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Abstract. The diffusion of a solute substance in creeping sinusoidal movement of an incompressible couple stress liquid through
a pervious medium in an inclined duct with wall features is studied. The effective diffusion coefficient has been computed through
long wavelength supposition and Taylor’s condition for heterogeneous-homogeneous reactions. The objective of this paper is to
measure the impact of perviousness, couple stress, wall feature constraints and angle of proclivity through graphs.

Keywords: creeping flow; diffusion; couple stress fluid; inclined conduit, wall features

INTRODUCTION

Dispersion is the method by which a material is transported from one portion of a system to a different as a result
of random molecular motion. Taylor [1] explored the incompressible and viscous stratified flow of a liquid in a very
spherical tube with a scattering of a substance material. Many professional researchers investigated the scattering
of a solute material in a viscous liquid under distinct situations [2]- [8]. These studies have been extended to non-
Newtonian liquids by many experts [9]- [11].

"Peristaltikos" is a Greek word which infers clasping and compacting, from which the word ’peristaltic’ is deter-
mined. Peristalsis is an organized response wherein an influx of compression gone before by a wave of relaxation
passes down a hollow viscus. In this manner ’peristalsis’ is the rhythmic sequence of smooth muscle contractions
that progressively squeeze one small section of the tract and then the next to push the content along the tract. In view
of its significance, various specialists have inspected the locomotion curved flow of various fluids underneath several
conditions [12]- [15]. In physiological structures, it’s understood that each one vessel don’t seem to be straight never-
theless have some proclivity with the middle. The gravitational force power is accounted because of the consideration
of slanted conduit. a few researchers have explored the peristaltic stream of non-Newtonian and Newtonian fluids
during a slanted passage with completely different circumstances [16]- [20].

Couple stress liquid is a particular reasonably non-Newtonian liquid, whose particle sizes are taken under consid-
eration. Restricted studies on the crawling movement of couple stress liquid are done by many investigators [21]-
[24]. The effects of wall structures on the Poiseuille stream with peristalsis have been considered by Mittra-Prasad
[25]. Later, some investigators have studied the wall structures effects on completely different liquids. Here, we have
investigated scientific conduct of crawling sinusoidal stream and dissipating of an incompressible couple stress fluid
in a slanted conduit through a pervious medium with compound reactions and wall features.

MATHEMATICAL FORMULATION AND METHODOLOGY

Consider the couple stress liquid with peristalsis through a pervious medium in a inclined conduit. Figure 1 depicts
the schematic graph of the issue.

The migrant trigonometric wave is assumed as:

Y =±h =±
[

d + a sin
2π
λ

(x − ct)

]
, (1)

where a, c, λ , d are respectively amplitude, speed, wavelength of the creeping sinusoidal wave, and half width of the
conduit.
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FIGURE 1. Schematic diagram of the issue.

The important flow conditions of the issue are expressed as:

∂ U

∂ X
+

∂ V

∂ Y
= 0, (2)

ρ
[

∂
∂ t

+U
∂

∂ X
+V

∂
∂ Y

]
U =− ∂ p

∂ X
+μ∇2U −η

′
∇4U −

(
μ
k̄

)
U +ρg sinψ, (3)

ρ
[

∂
∂ t

+U
∂

∂ X
+V

∂
∂ Y

]
V =− ∂ p

∂ Y
+μ∇2V −η

′
∇4V −

(
μ
k̄

)
V −ρg cosψ, (4)

where ∇2 = ∂ 2

∂ X 2 +
∂ 2

∂ Y 2 , ∇4 = ∇2∇2, ρ , p, μ , k̄ , η ′, U, and V are the liquid density, the pressure, the viscosity

coefficient, the permeability constraint, the constant associated with couple stress liquid, and the velocity components
in the X , Y directions.

With reference to Mittra-Prasad [25], the condition of the bendable divider is assumed as:

p − p0 = L(h), (5)

where

�
∂
∂ t

−T
∂ 2

∂ X 2
+m

∂ 2

∂ t 2
= L. (6)

Here T , m , � are the pressure in the layer„ the mass per/section, and the sticky damping power coefficient.

Neglecting body couples and forces and applying long wavelength supposition to Eqs. (2) – (4), we obtain

∂ V

∂ Y
+

∂ U

∂ X
= 0, (7)
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− ∂ p

∂ X
+μ

∂ 2U

∂ y2
−η ′ ∂ 4U

∂ Y 4
− μ

k̄
U +ρg sinψ = 0, (8)

− ∂ p

∂ Y
= 0. (9)

The border periphery constraints are

U = 0 ,
∂ 2U

∂ Y 2
= 0 ,at ± h = Y . (10)

It is presumed that p0 = 0 , and condition (8) takes the form:

∂
∂ X

L(h) = μ
∂ 2U

∂ Y 2
−η ′ ∂ 4U

∂ Y 4
− μ

k̄
U +ρg sinψ = 0 at ± h = Y , (11)

where

∂
∂ X

L(h) = �
∂ 2h

∂ X ∂ t
−T

∂ 3h

∂ X 3
+m

∂ 3h

∂ X ∂ t 2
=

∂ p

∂ X
. (12)

Attempting (8) and (9) with (10) and (11), it yield as:

U(Y ) =− k̄

μ
J ′ [N ′

1 cosh(m ′
1y)+N ′

2 cosh(m ′
2y)+1

]
, (13)

where m ′
1 =

√
μ

2η ′
(

1+
√

1− 4η ′
μ k̄

)
, m ′

2 =

√
μ

2η ′
(

1−
√

1− 4η ′
μ k̄

)
, N ′

1 , N ′
2 are are listed in the appendix.

The mean speed is computed from Eq. (13) as:

Ū =
1

2h

∫ h

−h
U(Y )dY =− k̄

μ
J ′
[

N ′
1

m ′
1h

sinh(m ′
1h)+

N ′
2

m ′
2h

sinh(m ′
2h)+1

]
. (14)

Employing [10], and the speed of liquid is specified and attained from Eqs. (13) and (14) as:

UX = U − Ū =− k̄

μ
J ′
[

N ′
1 cosh(m ′

1Y )+N ′
2 cosh(m ′

2Y )− N ′
1

m ′
1h

sinh(m ′
1h)− N ′

2

m ′
2h

sinh(m ′
2h)

]
. (15)

Employing [4], the scattering condition for the concentration C for the present issue underneath isothermal condi-
tions:

U
∂ C

∂ X
+

∂ C

∂ t
= D

∂ 2C

∂ Y 2
− k1C . (16)

where D, C , and k1 are the molecular diffusion coefficient, concentration of the liquid, and the constant of first order
chemical response individually.

The non-dimensional quantities are specified:

ξ =
(X − Ūt)

λ
, H =

h

d
, F =

ρg

μ
, P =

d 2

μcλ
P ′, θ =

t

t̄
, t̄ =

λ
Ū
, η =

Y

d
, Da =

k̄

d 2
. (17)

With the reference of ( [10]), utilizing Ū = C , along with Eq. (17) in Eqs. (12), (15) and (16), we get

P =−ε
[−E3(2π)2 sin(2πξ )+(E1 +E2)(2π)3 cos(2πξ )

]
, (18)
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UX =−Da

d 2

μ
J [N1 cosh(m1η)+N2 cosh(m2η)+N3] , (19)

∂ 2C

∂η2
− k1d 2

D
C =

d 2

λ D
UX

∂ C

∂ξ
, (20)

where m1 = m ′
1d =

√
δ 2

2

(
1+

√
1− 4

δ 2Da

)
, m2 = m ′

2d =

√
δ 2

2

(
1−

√
1− 4

δ 2Da

)
, ε

(
= a

d

)
, E1

(
=− Td 3

λ 3μ�

)
,

E2 =

(
m�d 3

λ 3μ

)
, E3 =

(
�d 3

μλ 2

)
, δ

(
= d

√
μ
η ′

)
.

Following Chandra-Philip [7] and Alemayehu-Radhakrishnamacharya [9], boarder conditions are specified as:

β C +
∂ C

∂η
= 0 at η = H = [1+ ε sin(2πξ )], (21)

−β C +
∂ C

∂η
= 0 at η =−H =−[1+ ε sin(2πξ )]. (22)

The integral of Eq. (20) is obtain as:

C(η) =−Da d 4

λ μD

∂ C

∂ξ
J
[

A4 cosh(m1η)+A5 cosh(m2η)+A6 cosh(αη)+A7

]
. (23)

The volumetric rate Q is defined and obtained from Eqs. (19) and (23) as:

Q =
∫ H

−H
CUX d η =−2

d 6

λ μ2D

∂ C

∂ξ
K(ξ ,α,β ,ε,E1,E2,E3,Da ,δ ,ψ), (24)

where

K(ξ ,α,β ,ε,E1,E2,E3,Da ,δ ,ψ) =

−Da
2J 2

[N1N4

2
B1 +

N2N5

2
B2 +(N1N5 +N2N4)B3 +N1N6 B4 +N2N6 B5

+(N1N7 +N3N4)B6 +(N2N7 +N3N5 )B7 +N3N6 B8 +N3N7 H
]
, (25)

where N1, ....,N7 , and B1, ....,B8 are listed in appendix.

Taking a gander at Eq. (25) with Fick’s law of dissemination, the scattering coefficient D∗ was resolved as:

D∗ = 2
d 6

μ2D
K(ξ ,α,β ,ε,E1,E2,E3,Da ,δ ,ψ). (26)

Let K̄ be the normal of K and is attained by the succeeding condition:

K̄=
∫ 1

0
K(ξ ,α,β ,ε,E1,E2,E3,Da ,δ ,ψ)dξ . (27)
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FIGURE 2. Variation of K̄ for E1 with ε = 0.2, α = 1.0, Da = 0.002, δ = 2.0, E2 = 4.0, E3 = 0.00, ψ = π
4

FIGURE 3. Variation of K̄ for E1 with ε = 0.2, β = 5.0, Da = 0.002, δ = 2.0, E2 = 4.0, E3 = 0.06, ψ = π
4

FIGURE 4. Variation of K̄ for E2 with ε = 0.2, α = 1.0, Da = 0.002, δ = 2.0, E1 = 0.10, E3 = 0.06, ψ = π
4

DISCUSSION OF OUTCOMES

The expression for K̄(ξ ,α,β ,ε,E1,E2,E3,Da ,δ ,ψ) has been computed by using the MATHEMATICA and outcomes
are revealed through graphs.

From Figs. 2 - 7, it follows that K̄ grows with a rise in the rigidity constraint of the wall (E1) toughness of the
wall (E2) and viscous damping force of the wall (E3). It is experiential that K̄ rises as growth in rigidity (E1) for the
following cases of (a) toughness in the wall (E2 �=0) and perfectly elastic wall (E3 = 0) (Fig. 2); (b) toughness in the
wall (E2 �=0) and dissipative wall (E3 �=0) (Fig. 3).

It is observed that K̄ increases with the toughness of the wall (E2) for the case of dissipative wall (E3 �=0) (Fig. 4)
and pefectly elastic wall (E3 = 0) (Fig. 5).
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FIGURE 5. Variation of K̄ for E2 with ε = 0.2, β = 5.0, Da = 0.002, δ = 2.0, E1 = 0.10, E3 = 0.00, ψ = π
4

FIGURE 6. Variation of K̄ for E3 with ε = 0.2, α = 1.0, Da = 0.002, δ = 2.0, E1 = 0.10, E2 = 4.0, ψ = π
4

FIGURE 7. Variation of K̄ for E3 with ε = 0.2, β = 5.0, β = 5.0, Da = 0.002, δ = 2.0, E1 = 0.10, E2 = 0.0, ψ = π
4

It is also noticed that K̄ ascends with the damping force (E3) for the below given cases of (a) toughness in the wall
(E2 �=0) (Fig. 6); (b) without toughness in the wall (E2 = 0) (Fig. 7).
In Figs. 8 - 9, it is seen that K̄ descends with an increase in couple stress constraint (δ ). Figures 10 - 11 demonstrates
that K̄ improves with a development in the Darcy number (Da). This outcome agrees with the result of [9] and [10].

It is additionally seen from Figs.12 - 13 that K̄ develops as an edge of proclivity (ψ) increments. These impacts
are in concurrence with the consequences of Sankad-Radhakrishnamacharya [18].

It is seen that dispersing decreases with heterogeneous substance reaction rate (β ) (Figs. 2, 4, 6, 8, 10, 12) and
homogeneous compound reaction rate (α) (3, 5, 7, 9, 11, 13).
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FIGURE 8. Variation of K̄ for δ with ε = 0.2, α = 1.0, Da = 0.002, E1 = 0.10, E2 = 4.0, E3 = 0.00, ψ = π
4

FIGURE 9. Variation of K̄ for δ with ε = 0.2, β = 5.0, Da = 0.002, E1 = 0.10, E2 = 4.0, E3 = 0.006, ψ = π
4

FIGURE 10. Variation of K̄ for Da with ε = 0.2, α = 1.0, δ = 2.0, E1 = 0.10,E2 = 0.0, E3 = 0.006, ψ = π
4

CONCLUSIONS

• A similar behavior is observed for perviousness constraint (Da), and angle of proclivity (ψ) on the concentration
profile.

• An alike effect on the concentration profile is noticed for wall constraints (E1,E2,E3).

• An inverse behavior of homogeneous compound response rate constraint (α) and heterogeneous substance
response rate constraint (β ) are observed on the concentration profile.

• Dissimilar behavior noted for couple stress constraint (δ ) on scattering coefficient.
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FIGURE 11. Variation of K̄ for Da with ε = 0.2, β = 5.0, δ = 2.0, E1 = 0.10, E2 = 4.0, E3 = 0.06, ψ = π
4

FIGURE 12. Variation of K̄ for ψ with ε = 0.2, α = 1.0, δ = 2.0, Da = 0.002, E1 = 0.10, E2 = 0.0, E3 = 0.06

FIGURE 13. Variation of K̄ for ψ withε = 0.2, β = 5.0, δ = 2.0, Da = 0.002, E1 = 0.10, E2 = 0.0, E3 = 0.00

• The perviousness constraint, angle of proclivity and wall constraints support the scattering but the couple stress
constraint, homogeneous response rate, and heterogeneous response rate resist the scattering.
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APPENDIX

N ′
1 =

(m ′
2)

2

[(m ′
1)

2 − (m ′
2)

2]cosh(m ′
1h)

, N ′
2 =

−(m ′
1)

2

[(m ′
1)

2 − (m ′
2)

2]cosh(m ′
2h)

,

P ′ =−T
∂ 3h

∂ X 3
+m

∂ 3h

∂ X ∂ t 2
+�

∂ 2h

∂ X ∂ t
,and J =

∂ p

∂ X
− ρg

μ
sinψ,

N1 =
(m2)

2

[(m1)2 − (m2)2]cosh(m1H )
, N2 =

−(m1)
2

[(m1)2 − (m2)2]cosh(m2H )
,

N3 =
−(m2)

2 sinh(m1H )

m1H [(m1)2 − (m2)2]cosh(m1H )
+

(m1)
2 sinh(m2H )

m2H [(m1)2 − (m2)2]cosh(m2H )
,

N4 =
(m2)

2

[(m1)2 − (α)2] [(m1)2 − (m2)2]cosh(m1H )
, N6 = N3L1 −N4L2 −N5 L3,

N5 =
−(m1)

2

[(m2)2 − (α)2] [(m1)2 − (m2)2]cosh(m2H )
, N7 =−N3

α2
,

L1 =
β

α2(α sinh(αH )+β cosh(αH )
, L2 =

(m1 sinhm1H +β coshm1H )

(α sinhαH +β coshαH )
,

L3 =
(m2 sinhm2H +β coshm2H )

(α sinhαH +β coshαH )
, B1 =

2m1H + sinh2m1H

2m1

,

B2 =
2m2H + sinh2m2H

2m2

, B6 =
sinhm1H

m1

, B7 =
sinhm2H

m2

, B8 =
sinhαH

α
,

B3 =
m1 sinhm1H coshm2H −m2 coshm1H sinhm2H

[(m1)2 − (m2)2]
,

B4 =
m1 sinhm1H coshαH −α coshm1H sinhαH

[(m1)2 − (α)2]
,

B5 =
m2 sinhm2H coshαH −α coshm2H sinhαH

[(m2)2 − (α)2]
, α =

√
k1

D
d .
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