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Abstract The paper deals with Nonlinear Energy Sinks (NES), utilizing piezoelec-
tric transduction mechanism, focusing on the degree of effect the auxiliary nonlinear
stiffness has on the performance of the NES and the performance of NES with the
primary system subjected to random excitation. Hence, a parametric sweep of the
auxiliary nonlinear stiffness over a broad range of values has been done and the
variations in primary vibration suppression and voltage generation by the NES have
been observed for its corresponding values. It has been conducted with the NES
attached to a linear primary system and then an essentially nonlinear one. Compari-
son of results and validation of the performance of NES for both the cases have been
performed. Following that, performance of the NES has been investigated when a
linear primary system is subjected to random excitation. Two separate cases have
been utilized to randomize the excitation. Results regarding vibration control and
voltage generated have been derived for both and compared to those obtained for
deterministic excitation. By and large, it is found that NES is successful in protect-
ing a primary system and broadening the operation bandwidth, while satisfyingly
generating voltage, irrespective of the type of excitation on the primary system.
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1 Introduction

Protection of mechanical equipment from excessive vibration is vital as vibrational
damage can severely limit an equipment’s service life. On the other hand, vibration
being such a ubiquitous resource, utilization of vibrational energy for energy har-
vesting can be very useful for small portable equipment or for equipment present in
isolated regions [1, 2]. Conventional energy harvesters have a limitation of harvesting
energy at resonance [3]. Other options consisted of multimodal techniques [3, 4] or a
switch to nonlinear techniques [3, 5]. While tuned Mass Dampers (TMD) and linear
vibration absorbers have been utilized for control of primary structure [6], limitations
such as negligible frequency robustness and poor performance for random vibration
render their utilization an infeasible task [6]. Attachment of auxiliary systems as
energy harvesters for vibration suppression has an advantage of vibration control
and useful energy harvesting [7]. Further investigations into nonlinear alternatives
have led to the development of nonlinear energy sink (NES). While it is successful in
suppressing primary systems’ responses, it can also be coupled with a piezoelectric
vibrational energy harvester (PVEH) [6] to perform simultaneous energy harvesting.
NES has also been found to provide certain unique features such as Strongly Mod-
ulated Response (SMR) [8] and Targeted Energy Transfer (TET) [8]. Such features
allow vibration control in a broadband manner with simultaneous energy harvesting,
making NES a lucrative and more advantageous system when compared to its coun-
terparts. Also, while it has yet not been fully investigated, NES’s ability to increase
operational bandwidth also allows it to effectively suppress primary vibrations, unlike
the linear systems which falter when operated upon by frequency varying excitation
[6].

NES allows passive control of vibration of a primary system and consists of a mass
and viscous damper with essential nonlinearity. Essential nonlinearity refers to an
absence of linear stiffness. The presence of essential nonlinearity or quasi-essentially
nonlinearity [9] is vital as only then can the NES resonate at any frequency and attain
its objective. Quasi-essential nonlinearity refers to a situation in which the linear stiff-
ness of the NES is considerably decreased in comparison to its nonlinear stiffness,
allowing very accurate emulation of essential nonlinearity. It is employed in phys-
ical models as attaining essential nonlinearity is extremely challenging [8]. NES
provides the Targeted Energy Transfer (TET) [8] feature which refers to its ability to
irreversibly transfer energy from the primary system and dissipating it within itself.
However, rather than dissipation, the vibrational energy can be utilized for minor
energy needs. Efforts have been made to convert it into electrical energy and various
transduction models have been introduced to achieve desirable results. By coupling
the NES with a transduction model, the voltage can be generated instead of lim-
iting to only vibration control. Electrostatic, electromagnetic, magnetostrictive and
piezoelectric mechanisms [8] can be utilized with each providing certain advantages
over the other. Most of the study to date has been focused on electromagnetic trans-
ducers [5]. But it has been proposed that piezoelectric vibrational energy harvesters
(PVEH) [5] based on Nonlinear Energy Sinks can also reduce force transmissibility
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while harvesting energy on a broad frequency scale [9]. It can also be said that it
occupies lesser space while providing better power density [5]. Another area lacking
in investigation has been the performance of an NES for random excitations. Most of
the studies done to date have concentrated on harmonic excitation upon the primary
system which severely limits an NES’s potential to operate satisfyingly on frequency
varying environments while in the meantime, also fails to emulate real-life scenarios
to maximum accuracy. Random vibration has indeed started replacing its harmonic
counterpart when realistic scenarios are concerned and as it is much more capable
of accurately emulating them. Hence, a study is required to understand if an NES
can indeed perform satisfyingly when subjected to random vibrations as only then,
practical application of an NES can be considered on a larger scale.

This work proposes the effect of cubic coefficient of the nonlinear stiffness of the
NES spring on voltage generated by a NES and the structural response of the NES and
the primary spring-mass system. It also investigates NES behaviour for a nonlinear
primary system. The work further investigates into the behaviour of the NES when
the primary system is acted upon by random excitations and analyses the difference
between the voltage generated and structural response of the NES and primary sys-
tem when acted upon by random excitations and when acted upon by deterministic
harmonic excitations. The present study utilizes numerical simulations with the help
of MATLABODE45 function to address these issues. The values of the parameters
used in the study are taken from previous literature [9]. A parametric sweep of the
value of the cubic nonlinear spring stiffness is performed for four different initial
conditions [9]. The interplay and relation between the cubic hardening nonlinear
spring stiffness of the NES and the newly introduced nonlinear spring stiffness of
the primary system are evaluated. The modelling of random vibrations is done by
introducing a deterministic harmonic (sinusoidal) excitation, which depending on
the random variable, was split into two cases to introduce the random vibration,
forcing magnitude or the frequency of forcing. The RMS voltages generated in both
the cases are evaluated and compared with the deterministic harmonic excitation as
well as with the results validated from literature [9]. The time response plots and
time voltage plots hence obtained are presented in this paper.

The paper has been divided into three sections. Section 2 presents the mathematical
model used in this study, followed by results and discussions in Sect. 3. The salient
findings from this study are summarized in Sect. 4.

2 Mathematical Modelling

See Fig. 1.
To study the performance of the piezoelectric vibrational energy harvester (PVEH)

based on the NES, a model is developed consisting of two parts: a primary system
and a PVEH attached to a NES. The governing equations of the linear primary system
with free vibration are given as
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Fig. 1 a NES attached to a linear primary system; b NES attached to a nonlinear primary system

m pẍ p + cp ẋ p + kpx p − [
ca ż + (

k1z + k3z3
) + θV

] = 0 (1)

maz̈ + (1 + μ)
[
ca ż + (k1z + k3z3

) + θV ]−μ[cp ẋ p + kpx p] = 0 (2)

V

R
+ C S V̇ − θ ż = 0 (3)

The governing equations of the nonlinear primary system with free vibration are
given as

m pẍ p + cp ẋ p + kpx3
p − [

ca ż + (
k1z + k3z3

) + θV
] = 0 (4)

maz̈ + (1 + μ)
[
ca ż + (k1z + k3z3

) + θV ]−μ[cp ẋ p + kpx p] = 0 (5)

V

R
+ C S V̇ − θ ż = 0 (6)

For forced vibration, Eqs. (1) changes to Eq. (7) while Eqs. (2) and (3) are also
utilized

m pẍ p + cp ẋ p + kpx p − [
ca ż + (

k1z + k3z3
) + θV

] = F sin(ωt) (7)

In the governing equations, xa(t) and x p(t) represents the displacement of NES
and the primary mass, respectively. z refers to the relative displacement between the
NES and primary system and is represented as z = xa − x p. ma and m p represent
the mass of the NES and the primary system respectively. ca and cp represent the
damping coefficient of the NES and primary system. k1 and k3 represent the linear
and nonlinear stiffness of the NES spring while kp represents the stiffness of the
primary mass. Mass ratio is denoted by μ = ma/m p. The capacitance and the
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electromechanical coupling coefficient of the PVEH are represented as C S and θ . R
and V represent the resistive load and voltage.

These above governing equations can also be represented in the state space form,
and numerical simulation is done with the help of MATLAB software using the
ODE45 function to solve the above equations. The initial conditions used are: x p(0)
= X, xa(0) = X, ẋ p(0) = 0, ẋa(0) = 0. X represents the initial displacements given
to the system. Four different values of X are used in the numerical simulation, X =
0.52 mm, X = 1.42 mm, X = 2.65 mm, X = 4.45 mm. Only the first value has been
used when working with the Eqs. (2), (3) and (7) in Sect. 3.3.

Here, the base excitation has been considered to be zero as the base is fixed. The
values of the parameters used in the study are taken from previous literature [9].

3 Results

The focus of this study was to investigate the steady-state performance in addition
to the transient performance of the 2DOF mass-spring system. First, the results of
previous literature were validated [9] which showed that NES can indeed increase
frequency robustness while also decreasing the primary vibrations with the primary
system being subjected to harmonic excitation. It also displayed satisfying results
regarding voltage generation, irrespective of the initial displacement utilized. Hence
the NES was capable of solving the drawbacks present in linear techniques.

Following that, parametric sweep of the auxiliary nonlinear stiffness has been
done for linear and nonlinear primary systems. Logical inferences have been drawn
from the two sets of results and have been compared to understand the difference in
behaviour of NES as per the nature of the primary system. Following that, perfor-
mance of the NES, when the primary system is subjected to random excitation, has
been investigated. Two cases have been used to randomize the excitation. Results for
both voltage generation and primary vibration suppression have been considered. To
understand if NES remains effective for such a case, the results hence obtained have
been compared to the behaviour of the NES when attached to primary system with
deterministic excitation.

3.1 Parametric Sweep of k3 with a Linear Primary System

In this section, Eqs. (1)–(3) have been used. A parametric sweep of k3 has been
performed as the focus is on understanding if auxiliary nonlinear stiffness plays any
role in voltage generation and primary vibration suppression for a linear primary
system. It can be observed that the value of voltage generated is directly proportional
to the value of displacement of auxiliary mass. Initial displacement (X) or k3 doesn’t
affect the relation between the two in any way as can be seen in Fig. 2.
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Fig. 2 a V versus t plot for X = 0.52 mm; b x versus t plot for X = 0.52 mm; c V versus t plot for
X = 1.42 mm; d x versus t plot for X = 1.42 mm

For X = 0.52 mm, the maximum value of voltage can be obtained for a k3 value
of 2 × 108 and the maximum displacement of auxiliary mass is also obtained for the
same k3 value.

For X = 1.42 mm, however, the maximum value of voltage and xa are obtained
at k3 value of 2 × 107 with a similar observation relation being observed for the two
other initial displacement values 2.65 and 4.45 mm as well. Hence, k3 doesn’t affect
the interrelation between auxiliary mass displacement and voltage generated in any
way.

For constant k3 value, greater initial displacements showed higher voltage values
as is observable in Fig. 3. Similar increment in magnitude can be observed for the
other two higher initial displacement values as well.

Also, irrespective of the value of initial displacement, negligible change is
observed in the pattern of voltage generated (with respect to time) when k3 lies
between 2 × 10 and 2 × 104. There is a negligible change in magnitude as well.
Variations occur only when k3 values higher than 2 × 105 are considered. It can be
observed in Fig. 4 where X = 0.52 mm has been considered with similar observations
being made for the other initial displacement values as well.
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Fig. 3 a V versus t plot for X = 1.42 mm with k3 = 2 × 106; b V versus t plot for X = 0.52 mm
with k3 = 2 × 106

Fig. 4 a V versus t plot with k3 = 2 × 107; b V versus t plot with k3 = 2 × 1010; c V versus t plot
with k3 = 2 × 10; d V versus t plot with k3 = 2 × 104
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Fig. 5 a V versus t plot with X = 0.52 mm and k3 = 2 × 108; b V versus t plot with X = 1.42 mm
and k3 = 2 × 107; c V versus t plot with X = 2.65 mm and k3 = 2 × 106; d V versus t plot with X
= 4.45 mm and k3 = 2 × 106

Noteworthily, no optimum value of nonlinear stiffness could be derived as the
system exhibited maximum voltage for different X values at different k3 values
(Fig. 5).

3.2 Parametric Sweep of k3 with a Nonlinear Primary System

In this section, Eqs. (4)–(6) have been used. Two cases have been considered with the
value of k3 being varied while keeping a constant value of kp and vice versa. Its effect
on voltage generation and primary vibration suppression have been investigated.
Here, kp refers to the nonlinear stiffness of the primary system. The primary system
considered is essentially nonlinear in nature as no primary linear stiffness has been
considered.

As can be observed in Fig. 6, for a nonlinear primary system too, primary vibration
has been reduced for both the aforementioned cases. Irrespective of the value of kp

or k3 considered, with respect to the constant value chosen, primary vibration can be
seen to be dying down.
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Fig. 6 a x versus t plot with k3 = 2 × 10 and kp = 4 × 10; b x versus t plot with k3 = 2 × 10 and
kp = 4 × 1010; c x versus t plot with k3 = 2 × 1010 and kp = 4 × 10; d x versus t plot with k3 =
2 × 1010 and kp = 4 × 1010

For X = 0.52 mm–
Similar observations have been made for the other three initial displacement values

as well.
Also, a pattern can be observed. Irrespective of k3 value, the pattern and magnitude

of voltage generated is determined by kp as can be seen in Figs. 7 and 8.
For X = 0.52 mm–
As can be seen, k3 is irrelevant to the magnitude and pattern of voltage generated.

However, what can be observed throughout is that even for nonlinear primary sys-
tems, voltage is generated by NES and hence, NES can be concluded to be useful
for such systems as well.

3.3 Random Vibrations

The modelling of random vibrations was done by introducing a deterministic har-
monic (sinusoidal) excitation, which depending on the random variable, was split
into two cases to introduce the random vibration, forcing magnitude F or the fre-
quency of forcing ω. The modelling of random vibration was done with the help
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Fig. 7 a V versus t plot for k3 = 2 × 10 for kp = 4 × 10; b V versus t plot for k3 = 2 × 1010 for
kp = 4 × 10

Fig. 8 a V versus t plot for k3 = 2 × 10 for kp = 4 × 104; b V versus t plot for k3 = 2 × 10 for
kp = 4 × 1010

of rand() function in MATLAB which generates a random number between 0 and
1. The two cases are (1) Random forcing, where F is the random variable in the
harmonic excitation and F = Fmean + σ*random and (2) Random frequency, where
w is the random variable in the harmonic excitation and ω = ωmean + σ*random.
In this formula, σ , represents the noise intensity and random represents the random
number generated by the MATLAB function rand().

Using the governing Eqs. (2), (3) and (7) and values considered from previous
literature [9], one case of initial displacement X = 0.52 mm was considered. Arbitrary
values of F, Fmean, ω, ωmean are considered in both the cases and σ is varied from
0.1 to 0.9 in order to study the effect of noise intensity on the voltage generated and
displacements of the NES and primary system. Values of parameters used in case 1
are Fmean = 1, ω = 5,σ varying from 0.1 to 0.9 and in case 2 is F = 1, ωmean = 5,
σ varying from 0.1 to 0.9. Using the same F and ω values, the comparison between
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Fig. 9 Simulation results of voltage generated in case 1 from PVEH with random and deterministic
excitation for Fmean = 1, ω = 5 and X = 0.52 mm: a for σ = 0.1; b for σ = 0.5; c for σ = 0.7 and
d for σ = 0.9

the voltage generated by both the deterministic harmonic excitation and the random
excitation in both the cases for different σ values is presented in Figs. 9 and 10. In
case 1, random F, the difference in magnitude between the random and deterministic
voltage generated increases with an increase in σ as shown in Fig. 9. In case 2,
random ω, the voltage generated dies down faster with increase in σ as shown in
Fig. 10. The RMS voltages generated in both the cases are evaluated and compared
with the deterministic harmonic excitation as well as with the results validated from
literature [9]. This is represented in Tables 1 and 2. The RMS voltage generated
increases with increase in σ in case 1 while it decreases with increase in σ in case 2
as shown in Tables 1 and 2.

The structural response of the system is shown in Figs. 11 and 12. It can be
observed in Figs. 11 and 12, that NES displacement is more than the displacement
of the primary mass, and even at higher values of σ the NES protects the primary
system from excessive vibrations in both the random cases as shown in Figs. 11 and
12.
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Fig. 10 Simulation results of voltage generated in case 2 from PVEH with random and deterministic
excitation for Fmean = 1, ω = 5 and X = 0.52 mm: a for σ = 0.1; b for σ = 0.5; c for σ = 0.7 and
d for σ = 0.9

Table 1 Comparison of
RMS voltage generated in
case 1: random F

σ value RMS voltage
(validated)

RMS voltage
(deterministic)

RMS voltage
(random)

σ = 0.1 0.2077 1.0093 1.0414

σ = 0.3 0.2077 1.0093 1.0896

σ = 0.5 0.2077 1.0093 1.1470

σ = 0.7 0.2077 1.0093 1.1945

σ = 0.9 0.2077 1.0093 1.2582

Table 2 Comparison of
RMS voltage generated in
case 2: random ω

σ value RMS voltage
(validated)

RMS voltage
(deterministic)

RMS voltage
(random)

σ = 0.1 0.2077 1.0093 0.8883

σ = 0.3 0.2077 1.0093 0.5858

σ = 0.5 0.2077 1.0093 0.4919

σ = 0.7 0.2077 1.0093 0.4221

σ = 0.9 0.2077 1.0093 0.3953
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Fig. 11 Simulation results of the structural response of the system for case 1 with random and
deterministic excitation for Fmean = 1, ω = 5 and X = 0.52 mm: a for σ = 0.7 and b for σ = 0.9

Fig. 12 Simulation results of the structural response of the system for case 2 with random and
deterministic excitation for F = 1, ωmean = 5 and X = 0.52 mm: a for σ = 0.7 and b for σ = 0.9

4 Conclusion

Based on the NES principle, a piezoelectric harvesting device has been modelled.
Validation of previous literature [9] was done. The transient response and the steady-
state response of the system, regarding energy harvesting and vibration suppression,
were analyzed using numerical simulations. Investigations into effect of auxiliary
nonlinearity when connected to a primary system with deterministic harmonic exci-
tation were made. All in all, the NES successfully suppressed primary vibration and
continued to generate voltage over a wider operational bandwidth, regardless of the
primary system being linear or nonlinear. The degree of effect auxiliary nonlinearity
has on the variation in voltage generation, voltage pattern and its magnitude have
been understood. Random excitation to the system is also modelled and the struc-
tural response as well as the voltage generated have been presented. It was observed
that NES continues to suppress primary vibration just as in deterministic forcing but
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sustained voltage generation has been observed, in contrast to that for determinis-
tic model which showed decreasing voltage. Investigations into the effect of noise
intensity (σ ) showed that it is directly proportional to the rms voltage generated for
random F and indirectly proportional to random ω.
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