SI) (Deerwester et al., 1990) uses the singular value
decomposition method as means of reducing the dimensionality of vector
“models with the intent of discovering higher-order regularities in the original
termi-by-document matrix. Berry et al. (1999) present a useful review of
numerical methods for dimensionality reduction in vector models. Although
‘LSI began life as a retrieval method, it has been applied to.a wide variety of
‘applications including models of lexical acquisition (Landauer and Dumais,
11997). question answering (Jones, 1997), and most recently, essay gradmg
“(Landauer et al.; 1997) ' : :

339

‘shown effective by Robinson and Sparck Jones (1976), a Bayesian network -

“such as third number billing, or collect call. Once the system has classified -

PROBABILISTIC
MODEL

TENT
SEMANTIC
NDEXING
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. primary-journals in the field are the Journal of the American Society
. formation Sciences; ACM Transactions on Information Systems, Infonﬁatr
- Processing and Management, and Information Retrieval. -

- 17.1 - Coliect a small corpus of example senterices of varying lengths fro

' _:-_'any newspaper o magazme “Using WordNet, or any standard: dictionar
- determine how' many ‘sénses there are for each of the open-class word
©each sentence; How many distinct combinations of senses are there for ach

. 17 2 Usmg WordNet or a standard ‘reference diCthtlaI'y tag each
= serise always a stralghtforward task Report on any dlfﬁcultles you en
: _. tered . . . . .

17 .3 Usmg the sanie corpus 1soIate the words takmg patt in aIl the'ver

P only mformatlon about the words in the relation?

- effeetlve m selecttonal restncuon—based sense d1samb1guat1on‘? Why'?

' 17. S Implement and experlmem‘: with & decision-list sense disambigu tio
system A a model, use the kinds of features shown in Figure 17.1 F
more detatls on decision-list learning see Russell and Norvig (1995). To £
'c1htate eva]uatlon of your system you should obtam one of the freely avat
e able sense tagged corpora HEN o :

Chapter 17. Word Sense Disambiguation and Information Retriev: b

.-Baeza-Yates and Ribeiro-Neto (1999) is a comprehensive text cove
ing many of newest advances and trends in information retrieval. Frakes and
Baeza-Yates (1992) is a more nuts and bolts text which includes a conside
able amount of useful C code. Oider classic texts include Salton and MeGill
(1983) and van Rijsbergen (1975). Many of the classic papers in the field ¢
be found in Sparck Jones and Willett (1997). Cutrent work is publishéd :'
the annual proceedings of the ACM Special Interest Group on Informatio
Retrieval (SIGIR). The periodic TREC conference proceedings contain
sults from standardized evaluations organized by the U.S. government

sentence‘? How does th1s number seem to vary with sentence Iength‘?

class word n your corpus with its correct tag. Was choosing the. corre

subject and verb-object relations. How often does it appear to be the:
that the words taking part in thése relations. could be dlsambzguated usmg

.17 4 Between the Words eat and ﬁnd whlch would you eXpect to b : mo
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17.6 Using your favorite dictionary, simulate the word overlap disambigua-
tion algorithm described on page 645 on the phrase Time flies like an arrow.
Assume that the words are to be disambiguated one at a time, from left to
right, and that the results from earlier decisions are used later in the pro-
cess.

17.7 Formulate a set of detailed queries from a domain you are familiar
with, and submit them to a number of popular search engines. Using a series
of fixed cutoffs, assess the precision of each of these search engines.

17.8 For each of the returned documents that you judged not relevant in
Exercise 17.7, come up with an account as to why it might have been re-
turned.

17.9 Consider the relevant documents that were returned by some, but not

all, of the search engines in Exercise 17.7. For the search engines that failed _

to retrieve a relevant docurnent:

a. Determine if the search engine contains the relevant document.

b. If it does, then come up with an account for why it did not return it (or
did not rank it highly).

17.10 Investigate five of the more popular search engines and determine
which, if any, are employing some kind of morphological analysis.

17.11 Expand the queries used in Exercise 17.7 to include all of the mor-
phological variants of each query word. Submit these expanded queries to
your original set of search engines. Does such morphological processing
seem warranted?

17.12  Using WordN ét,' expand your queries to include all the synonyms of
all the terms in the original query. Report on the results of submitting the
expanded queries to a set of search engines.

17.13 Using WordNet, expand your queries to include only those syn-
onyms that are appropriate for each of the terms in the original query. In
other words, only include synonyms for the senses of terms you intended in
the original query. Submit these expanded ueries to a set of search engines,
and compare the results to those you achieved in the previous exercise.

- 17.14  Word sense disambiguation seems to have little effect on retrieval
performance in settings where long queries are used. Suggest reasons for
why this might be the case.
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17.15 . Find, or create, a collection of documents that have been separates
into distinct topical categories. E-mail messages that have been manuall
placed into distinct folders are a good source for such a collection. Usin
this collection; implement and evaluate a naive Bayes approach to text cli
sification. . . : o
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