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ABSTRACT

In spite of technological advancements, the farm productivity of Indian agriculture is still on the 
lower side. The underlying reason for poor farm productivity in India is due to the inefficient usage 
of agricultural inputs, resulting in low or poor-quality agricultural yields. Water happens to be one 
of such imperative agricultural input that has a huge impact on agricultural productivity. Precision 
agriculture systems can take care of irrigation requirements by optimally and efficiently using irrigation 
water for producing crops having superior quality and quantity. This work proposes a smart irrigation 
system that can efficiently manage the water requirements of the crop for its optimal growth. The 
irrigation schedules are developed using a feed forward neural network model that can predict the 
variation in the soil moisture considering the environmental factors such as temperature, humidity, 
atmospheric pressure, and the rain. The results indicate the effectiveness of the developed system in 
predicting the soil moisture with mean square error as low as 0.13 and the R value as high as 0.98.

Keywords
Feed Forward Neural Network, Internet of Things, Machine Learning, Monitoring System, Precision Agriculture, 
Smart Irrigation

INTRODUCTION

Water happens to be the most vital element for sustaining life on the Earth both for humans and animals. 
Studies show that humans can live without food for three weeks but when it comes to water, humans 
cannot sustain more than three days at a stretch. The same theory applies to the crops that are grown 
in the field; they do require water. The depleting levels of the water table, irregular monsoons, climate 
change (Aryal, J.P., et al. 2019), water contaminations are posing as serious hurdles for developing a 
sustainable agriculture system (Tripathy S, 2019). In agriculture, even with the irrigated lands with 
adequate irrigation sources (S. Latha, 2019), the utilization of water for irrigation is not strategic. 
The problem that needs immediate attention is, how water, being a limited and vital resource can be 
smartly used for irrigation purpose to produce good quality yields capable of fetching good returns 
to the farmers. Precision Agriculture (PA) system would definitely be a suitable solution for most 
of the issues arising in the agricultural domain including irrigation. In order to provide efficient 
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water utilization, the PA system needs to be tailor-made for the farmers especially from developing 
countries. The implementation success of the PA system largely relies on the implementation costs, 
implementation complexity, deployment time, and ease of maintenance. To ensure cost-effectiveness, 
the field sensor-based approach is recommended. PA system using field-based sensor approach for 
data collection, IoT for providing remote monitoring of parameters and using intelligence in the form 
of ML-based predictive model to provide closed-loop control of field parameters would definitely 
transform the traditional agriculture into a sustainable one. The reach of the Internet in every nook and 
cranny of the world has created a huge demand for applications involving things rather than peoples. 
Currently, there are around 8.3 Billion IoT connected devices worldwide and it is predicted that by 
2025, this number will be more than double what it is today (21.5 Billion). IoT has already started 
benefitting the users worldwide in all the sectors be it healthcare, industry, education or agriculture. 
Though the implemented PA systems have seen the progress and success in the agricultural sector in 
countries like Australia (Jochinke et al. 2007), Belgium, Canada, and the United States to name a few, 
still the major chunk of farmers are yet to harness the rewarding benefits of it. Going by the literature, 
there are many implementations of IoT in the agriculture domain. Agriculture can be thought of as 
a complex system, which consists of sub-systems like soil preparation, seed implanting, irrigation, 
fertilization, weeding, harvesting, sorting, storing and transportation.

IoT was the main driving force for the development of the agricultural systems providing some 
of the outstanding solutions to the problems being faced by the farmers in the agricultural and the 
related domains. Also, security remains the main concern when IoT is involved in providing enterprise 
and business solutions to the customers. Limited researches focused on the security part of IoT 
implementations in agriculture as in (L. Vidyashree and B. M. Suresha, 2019), where an encryption 
method was proposed for securing agriculture data.

The work carried out in this research attempts to design a highly secured agricultural field 
monitoring and irrigation scheduling system by using IoT and Artificial Neural Network (ANN) 
based predictive model. The IoT part is responsible for data collection, storage, and visualization. 
The feed-forward neural network (FFNN) model uses the locally generated datasets from the IoT 
cloud-server as model inputs. The performance measurement of the FFNN predictive model was 
done based on MSE and R. The model was able to accurately predict the moisture values in the field 
with low values of MSE and high values of R, apart from this, the other the salient features of the 
proposed system are that the developed system uses of low-cost and easily available sensors, the main 
center of attraction of the developed system is the ESP32 DevKit V1 which hosts an ESP32 SoC 
MCU (capable of providing high security, ultra-low power requirement with built-in Wi-Fi and dual 
Bluetooth modules), open-source hardware/software platforms for prototyping and programming, 
open-source ThingSpeak™ IoT platform and API for data storage and visualization which also provides 
MATLAB® analytics on the cloud. Finally, an Android App is developed by using the Blynk platform 
for providing user-friendly irrigation control and automation in the field along with user notification 
in the form of email and SMS. 

The rest of the paper is organized as follows. Section 1 provides an in-depth literature review 
of similar implementations. Section 2 deals with the Prototype Design Ecosystem, highlighting the 
hardware and software requirements, technical specifications along with the platform as a service. 
Section 3 uses a block diagram approach that highlights the proposed system with various block 
descriptions. Section 4 describes the in-field experimental setup for irrigation control and location of 
the setup. In Section 5, the results are tabulated for the proposed ANN model that provides irrigation 
control and discussion is carried out justifying the use of sensors, microcontrollers, and the ANN 
model. In section 6, a detailed comparison is presented with similar implementations in the area of 
interest and highlighting the salient features of the developed system and also the cost analysis is 
done and compared with other similar systems. Section 7 concludes the paper by revealing important 
findings and indicating the importance of the proposed system in the present context along with some 
of the improvements that can be taken up in the future.
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LITERATURE REVIEW

The intensive literature survey carried out in this work helped in understanding the state of art 
techniques and technologies used by the researchers in developing IoT based solutions towards the 
agriculture domain. The literature survey also helped in identifying the potential gap that can be filled 
up by the developed system. Some of the important and relevant contributions by the researchers in 
the field of precision agriculture are discussed here. A literature review by (Antonis Tzounis et al. 
2017; Olakunle Elijah et al. 2018) where the former highlighted the latest IoT technologies that are 
currently positively impacting the agricultural sector, future impacts of these technologies on the 
farmers along with the possible challenges that might be a hurdle on the way to sustainability and 
possible solutions for the challenges while the latter dealt with the benefits and challenges concerned 
with the IoT data and analytics in the agriculture domain. The key issue pertaining to the challenges 
were identified as security and the deployment cost. 

Sherif Abdelwahab et al. (2016) proposed a global architecture that uses edge computing platforms 
as a cloud agent for discovering and visualizing sensing resources pertaining to the IoT devices and 
proposed a new service model for cloud platform as Sensing as a Service. The new trend begin was 
the use of UAV as a means of monitoring the field parameters along with IoT. Another implementation 
involving UAV and IoT for addressing the automatic irrigation system J. Aleotti et al. (2018) provided 
automatic irrigation for the tomato fields by using architecture consisting of a sever, a mobile app 
and IoT devices for irrigation control. 

Soon, it was felt that the cloud platform should be private so that the security is not compromised 
and also the redundancy and delays in the communication between the sensors and cloud or cloud 
to users can be minimized. One such implementation was by Tomo Popovic et al. (2017) which 
developed a private IoT enabled platform with an aim of promoting research in the field of agriculture 
and ecological monitoring systems. 

A safe and reliable cloud-based PA system N. Pavon-Pulido et al. (2017) provided remote 
monitoring of crops and planning of agricultural tasks from any smart device (PC, smartphone or a 
tablet). These benefits were demonstrated with several experiments and on-field deployment of the 
cloud-based approach towards the system. Additionally, Google App Engine Platform as a Service 
(PaaS) was used in developing the software architecture. Before the crops are selected for cultivation, 
it is a good idea to check the soil type, its contents in the form of micro-nutrients which would 
suggest the possible type of crop that can be grown to obtain a higher and premier quality of yields. 
Md Eshrat E Alahi et al. (2018) used IoT for application involving soil property monitoring. The soil 
property being nitrate, which was measured using an FR4-based interdigital sensor. It was shown that 
for longer use of the system, LoRa was preferred over Wi-Fi protocol due to low-power, an energy-
saving property of LoRa. Another similar implementation concerned with the soil parameter sensing 
was based on the design of closed-loop irrigation system Levente J Klein et al. (2018) employing a 
cloud-based system that used satellite-based images for identifying the irrigation requirements of the 
crops. The system concentrated on two parameters of agriculture, resource optimization (water) and 
maximizing yield. Jirapond Muangprathub et al. (2019) also implemented a WSN based system that 
provided water to the agricultural crops optimally, additionally aimed at providing crop field data 
management over a smartphone and web application. 

Meeradevi et al. (2019) also worked on similar lines of providing optimal water usage in the field 
by the use of IoT and WSNs. The water requirement by the crops in a particular area was monitored 
and irrigation was carried out based on the requirements. Authors claimed to have developed the 
model with low-cost, which would help the farmers, especially from India. Suresh Koduru et al. (2019) 
came up with a smart irrigation system again riding on the IoT. A component water preservation 
mechanism was used along with the parameters like soil moisture and weather forecast to effectively 
utilize the water resources and to avoid groundwater depletion in the future. The irrigation monitoring 
was provided in the form of a farmer’s cockpit. Vaishnavi Bheemarao Joshi and R. H. Goudar, (2019) 
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developed an irrigation system harnessing the capabilities of IoT to control electrical submersible 
pumps by using smartphones. 

The main issue pertaining to the irrigation of farmland is the limited availability of electricity in 
rural areas. The developed system helps farmers by notifying them of the availability of electricity 
by an SMS. Based on the notification, the submersible pump used for irrigation can be precisely 
controlled from a remote location without the requirement of physical presence in the field. The 
research work by R. Raut et al. (2018) resulted in the development of a multi-parameter monitoring 
system for soil properties, fertilization, along with irrigation system by using IoT. The main target 
was to develop an automatic irrigation system that could also provide information about the vital soil 
nutrients like nitrogen (N), phosphorus (P) and potassium (K). The authors claim the system was 
capable of helping farmers in saving their time, money and labor. Another implementation (Radu 
Dobrescu et al. 2019), focused on context-aware multi-parameter monitoring system using IoT and 
cloud support. The system was able to bring IoT, cloud computing and context awareness under the 
same umbrella, well supported by a multi-layered architecture capable of providing real-time process 
control in the agriculture domain. The capability of the system was demonstrated with a case study 
where the system was implemented on the IBM Bluemix IoT platform. Wen-Liang Chen et al. (2019) 
also developed an IoT platform named “AgriTalk” for soil cultivation outdoors. The experimentation 
involved the cultivation of turmeric with the use of IoT and it was shown that the system provided 
immunity against the problems arising because of the soil cultivation. According to the authors, the 
AgriTalk was able to enhance the quality of turmeric significantly. 

Apart from the field parameters, the environmental factors are also equally responsible for deciding 
the optimal growth of the in-field crops, so that the crops are provided with the required input resources 
at the right time. Jorge Gomez et al. (2019) came up with a crop monitoring system based on IoT. 
A case study was provided for small crops in a rural area, which is deprived of internet connectivity 
due to the coverage issue. Crop processing stations used text messages in the form of SMS to convey 
the variations in the field parameters to the users. The data is gathered and also communicate to the 
cloud-based platform where the users are supposed to subscribe in order to get the notification by 
using Message Queuing Telemetry Transport (MQTT) protocol. A weather system also acts like 
an environment monitoring system which relies on the environmental sensors to provide insights 
into the current weather and also the weather behavior for a couple of days to come. Apart from the 
growth of crops, the weather also influences other agricultural tasks like irrigation, the application 
of agrochemicals or fertilizers and harvesting. A local weather station using IoT was developed by 
(R. K. M. Math and N. V. Dharwadkar 2018), which provided local weather at an agricultural site. 
The specialty of the proposed system was its low- cost nature (sensors, microcontroller, open-source 
hardware and software solutions). 

Juan Carlos Guillermo et al. (2019) developed an IoT architecture involving WSN for monitoring 
the agricultural parameters with a case study pertaining to the Cacao crops. The developed architecture 
targets medium holding farmers by providing a multi-platform application that can be used to monitor 
climatic conditions along with soil properties which have a strong influence on cacao growth and 
production. Another architecture for IoT Nurzaman Ahmed et al. (2018) involving fog computing 
along with Wi-Fi-based network spanning rural areas provided precise control of agricultural farms. 
The developed network structure was evaluated considering the performance metrics as coverage 
range, throughput, and latency.

The popularity of IoT in the agriculture sector drew the attention of many researchers towards 
the horticulture too, which differs from agriculture not only in the scale but also in terms of crop 
variety involving vegetables and flowers. An IoT based farming system for horticulture was developed 
by Ajay Mittal et al. (2018) taking the case study of Cabbage and Capsicum. Some of the sensors 
selected for the experimentation were, air temperature, atmospheric pressure, soil humidity and 
moisture, wind speed and direction, hourly rainfall and leaf wetness sensor. Authors claim to have 
obtained a reduction in the cost by about 20% while the improvement in the yield amounted to 10%. 
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Moving a step ahead, integration of IoT with machine learning by Nagaraj V. Dharwadkar and 
Vandana R. Harale (2019) was used for monitoring climatic parameters within a greenhouse for tomato 
crop. The developed system utilized the locally generated data from the sensors like temperature, 
humidity, light intensity, pH value, and CO2 concentration to effectively model and control the climatic 
conditions within the greenhouse for optimal growth of tomatoes. Another similar integration of 
IoT and a genetic algorithm was proposed by Archana P. Kale and Shefali P. Sonavane (2018) for 
developing a smart farming decision support system that handled optimization, uncertainty with a 
reduced number of features.

Based on the literature survey, it can be pointed out that most of the researches concentrated to 
solve the agricultural issues by either using only IoT (no ML) or by developing ML models for some 
publicly available agricultural datasets. Only limited researches have implemented an integrated 
version of IoT with ML as in Nawandar, N. K., & Satpute, V. R. (2019) wherein a smart irrigation 
system was developed with intelligence provided by a neural network-based model. Another similar 
implementation Goldstein et al. (2018) resulted in an irrigation recommendation system using the 
Gradient Boosted Regression Tree model. The work carried out in this paper also aims at providing 
end-to-end irrigation scheduling system by integrating IoT with an ANN model, and the developed 
system has the important characteristics of quick deployment capability, and its low-cost and user-
friendly nature mainly focussing on to the farmers who are having small agricultural lands and are 
not in a position to procure high-end irrigation systems for solving their irrigation issues.

PROTOTYPE DESIGN ECOSYSTEM

Hardware and Software Requirements
The developed irrigation scheduling and control system for precision agriculture can be thought of as 
consisting of three main components. The sensors, which are required to sense the field parameters, 
these sensors are embedded on the board along with a microcontroller/microprocessor. The sensors 
along with microcontroller/microprocessor constitute a single node of a wireless sensor node, these 
sensor nodes can be spatially and strategically deployed to cover the required portion of the field. 
IoT architecture consists of IoT devices (microprocessors/controllers and IoT Gateways) and a cloud 
server providing Platform as a Service (PaaS). 

The framework consists of sensors, ESP32 based prototyping board (open-source hardware), open-
source software (Arduino IDE) and open-source IoT platform. The prototyping board ESP32 Dev Kit 
V1 hosts a powerful, low-cost and low power ESP-WROOM-32 MCU integrated with a Wi-Fi and a 
dual-mode Bluetooth module along with a dual-core 32-bit Tensilica Xtensa LX6 microprocessor. The 
sensors were selected to provide the precise on-field parameters which include soil moisture sensor 
(FC-28+LM393), also known as soil hygrometer, a rain sensor (YL-83+LM393), a DHT22 based 
air temperature and humidity sensor, an atmospheric pressure sensor (BMP180). Table 1 shows the 
hardware and the software components used for the development of the proposed system. 

Technical Specifications 
The microcontroller is the key hardware resource used for the development of the irrigation scheduling 
system. The sensors are selected keeping an eye on the cost factor while not compromising the accuracy. 
As the MCU happens to be the heart of the application, the prototyping board uses ESP-WROOM-32 
MCU to provide high security in data communication along with its unmatched capability of requiring 
ultra-low operating powers and added advantage of having a lower price tag comparatively. Table 2 
illustrates the main technical features of the ESP32 DevKit V1 prototyping board which offers many 
outstanding capabilities and unmatched features making it a suitable choice in applications involving 
continuous monitoring of physical parameters.
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Platform as a Service
Apart from using the Arduino IDE as open-source software for programming ESP 32 SoC, 
ThingSpeak™ IoT platform was selected to provide Platform as a Service (PaaS) to provide services 
such as data aggregation, data storage, data visualization, and data analysis.

The selection of the IoT platform was primarily done by keeping in mind the implementation 
complexity, deployment time, and services offered to the users. The only one limitation that can be 
found with the ThingSpeak™ platform is a limited number of data fields (8 data fields), but to get 
started in the field of IoT and building innovative prototypes, ThingSpeak™ would be a great choice.

The support of MATLAB® to ThingSpeak™ helps in utilizing the services offered by MATLAB® 
in the cloud. Apart from the aforementioned services, ThingSpeak™ also provides other user services 
in the form of metadata that can be used to provide additional information about the data channel. The 
metadata can be provided in the form of JSON, XML, or CSV data. Data mashup can be obtained by 
integrating the data corresponding to different sources (channels) that can be integrated to altogether 
to form a new dataset. For example, temperature data corresponding to field 1of channel 850870 
can be combined with humidity data corresponding to field 1 of channel 856104 to create new data.

Table 1. Hardware and software component requirements

Sl. No. Parameter/Details Specifications

1. MCU Tensilica Xtensa LX6 dual core 32-bit

2. Maximum Operating Frequency 240 MHz

3. Operating Voltage 3.3 V

4. Analog Input Pins 12-bit, 18 Channel

5. DAC Pins 8-bit, 2 Channel

6. Digital I/O Pin 39 (of which 34 is normal GPIO pin)

7. Static RAM 520 KB

8. Built-in sensors Touch, temperature and hall effect 
sensors

8. ROM 448 KB

10.

Communication SPI(4), I2C(2), I2S(2), CAN, UART(3)

Wi-Fi 802.11 b/g/n

Bluetooth Classic and Bluetooth Low Energy 
(BLE)

Table 2. Technical specifications of ESP32 DevKit V1

Sl. No. Hardware 
Components Parameters Sl. No. Software Components

1 ESP32 DevKit V1 Prototyping Board 1 Arduino IDE (1.8.9)

2 DHT 22 Temperature and Humidity 
Sensor 2 T h i n g S p e a k ™ 

3 BMP180 Atmospheric Pressure Sensor 3 B ly n k  A p p  2 . 2 7 . 5

4 YL-83+LM393 Rain Sensor 4 F r i t z i n g  0 . 9 . 3

5 FC-28+LM393 Soil Hygrometer
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Breadboard Connection and Schematic Diagram 
To make the design understandable and repeatable, the breadboard wiring and connection diagrams 
are very helpful. The breadboard and circuit connection diagram were drawn using Fritzing software, 
easy to use and again an open-source platform for the users, as shown in Figure 1 and Figure 2, 
respectively. The diagrams are self-explanatory.

PROPOSED SYSTEM

The proposed system provides a low-cost means of monitoring key agricultural parameters to provide 
precise irrigation control by utilizing the remote connectivity and storage functionality offered by 
IoT with cloud analytics provided by the neural network-based model. The system uses temperature, 
humidity, soil moisture, rain and atmospheric pressure as the input parameters of the agricultural 
field. The block diagram is as shown in Figure 3.

The proposed system consists of five parts:

1. 	 Data Gathering: The data gathering part consists of the agricultural field parameter sensors, 
the parameters being temperature and humidity, absolute and relative atmospheric pressure, soil 
moisture and the rain. The raw data from the sensors is collected by the microcontroller and is 
pre-processed. As depicted in Figure 3, the sensors along with the ESP32 DevKit V1 hosting 
ESP-WROOM-32 microcontroller constitutes a single node of a sensor network that has the 

Figure 1. Breadboard wiring and connection diagram
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capability of wirelessly transmitting the data to IoT gateway or router by using the built-in Wi-Fi 
functionality of ESP32 SoC. 

2. 	 Securing the IoT Design (Security Features of ESP32): To provide the users with security at 
the device level, it is required that the hardware devices (for example microcontrollers) should 
always make sure that the firmware data is not accessible by the unintended users. Once the data 
is obtained from the sensors, the ESP32 SoC MCU comes into action by securely logging the 
data on to the ThingSpeak™ cloud server via the IoT gateway or the router. When the devices are 

Figure 2. Schematic diagram

Figure 3. Block diagram of the proposed framework
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shipped, the application firmware data is usually stored in the flash memory which is external 
to SoC. The firmware data is vulnerable to the attacks caused by unauthorized access to the 
firmware data stored in the flash. This act of unauthorized access to the firmware data tenders a 
serious threat as the data can be faked, modified or tampered intentionally by a potential hacker. 
To overcome such attacks, ESP32 SoC provides a high level of security by using eFUSE which 
is a one-time programmable memory to prevent unwanted tampering and modification of the 
firmware data. The overview of eFUSE used by ESP32 is as shown in Figure 4 with various 
fields in it. 

The ESP32 uses a 1024-bit eFUSE, having four blocks starting with block 0 and goes up to block 
4 and each block has 256 bits as shown. The components of interest in eFUSE are: 

•	 Flash Encryption: The flash encryption block of ESP32 provides support for the application 
firmware data stored in flash is always encrypted. Hence the manufacturers of ESP32 can ship 
the firmware which is encrypted, making it secure and tamper-proof. The encryption uses AES 
keys which are stored in eFUSE and do decryption as and when required. Thus, memory read 
and write operations on the flash memory are secured. The decryption is possible only with the 
key which is securely locked in eFUSE. The flash encryption procedure is as shown in Figure 5.

•	 Secure Boot: The secure boot feature of ESP32 blocks the untrusted software from executing 
from the flash, that is if the software is signed by a known entity then only the software is able 
to execute and get access to the firmware data. If any of the bits of the software bootloader and 
the application firmware have tampered, the firmware becomes untrusted and the ESP32 will not 
run or execute the untested software. The secured boot feature offered by ESP32 is as shown in 
Figure 6 which helps in blocking the untrusted software from executing the application firmware.

The above two features of ESP32 provide a high level of security which is demanded by most 
of the IoT based applications. Another security feature of ESP32 is at the Transport Layer Security 

Figure 4. ESP32 eFUSE overview

Figure 5. Flash encryption in ESP32
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(TLS) which adds security when the application or the hardware is connected to the Internet for data 
exchange between the hardware and the cloud platforms.

3. 	 Data Logging on to ThingSpeak™ for Visualization: It is evident from the aforementioned 
security features of ESP32 that the security requirements involving IoT are fulfilled. Apart from 
providing security, wireless communication capability in ESP32 SoC comes in the form of built-in 
Wi-Fi and Bluetooth modules that provide wireless connectivity to the Internet at no extra cost. 
Again, the Wi-Fi connectivity can be obtained either by using Wi-Fi Protected Access (WPA) or 
WPA2. It is desirable to use WPA2 security as it uses a stronger wireless encryption technique 
when compared to WPA. 

The channel can be kept private or made public, if made public the channel can be shared with 
other users. Once the channel setting is done and saved, API keys namely READ API KEY can be 
used for reading the channel fields or charts, while WRITE API KEY can be used for updating the 
data field in the channel. Apart from providing visualization, the data from the sensors get stored 
in the channel with corresponding time stamps. The data collected at ThingSpeak™ cloud can be 
exported in the form of a CSV file. The recent data (up to 100 samples) can also be imported in other 
formats like JSON and XML.

The sensor data is logged on to the cloud in the form of channels, comprising of different fields 
(maximum of eight fields can be used) and is visualized in the form of Google gauges or charts. 
The channel feed on the cloud was updated every 15 seconds. The data corresponding to the various 
fields of the cloud server channel is temperature, absolute pressure, relative pressure, humidity, rain, 
soil moisture, and dew point. Out of the seven field parameters, the first six parameters were directly 
measured using sensors while the calculation of the seventh parameter (dew point) was based on 
temperature and humidity using the following equations, referred from (Blynk documentation) as 
shown in Equation 1: 
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Figure 6. Secure boot feature of ESP32
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It is also possible to calculate the absolute humidity value in terms of grams/m3 by knowing the 
values of temperature and RH as shown in Equation 2:
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where d absolute humidity in grams m
v
= / 3 ; t = actual temperature in oC	

RH = actual relative humidity in percent (%); T
n

= 243.12 oC; m = 17.62; A = 6.112 hPa 	

4. 	 Blynk Platform and Android App Development: A Blynk app is a handy tool for controlling 
the IoT devices over a smartphone. Blynk helps in providing manual control of irrigation remotely 
by using a smartphone with Internet connectivity. The Blynk app sends an email to the user 
whenever the soil moisture level falls below a lower threshold level or crosses the upper threshold 
limit. To provide data security to the users, a unique authentication token is generated and sent 
to the registered email of the user which needs to be used in the sketch before uploading it to the 
prototyping board. 

5. 	 ANN-Based Predictive Model: After successful data storage and visualization, the historical 
data collected over time was used to build an ANN-based model. Before the model is built, the 
data in the channel was refined so as to make sure that the model accuracy and efficiency are 
improved. An Exploratory Data Analysis (EDA) (more details on EDA can be found in the Results 
and Discussion section) was carried out to discover the hidden data patterns in the dataset. As the 
neural networks are very well known for their consistency in providing more accurate predictions 
when compared to other prediction models, an ANN-based FFNN model was preferred. The 
feedforward neural networks have a unique characteristic in which the flow of data is only in the 
forward direction from inputs to the output. The basic structure of FFNN consists of an input 
layer where the input vectors are assigned to the model, an output layer producing the output 
vector which depends on the input vectors. Apart from input and output layers, it also has one or 
more hidden layers consisting of neurons as shown in Figure 7. The input neurons at the input 
layer are represented as I1, I2, I3 and I4 corresponding to four input independent parameters. The 
hidden layer neurons can be varied in numbers and are represented as H1, H2, H3 and so on. The 
output layer has a single neuron as the dependent variable represented as O1.

EXPERIMENTAL SETUP AND IRRIGATION SCHEDULING

The experimental setup consists of the field sensors (DHT22, BMP180, FC-28+LM393, and YL-
83+LM393) along with ESP32 Development Kit V1. The programming was done in Arduino IDE 
for fetching the data from the sensors and providing irrigation control. The data collected by the 
microcontroller is displayed on to the serial monitor of Arduino IDE using serial communication 
between the microcontroller and the system (PC or laptop).

This is required for programming the microcontroller and for troubleshooting in case of any 
hardware issues. After successful data collection, the microcontroller uses its built-in Wi-Fi module 
to connect to the available Wi-Fi network or a hotspot both requiring a correct combination of 
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SSID and password. The prototype was mounted within a protective housing to withstand the harsh 
environment in the field as in Figure 8.

The experimental setup was able to ensure that the data from the sensors are securely logged on to 
the cloud without any interruption, except a few missing values and outliers due to connection issues. 

Experiment Location
The experimental setup was done on a farm in Tikota Taluk of Vijayapur District in North Karnataka 
with coordinates as 16°50’17.1”N 75°31’12.2”E as shown in Figure 9. The grape field was spread 
over 1 acre of land. The developed prototype was set to measure the climatic conditions including 
soil moisture near the root zone as shown in Figure 10.

Irrigation Control and Scheduling
The irrigation scheduling and control can be clearly understood by referring to the flow chart as 
shown in Figure 11. After the successful development of the prototype to be installed in the field, the 
irrigation scheduling and control is brought about by developing an app using Blynk on a smartphone. 
The Blynk email widget is set to send an email to the registered user if the current moisture level SM 
falls below the lower threshold level SMmin or above the upper threshold of SMmax based on which a 
manual or automatic control is provided for irrigation. The manual irrigation control is provided by 
using an Android app built using Blynk. The soil moisture is continuously monitored to be between 
lower threshold SMmin and upper threshold SMmax. If the current moisture value falls below SMmin, 
then an alerting email is sent to the user along with an SMS to switch ON the water pump. Once the 
moisture level reaches the upper threshold of SMmax, again the alert is sent to the user to switch OFF 
the water pump. Thus, ensuring that the moisture level in the soil is just enough for the proper growth 
of the crops in the field. A textlocal API, an email to SMS gateway was used to send SMS from email. 
The automatic irrigation scheduling was obtained by using an FFNN prediction model to predict the 

Figure 7. Structure of the FFNN model used for prediction
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Figure 8. Developed prototype with a component view

Figure 9. Experiment location

Figure 10. Case study prototype implementation in Grape (Vitis amurensis) field
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future values of the moisture based on the input parameters. The prediction of the model was used 
along with the weather prediction (rain) from dark sky API, to select the irrigation schedule. The 
rain prediction is obtained in the form of ‘no rain’, ‘moderate rain’ and ‘heavy rain’. Based on the 
rain prediction by the dark sky, three irrigation schedules were developed each differing in the upper 
threshold of soil moisture level SMmax. If the predicted value of moisture requires irrigation and ‘no 
rain’ is predicted, then irrigation schedule 1 is selected with the upper threshold SMmax of 70%. For 
schedule 2, if the predicted moisture level requires irrigation and chances of rain is ‘moderate’, then 
the upper threshold of 60% is selected. For schedule 3, if there is a prediction of ‘heavy rain’, then 
the upper threshold of 50% is selected as in Table 3. If there is rain while the irrigation schedule is 
ON, then the interrupt is sent to turn OFF the water pump. While testing the prototype, the schedule 
1 was more frequently used there was no, substantial rain in that duration. Using the prototype, the 
weekly irrigation requirement was reduced by around 10-12 liters of water per irrigation schedule 
for fully matured vines. 

RESULTS AND DISCUSSION

The data collected at the server was converted into a local dataset containing the input parameters 
(temperature, humidity, atmospheric pressure, and rain) and the output parameter (soil moisture). 
The input parameters are the independent variable for the model while the output parameter is the 
dependent variable. Exploratory Data Analysis (EDA) in the form of descriptive statistics as in 
Table 4 was used to get insights into the data and understand the pattern and correlations between 
the predictor and predicted variables. Some of the other parameters that have a high influence on the 
ML model are Standard Error, Standard Deviation, Sample Variation, and Quartiles. Keeping the 
computational efficiency of ESP32 SoC and the EDA results in view, the moisture prediction was 
identified as a regression problem, and since one of the requirements of the developed system was to 
have high generalization capability, an ANN-based regression model was selected which generalizes 
well for the new unseen data. The developed PA system for irrigation scheduling was capable of 
precisely monitoring the agricultural parameters pertaining to irrigation, and the parameters selected 
for monitoring played a very vital role in ensuring the optimal growth of the crops. To obtain the 
visualizations for the data collected, the channel ID, READ and WRITE KEYS were used to display 
the data in the form of spline chart and the gauges as depicted in Figure 12 (a) for temperature and 
Figure 12 (b) for humidity while Figure 12 (c) shows the use of gauge. 

The local dataset consists of 2000 samples generated and exported from the cloud server 
corresponding to five field parameters. The dataset was divided into input data consisting of four 
parameters (absolute pressure, relative pressure, temperature, and humidity) while the soil moisture 
was selected as output or the target data. An ANN-based predictive model was developed to describe 
the relationship between the predictor parameters and the predicted parameter and thereby also predict 
the future values of the predicted parameter. The model consists of a multi-input two-layer FFNN in 
which the hidden layer uses Sigmoid function while the output layer has a Linear function. The model 
was tested with two sets of data division, in the first set the data were randomly divided into Training, 
Testing and Validation sets with 70%, 15%, and 15%, while the second division was done with each 
set having 80%, 10% and 10% of data. The performance of the developed model was tested for loss 
function Mean Square Error (MSE) and the coefficient of correlation (R). The data division rule 
yielded a marginal improvement in MSE from 0.14 to 0.13 for division rule of (70:15:15), whereas 
R value was unaffected as highlighted in Table 5. The MSE is calculated by using the formula given 
by Equation 3. 

MSE
n

Y Y
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n

i i
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Where n is the number of samples, Y  is the actual output while ÆYi  is the predicted value of output.
The MSE and R values were evaluated for the following conditions:

Figure 11. Flowchart for the proposed system
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•	 Training functions (Levenberg-Marquardt, Bayesian Regularization, Gradient Descent, and 
Scaled Conjugate Gradient) 

•	 Number of hidden neurons n (5,10 and 15)
•	 Data division rule (Training: Testing: Validation-70:15:15 and 80:10:10)

When it comes to the training function, Bayesian regularization outperformed the other training 
functions. The performance of the model showed improvement when the number of hidden layers was 
increased. The performance of the model was not much affected by the data division rule (70:15:15 
and 80:10:10), but the data division rule (70:15:15) yielded better performance in terms of MSE 
when compared to (80:10:10) rule, while the R-value was same for both. Thus, it can be seen from the 
results that the best performance was obtained for the Bayesian Regularization function (MSE=0.13, 
R=0.98 (both for training and testing)) with a number of hidden layers n=15 and data division rule of 
(70:15:15). For simplicity, only performance characteristics of Bayesian training function is considered, 
while the results are tabulated for all training functions with a different number of hidden layers and 
data division rule. The training performance of the model in the form of MSE is as shown in Figure 
13 (a), it is seen that the best performance was obtained at epoch 1000. While Figure 13 (b) shows 

Table 3. Irrigation schedules with upper and lower thresholds

Sl. No. Irrigation Schedules Lower Threshold 
(SMmin)

Upper Threshold (SMmax)

1. Schedule 1 40% 70%

2. Schedule 2 40% 60%

3. Schedule 3 40% 50%

Figure 12. Data visualization (a) Temperature (b) Soil Moisture and (c) Google gauges
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the regression plots for training (0.98) and testing (0.98), indicating high accuracy of prediction. 
These values were obtained for (70:15:15) data division. Similarly, Figure 13 (c) indicates that the 
best performance (MSE=0.14) was at epoch 821. The regression performance is as shown in the plot 
of Figure 13 (d), having R=0.98 for both training and testing. The values in Figure 13 (c) and Figure 
13 (d) correspond to data division rule of (80:10:10). The error performance in the form of error 
histograms is as shown in Figure 13 (e) and Figure 13 (f) for 20 bins of training and testing datasets. 
The zero-error line almost coincides with zero, indicating small errors. The advantage of using the 
Bayesian Regularization training function is that its capability of generalizing well when compared 
to other training functions. Another important observation that was made is the poor performance 
of the Gradient Descent training function, which produced (MSE= 4.85 and 12.42), respectively for 
n=15 and data division rule of (70:15:15 and 80:10:10), respectively. After training the model, the 
prediction capability of the model was tested for the testing data.

The model was very accurate in predicting the soil moisture values based on the input data. The 
actual variation in the soil moisture data as measured by the soil moisture sensor is shown in Figure 
14 (a), while the predicted values for 100 data points are as shown by Figure 14 (b). The results of 
the developed model for moisture prediction are tabulated in Table 5. Thus, the predictive model is 
capable of providing near precise prediction of soil moisture value considering the weather conditions 
along with the field parameters. This prediction would help the farmers to plan their irrigation water 
usage accordingly so that any inappropriate usage of water can be avoided. 

COMPARISON WITH SIMILAR IMLEMENTATIONS

After the successful design, deployment, and testing of the prototype, it was compared with the 
similar implementations which were used in addressing the issues arising out of irrigation problems. 
Important parameters considered for the comparison were based on the implementation costs, 
complexity, security, ease of user control, IoT devices used (microprocessor/controller/prototyping 
board), communication technology or protocol used and finally the IoT platform deployed for the 

Table 4. Descriptive statistics for the dataset

Parameters Humidity Temperature Absolute 
Pressure

Relative 
Pressure Soil Moisture

Mean 80.96 27.87 1017.77 944.79 54.73

Standard Error 1.00 0.14 0.28 0.25 0.97

Median 83.25 28.04 1017.71 944.77 54.29

Mode 88.20 28.95 1017.24 945.64 55.13

Standard Deviation 7.94 1.10 2.22 2.01 7.73

Sample Variance 63.12 1.21 4.95 4.05 59.75

Kurtosis -0.71 -0.26 0.90 1.18 -1.01

Skewness -0.42 -0.63 -0.31 -0.35 0.12

Range 31.36 4.38 12.32 11.44 28.06

Minimum 64.73 25.10 1010.52 938.08 41.25

Maximum 96.09 29.48 1022.84 949.52 69.31

First Quartile (Q1) 74.97 27.27 1016.46 943.60 48.82

Second (Q2) 83.25 28.04 1017.71 944.77 54.29

Third (Q3) 86.66 28.73 1019.03 945.80 59.80
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monitoring and control of the field parameters. Table 6 gives a detailed comparison of various IoT 
implementation in agriculture. The comparison shows that most of the implementations rely heavily 
upon the use of IoT for monitoring and providing irrigation controls based on the field parameters 
importantly the moisture and other dependent parameters. While the other implementations develop 
machine learning models and use standard datasets to demonstrate the model’s effectiveness in solving 
either classification or regression problems. 

Figure 13. Various plots corresponding to the model testing and evaluation of Bayesian Training function (a) Training performance 
(for 70:15:15) (b) Regression plots (for 70:15:15) (c) Training performance (for 80:10:10) (d) Regression plots (for 80:10:10) (e) 
Error histogram (for 70:15:15) and (f) Error histogram (for 80:10:10)
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The developed prototype is not only capable of collecting the field data, more importantly, the 
data is converted into real-time as well as the historical dataset by using some of the elementary 
transformations and processing such as time-scaling, outlier detection, missing value substitution, 
ensuring the dataset of high quality to be inputted to the machine learning algorithm. As no heavy 
processing was involved, the use of ESP 32 MCU is justified to keep a check on the cost factor. 
Also, the system’s capability for providing irrigation control in the form of manual or automated is 
an added advantage. 

Prototype Cost Estimation and Analysis 
The most important factor that any farmer would like to know is the cost factor involved in the 
deployment of the system. In countries like India, most of the farmers have very small landholdings 
(less than 5 acres), hence they will be reluctant to invest if the cost factor is not checked. The cost of 
the developed prototype was calculated in (U.S Dollars) based on the current conversion rates. The 
cost estimation does not include labor charges. Table 6 gives the details of the components with the 

Figure 14. Variation in soil moisture (a) Measured and (b) Predicted

Table 5. Performance evaluation of the proposed model

S l . 
N o .

Training 
Function

No. of 
Hidden 
Neurons 

(n)

Data division rule:70:15:15 Data division rule:80:10:10

R values
MSE

R values
MSE

Training Validation Testing Training Validation Testing

1.
Levenberg-
Marquardt﻿
(trainlm)

5 0.97 0.97 0.98 0.24 0.97 0.95 0.96 0.27

10 0.97 0.97 0.95 0.27 0.97 0.97 0.97 0.26

15 0.97 0.96 0.97 0.23 0.98 0.97 0.98 0.18

2.
Bayesian 

Regularization﻿
(trainbr)

5 0.98 - 0.98 0.19 0.98 - 0.98 0.19

10 0.98 - 0.98 0.15 0.98 - 0.98 0.17

15 0.98 - 0.98 0.13 0.98 - 0.98 0.14

3.

Scaled 
Conjugate 
Gradient﻿
(trainscg)

5 0.95 0.97 0.92 0.43 0.94 0.95 0.95 0.48

10 0.95 0.96 0.93 0.26 0.94 0.95 0.93 0.47

15 0.95 0.96 0.95 0.38 0.95 0.93 0.94 0.44

4.
Gradient 
Descent
(traingd)

5 0.39 0.40 0.41 4.87 0.05 0.15 0.02 6.43

10 0.47 0.32 0.52 18.14 0.29 0.35 0.19 20.96

15 0.55 0.50 0.55 4.85 0.60 0.61 0.51 12.42
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corresponding costs. The rates of the components were calculated at the time of purchase, which may 
vary now due to variation in the market at the global level. The final cost of the prototype (excluding 
labor charges) turns out to be around 60$, which shows a considerable reduction in the cost when 
compared to the similar implementation by Abba S et al. (2019) in which an irrigation system was 
developed using Arduino Uno costing around 80$ approximately.

CONCLUSION AND FUTURE DIRECTIONS

The main highlight of the developed system is its quick, easy and low-cost deployment nature aiming 
to solve irrigation issues for farmers globally, particularly belonging to the developing countries. The 
paper describes how data from the sensors in the agricultural field can be collected and analyzed 
to provide the farmers with decision making capability. Low- cost nature of the developed system 
will attract a greater number of low to medium holding farmers to give it a try, who are otherwise 
not in a position to afford systems having high initial deployment costs. Easy to use Blynk Android 
App with drag and drop functionality was found to be very effective in not only providing irrigation 
automation but also visualization. The developed FFNN based model justifies the use of agriculture 
sensor parameters as valid inputs to the system. The manual and automated irrigation controls were 
added to address the different levels of understanding of the farmers. This research led to some 
interesting findings while developing the system. The first inference that can be drawn is that ESP32 
MCU has got the tremendous potential of being one of the strong contenders for any IoT based 
application (built-in Wi-Fi and dual-mode Bluetooth, high security, low-cost, low-power, dual-core 
32-bit processor more GPIO pins). The second inference that can be drawn is that the use of FC-
28+LM393 based soil moisture sensor (resistive) started corroding and turning green at some places 
after few testings’ in the field, thus, it is recommended to use capacitive soil moisture sensor which 
is immune to corrosion. Overall, a positive response was obtained from the end-user in terms of ease 

Table 6. Cost estimation and analysis of developed prototype

SL. No. Component Per Unit 
Cost (USD)

No. of 
Units

Amount 
(USD)

1. ESP 32 DEV KIT V1 12.21 1 12.21

2. DHT 22 (Temperature & 
Humidity) 4.34 1 4.34

3. BMP180 (Atmospheric 
Pressure) 5.12 1 5.12

4. YL-83+LM393 (Rain Sensor) 2.95 1 2.95

5. FC-28+LM393 (Soil 
Moisture) 3.13 1 3.13

6. Single Channel Relay 2.11 1 2.11

7. Protective Case for the 
prototype 5.00 1 5.00

8. AC to DC converter power 
supply module (12V) 6.20 1 6.20

9. 12 V solenoid Valve (1/2”) 16.00 1 16.00

10. Miscellaneous (Connecting 
wires, jumper wires, etc.) 3.00 - 3.00

TOTAL 60.06$
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of usage and reduction in labor involvement and resource conservation. In the developed system, the 
predictive model was deployed in cloud sever, adding some latency to the message exchanges. Thus, 
as a future enhancement to the system, the predictive model would be deployed at the edge node 
rather than the cloud so that latency can be considerably reduced and also power consumption could 
be reduced as there would be no requirement of the Internet for running the model.
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