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Abstract
The present analysis emphasizes the effects of variable properties on Bingham fluid under MHD peristaltic transport. Due 
to the impact of mechanical forces on the applied magnetic field on the conducting fluid, the fluid stream gets altered. 
These principle targets drug transport and control of blood flow during surgeries; hence the impact of MHD flow with 
convective and porous boundary conditions is considered. Further, the implications of homogeneous and heterogeneous 
reactions are analyzed by considering wall properties. The governing equations are turned dimensionless by appropriate 
similarity transformations. The series solution is obtained for temperature, velocity, and concentration by perturbation 
method with lubrication approach. The graphical representation of the pertinent parameters on the physiological flow 
quantities is depicted by applying for MATLAB 2019b program. The obtained results reveal that the rise in the magnetic 
parameter diminishes the velocity and temperature profiles. Further, the impact of variable viscosity slightly improves 
the magnitude of the trapped bolus. The homogenous and heterogeneous reaction parameters have a converse effect 
on the concentration distribution. Moreover, the present investigation finds its applications to perceive the complex 
rheological functioning of blood flow through narrow arteries.
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List of symbols
Bi  Biot number
F  Body force
f   Concentration
x, y  Coordinates
J  Current density
MA, MB  Iffusion constants
Ec  Eckert number
E  Electrical field
g  Gravitation
M  Hartman number
K   Homogeneous reaction parameter

m  Non- uniform parameter
l(X )  Non-uniform width
Da  Porous parameter or Darcy number
Pr  Prandtl number
P  Pressure
kc , ks  Rate constants or homogeneous –heterogene-

ous reaction parameter
Re  Reynolds number
Sc  Schmidt number
cp  Specific heat
t   Time
u  Velocity
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E3  Viscous damping wall parameter
E1  Wall rigidity
E2  Wall stiffness
b  Wave amplitude
c  Wave speed
�  Amplitude ratio
�  Angle of inclination
�  Density
�  Electrical conductivity
�  Partial slip parameter
�  Shear stress
�  Stream lines
�  Temperature
�  Variable thermal conductivity
�1  Variable viscosity
�  Viscosity
�  Wave length
�0  Yield stress

1 Introduction

The peristalsis process induces the fluid flow through 
a duct due to the waves generated along the wall, as 
observed in the human gastrointestinal tract. Here, the ball 
of food, usually known as a bolus, is propelled because 
of the smooth muscle tissues’ sequential contraction and 
relaxation. Latham [1] has coined the idea of fluid trans-
port employing peristaltic waves in mechanical and physi-
ological studies. Usha and Ramachandra [2] have analyzed 
the peristaltic transport in various physiological situations 
of interest and concluded that the peristaltic waves always 
increase the mean flow rate for power-law fluids. Hamid 
et al. [3] studied the micropolar fluid’s nonlinear peristaltic 
motion, assuming long wavelength and moderate Reyn-
olds number. Solving the governing partial differential 
equation by FEM revealed that the micropolar parameter 
enhances the pressure rise in the pumping region. The 
study by Eldesoky et al. [4] signifies the consequences of 
slip conditions at the boundaries, the dynamic behavior of 
wall properties, and relaxation time on the motion of vis-
cous non-Newtonian Maxwell fluid employing peristalsis. 
Recently [5] analyzed the importance of slip conditions on 
peristalsis in different configurations.

The flow of various fluids accompanied by MHD 
is widely used in MHD generators, geothermal field, 
aerospace engineering, astrophysics, nuclear reactors, 
medicine, engineering, and petroleum processes. Flow-
through channels with the MHD field have grabbed inter-
est because of its wide applications in the human organ 
system and medical engineering fields. Recently, the 
widespread use of the flow of magnetic particles under 
peristalsis, seen in magnetic pumping of blood, drug 

targeting, casting process, reduction of bleeding during 
surgery and magneto-therapy, etc., has captivated many 
researchers. Driven by MHD’s application on biological 
fluids, Reddy [6] analyzed the velocity slip outcomes on 
the MHD porous peristaltic motion under mass and heat 
transfer. Reddy and Kattamreddy [7] considered the per-
meable peristaltic channel to study the consequences of 
velocity slip and Joule heating on the MHD motion under 
chemical reaction. Both [6, 7] inferred that the slip param-
eter elucidates the temperature and velocity fields. The 
curved complex wavy channel inspected by Javid et al. [8] 
to analyze the magnetic effects under peristaltic flow came 
out with results applicable to the manufacturing / improv-
ing the peristaltic instruments. They observed a decline in 
the pressure rise amplitude when the fluid relocates to a 
straight channel from the curved channel. Manjunath et al. 
[9] studied the motion of a Jeffrey liquid in an axisymmet-
ric conduit having compliant walls and MHD effect to ana-
lyze the consequences of variable flow characteristics and 
slip conditions under peristalsis. It is noticed from their 
research work that velocity and temperature rise with the 
variable liquid parameter and the slip parameter.

Studies involving chemical reactions have earned the 
continuous involvement of the researchers. The reactions 
taking place in only one phase are homogeneous reac-
tions and otherwise are termed heterogeneous. Reactions 
categorized by the properties of the reacting materials and 
that remain unaffected are called Homogeneous reac-
tions. Distillation, air pollution, fog formation, ceramic 
production, fibrous insulation, combustion, catalysis, and 
numerous other procedures are due to homogeneous-
heterogeneous reactions. The consequences of Carreau 
fluid transport in a conduit having Hall current and het-
erogeneous-homogeneous reactions are ascertained by 
Hayat et al. [10] considering wall properties under peri-
stalsis. Their graphical depictions revealed that homog-
enous and heterogenous reaction parameters have a 
contradictory effect on the concentration profile. Analy-
sis of homogeneous-heterogeneous reactions accompa-
nied by heat source/sink and a radial magnetic field for a 
micropolar fluid’s peristaltic motion is studied by Hayat 
et al. [11]. Their study indicated a decrease in pressure with 
the micropolar parameter; since the micro rotation param-
eter resists the flow, and the larger the magnetic field, the 
more is the resistance for the trapped bolus. Naveed et al. 
[12] inspected the Rabinowitsch fluid model’s peristaltic 
transport involving thermal radiation to analyze chemi-
cal reactions’ synchronized response. Their model finds 
application in the flow of blood under the consideration 
of chemical reactions and wall characteristics.

Research work carried on the peristaltic flow has, till 
recently, considered thermo-physical properties to be sta-
ble. But in reality, the temperature and velocity are seen to 
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vary as in the case of blood. Even for lubricating fluids, the 
inner contacts produce instabilities in temperature, and in 
turn, the velocity is observed to change, thus implying that 
the fluid characteristics aren’t stable but varying. Hence 
it becomes vital to consider these effects. The features 
may differ regarding temperature diversity, indicatively: 
thermal conductivity and the variable viscosity. Vari-
able properties uphold the wide association of biological 
and classical liquids. Samreen et al. [13] investigated the 
nanofluid flow in the symmetric vertical channel and have 
given relevance to the physical modeling of sinusoidal 
flow applicable in biomedical processes and industries. 
The study of variable liquid properties on the Rabinow-
itsch fluid model in an inclined porous peristaltic channel 
was studied by Hanumesh et al. [14] by considering the 
convective boundary conditions. The model helps in the 
design of peristaltic machinery and gives an outlook into 
the movement of chime and blood flow through micro 
arteries. The motion of Jeffery fluid under thermal con-
ductivity and variable viscosity in a non-uniform porous 
conduit is inspected by Manjunatha et al. [15] to know the 
consequences of mass and heat transfer. The study indi-
cates that fluid particles mainly concentrate near the chan-
nel walls; biologically, this is noticeable because the vital 
nutrients from biofluids disseminate to the adjoining cells 
and tissues. Hanumesh et al. [16] considered the motion 
in a complaint channel with porosity under convective 
conditions and variable thermal conductivity to carry on 
the Mass and Heat transport analysis of MHD peristaltic 
motion. The magnetic effect and the porosity variations on 
the velocity profile are nicely explained concerning blood 
flow in the human body. Variable thermal conductivity 
and viscosity affect the peristaltic mechanism of magneto-
Carreau nano liquid having heat transfer irreversibilities is 
analyzed by Khan et al. [17]. Their study exposed the fact 
that the velocity is more for a Carreau nanomaterial with 
variable viscosity against the viscous nanomaterial.

The shear stress-deformation rate is linear for an ideal 
Bingham plastic, and it exhibits non-Newtonian behavior. 
Even though the velocity gradient is absent, these fluids 
have the potential to transmit shear stress. At low stresses, 
the fluid behaves like a rigid body, whereas at a high-stress 
level, the fluid acts like a viscous fluid. Bingham liquids 
have a thick covering in contrast to the Newtonian fluids. 
Printing ink, clay, toothpaste, paint, and edibles like may-
onnaise, margarine, yogurts, ketchup, and melted choco-
late are a few of the classic illustrations of Bingham fluids. 
Bingham fluids behave as a solid medium in the core layer, 
where the yield stress is more than the applied shear stress. 
This implies the movement of a solid plug in the chan-
nel. Practical applications of Bingham fluids can be seen 
in the shallow flow of soils and mud, avalanches, mucus 
in pulmonary airways, ceramics, and waxy crude oils. The 

Bingham fluid flow behavior under an inclined magnetic 
field effect is examined for mass and heat transfer effects 
by Akram et al. [18]. Pressure gradient and streamlines 
are depicted graphically for observing the impact of vari-
ous parameters through different waveforms. Hayat et al. 
[19] studied Soret and Dufour characteristics on Bingham 
plastic’s motion under peristalsis, applied with a magnetic 
field. Lakshminarayana et al. [20] considered an inclined 
porous channel to analyze the Bingham fluid behavior 
under Joule heating effects on the Peristaltic pumping. 
Validating their results under the absence of the Joule 
heating effect with the available results, they inferred that 
Joule heating helps the fluid velocity and increases the 
temperature.

Akram et al. [21] have graphically shown how the slip 
parameter helps increase the pressure rise in the upper 
half and decrease it in the lower half of the two-phase 
flow’s peristaltic motion in the rectangular duct. Giving a 
clear vision of the harmonious relationship between the 
analytical and numerical solutions, Elmabound et al. [22] 
have elaborately explained the importance of gold nano-
particles in cancer treatment. With a high atomic number, 
the gold nanoparticles increase the temperature distribu-
tion that helps treat cancer disease. Recently, Javed et al. 
[23] have put forth the parameter effects on Herschel-Bulk-
ley fluid transport mechanism on velocity, concentration, 
temperature, and heat transfer coefficients. Considering 
the Herschel Bulkley fluid under peristalsis, Javed et al. [24] 
explained graphically that the concentration is more for 
thinning fluid and less for thickening fluid while analyzing 
the flow in a two-dimensional non-uniform flexible con-
duit. The homogenous-heterogenous reaction effects on 
Sutterby fluid’s motion considered for analysis by Naveed 
et al. [25] revealed that they behave conversely on the con-
centration profile. Naveed et al. [26] have studied the Rabi-
niwitsch fluid coupled with chyme motion to analyze the 
effects in the human body. Their study explores the impact 
of different parameters on shear thinning, shear thicken-
ing, and viscous fluid models. They noted that the momen-
tum and thermal distributions behave oppositely for stiff-
ness, rigidity, and viscous damping force parameters.

Driven by the above studies, a Bingham fluid’s flow 
behavior in a compliant walled peristaltic channel is 
modeled to analyze the homogeneous and heterogene-
ous reactions when subjected to variable liquid proper-
ties. Besides this, the MHD effect, along with non-uniform 
geometry under the partial velocity slip, is examined. The 
MATLAB programming is used to obtain the solution of 
the governing equations under the lubrication approach.

Section 2 deals with the Formulation of the problem 
and its solution methodology is described under Sect. 3. 
A detailed analysis of the results is explained with graphi-
cal representations in Sect. 4. Section 5 summarizes the 
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article with concluding remarks. The Nomenclature and 
"Appendix" are attached at the end of the article before 
the Reference Section.

2  Formulation of the problem

The 2-D motion of an electrically conducting Bingham 
fluid in a non-uniform channel inclined to the horizontal 
at an angle � is considered (See Fig. 1). Further, the wall 
properties (complaint walls) along with the chemical reac-
tions are taken into account. The wave-like motions pro-
voked by the peristaltic motion transmits the fluid with 
constant speed through the symmetric channel. The liquid 
is assumed to pass through a transverse magnetic field, 
and the induced magnetic field becomes insignificant as 
we assume a low Reynolds number approximation.

As the liquid progresses into the magnetic field, two 
significant physical impacts emerge. Firstly, an electric 
field E is prompted in the stream. Since there is no ample 
charge thickness, subsequently,∇.E = 0 . The induced elec-
tric field becomes unimportant as ∇ × E = 0 , ignoring the 
induced magnetic field. The subsequent impact is progres-
sive, i.e., a Lorentz force (J × B1) , where the current density 
is J , follows up on the liquid and changes its movement. 
This results in the exchange of energy to the fluid from 
the electromagnetic field. In the current investigation, the 
relativistic impacts are ignored, and Ohm’s law gives the 
current density J as [8]

where � is the electrical conductivity and V  is the velocity 
field.

The homogeneous-heterogeneous reaction model 
between the chemical species A and B is represented as 
[11]:

(1)J = �

(

V × B1

)

Considering the single, first-order and isothermal reac-
tion on the catalyst, we have

where the concentrations of A is �  and B is � , and kc and ks 
are the rate constants. Notice that the two reactions take 
place at an identical temperature.

The channel wall deformation due to the peristalsis is 
[15]

Here l(X ) is the non-uniform channel width, t  is the time 
and b is the wave amplitude.Then considering U and V  as 
respectively the X  and Y  components of the fluid velocity, 
equations that govern the flow are:

where �
XX

 , �
XY

 and �
YY

 represent the extra stress compo-
nents,� : the density of the fluid, T  : the temperature of the 
liquid, k(T ) : the thermal conductivity, cp : the specific heat 
capacity at a constant pressure.

The flexible motion of the wall is mathematically given 
by [12]

Here P0(= 0) represents the outer wall pressure due 
to the muscle tension. The linear operator L signifies 

(2)A + 2B → 3B, rate = kc��
2
.

(3)A → B, rate = ks� ,

(4)h (X , t) = l(X ) + b Sin

[

2�

�

(

X − ct
)]

,

(5)
�U

�X
+

�V

�Y
= 0,

(6)

�

(

�U

�t
+ U

�U

�X
+ V

�U

�Y

)

= −
�P

�X
+

��
XX

�X
+

��
XY

�Y
− �1B

2

0
U + �g Sin�,

(7)

�

(

�V
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+ U

�V

�X
+ V

�V

�Y

)

= −
�P

�Y
+

��
XX

�X
+

��
XY

�Y
− �g Cos�,

(8)

�cp

(

�T

�t
+ U

�T

�X
+ V

�T

�Y

)

=
�

�X

(

k(T )
�T

�X

)

+
�

�Y

(

k(T )
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�Y

)
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XX

�U

�X
+ �

YY
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�Y
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XY

(

�V

�X
+
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)

,

(9)
d�

dt
= MA

(

�2�

�X
2
+

�2�

�Y
2

)

− Kc��
2,

(10)
d�

dt
= MB

(

�2�

�X
2
+

�2�

�Y
2

)

+ Kc��
2,

(11)L(h) = P − P0,

Fig. 1  Physical model representing the flow geometry
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stretching of the membrane appended by the focus of 
viscous damping and is given by

where n1 is the viscous damping coefficient, m1 denotes 
the mass per unit area and � denotes the elastic tension.

If the velocity components are (u, v) and the coordi-
nates represented as (x, y) in the wave frame (x, y) then,

The dimensionless quantities are

Using Eqs. (14) and (15) in the Eqs. (5–10) and applying 
Lubrication theory the governing equations are nondi-
mensionalised and are given by:

where �xy represents the fundamental equation of Bing-
ham fluid, represented as (see Ref. [18])

(12)L = −�
�2

�x2
+m1

�2

�t2
+ n1

�

�t
,

(13)
�p

�x
= E1

�3h

�x3
+ E2

�3h

�t2�x
+ E3

�3h

�t�x2
.

(14)

x =X − ct, y = Y , u (x, y) = U(X , Y , t) − c, v (x , y)

= V (X , Y , t), T (x , y) = T (X , Y , t), p (x, y) = P(X , Y , t).

(15)

x =
x

�
, y =

y

l2
, u =

u

c
, v =

v

c�
, cp =

l2

�
, p� =

pl2
2

�0�c
, Re =

l2c

�
, � =

�0

�
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√
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�0c
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b
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, t =
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�
, �xy =
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�0c
, �yy =
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�0c
, � � =

�

l2c
, � =

MA

MB

, Sc =
�0

�MA

,

�0 =
�0

�
, E1 =

−� l3
2

��3
0
c
, Pr =

�0cp

k0
, E1 =

−� l3
2

�0�
3c
, E2 =

m1l
3
2
c

�0�
3
, E3 =

n1l
3
2

�0�
3
, � =

T − T0

T0
,

Ec =
c2

cpT0
, � =

f

�0
, � =

g

�0
, l(x) = l2 +m (x), F =

�c

gl2
2

, h =
h

l2
= 1 +

�mx

l2
+ � sin(2�(x − t)).

(16)
�p

�x
=

��xy

�y
+

Sin �

F
−M2(u + 1),

(17)
�p

�y
= 0,

(18)
�

�y

(

k(�)
��

�y

)

+ Br �xy

(

�u

�y

)

= 0,

(19)
1

Sc

�2f

�y2
− Kfg2 = 0,

(20)
�

Sc

�2g

�y2
+ Kfg2 = 0,

where �0 is the yield stress and �(y) is the variable viscosity.
In one day, a similar sized animal or person on an aver-

age takes one to two litres of the fluid. Added to this, the 
pancreas, salivary glands, small intestine, liver and stom-
ach produce secretions which amount to about six to 
seven litres of the fluid are collected by the small intestine. 
This brings out the reliance on fluid concentration upon 
the spatial coordinate y.

It is also observed that the concentration of the blood 
cells in the arteries is more at the centre and the walls are 
covered by a thin layer of clear plasma Hence the viscosity 
of the fluid is less at the walls and increases as we move 

away from the wall. Further, the well-known fact is that the 
thermal conductivity varies with reference to the tempera-
ture (See [15] for details).

The expressions for variable viscosity is:

The expression for thermal conductivity is:

Where �1 represents the coefficient of viscosity and � the 
coefficient of thermal conductivity.

The dimensionless peripheral conditions are 
subsequently:

(21)�xy = �(y)
�u

�y
+ �0 for � ≥ �0,

(22)�xy = 0 for � ≤ �0,

(23)𝜇(y) = 1 − 𝛼1y for 𝛼1 << 1,

(24)k(𝜃) = 1 + 𝛾𝜃 for 𝛾 << 1,

(25)

u+

√

Da

�

�u

�y
= −1;

��

�y
+ Bi� = 0 at y

= h = 1 +mx + � sin [2�(x − t)],

(26)

�f

�y
= Ksf ;

�g

�y
= −Ksf at y = h = 1 +mx + � sin [2�(x − t)],
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The diffusion constants MA and MB are assumed to be 
same (i.e. � = 1 ), which makes Eqs. 26 and 28 take the fol-
lowing form:

Using the above, Eqs. 19 and 20 can be written as

Considering the conditions at the boundary

3  Method of solution

Equation (16) along with boundary conditions (25) and 
(27), are solved analytically to get a solution for the veloc-
ity filed

where

The stream function � is found by integrating Eq. (33) 
using the condition � = 0 at y = 0,

The temperature and homogeneous/heterogeneous 
equations being non-linear are difficult to solve for obtain-
ing a closed form solution. Therefore, the perturbation 
method is opted to get the solution. The variable thermal 
conductivity (�) and the homogeneous reaction parameter 
(K ) are taken as the perturbation parameters for finding 
concentration profile and temperature, respectively ([12] 
and [15]):

(27)
�u

�y
= �0;

��

�y
= 0 at y = 0,

(28)f = 1; g = 0 at y = 0.

(29)f + g = 1.

(30)
1
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�2f

�y2
= Kf (1 − f )2.

(31)f = 1 at y = 0,
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�f

�y
= Ksf at y = h.
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1
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2
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]
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F

(35)� =
1

8M4(L0)
2
(8ML0L4 + L9 +M �0 L21).

3.1  Zeroth order system for temperature

3.2  First order system for temperature

On solving zeroth and first-order system, we get 
� = �0 + �(�0)

2 whose expression is obtained through the 
MATLAB 2019b software for analysis.

3.3  Zeroth order system for concentration

3.4  First order system for Concentration

(36)� = �0 + ��1 + �2�2 + O(�3),

(37)f = f0 + Kf1 + K2f2 + O(K3).
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(48)
�f1

�y
= Ksf1;

�g

�y
= −Ksf1 at y = h ,
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Zeroth and first order systems are solved and the 
expression for concentration is obtained by substituting 
them in the perturbation Eq. (37). The Matlab 2019b pro-
gramming has been used to analyze the impact of various 
parameters on it.

4  Results and discussion

This segment analyzes the consequences of velocity (u) , 
temperature (�) , concentration (f ) and streamlines (�) via 
graphical depictions. Particularly the nature of the impact 
on the wall parameters (E1, E2, E3) , homogeneous-hetero-
geneous reaction parameters ( k and ks ), magnetic param-
eter (M) , variable viscosity (�1),Darcy number (Da),Schmidt 
number (Sc) , non-uniform parameter (m) , yield stress (�0) , 
Biot number (Bi) , Angle of inclination (�) and partial slip 
parameter (�) are analyzed.

Effects of the axial velocity on different parameters have 
been plotted and are shown in Figs. 2, 3 and 4. Change 

(49)f1 = 1; g = 0 at y = 0. in the coefficient of variable viscosity slightly increases 
the flow velocity, as seen in Fig. 2a. As viscosity lessens 
with growing values of �1 , successively, this boosts the 
velocity of the fluid. Increasing the magnetic parameter 
lowers the velocity, as depicted in Fig. 2b. The flow of a 
radially directed magnetic field reduces the fluid flow. The 
study of blood flow inside the arteries can be emphasized 
through the reflection of flow through porous walls. It is 
clear from Fig. 2c that the rise in Darcy number Da slightly 
improves the flow velocity. Figure 2d illustrates that the 
velocity reduces by increasing the partial slip parameter � . 
The pictorial representation of the effect of elastic param-
eters E1 and E2 on the flow velocity exhibits the physical 
nature of the flexible wall. The least resistance offered to 
the fluid motion and can be seen from the graphical depic-
tions. Figure 3a and b shows growth in velocity for rise in 
the values of the elastic parameters E1 and E2 in the non-
uniform channel. Conversely, the flow velocity becomes 
less as the damping wall parameter E3 increases and sup-
ports the physical interpretation that dampness makes a 
deprived effect on the velocity (Fig. 3c). The variable vis-
cosity parameter’s similar behavior can be visualized in the 

Fig. 2  Plots of velocity for different values of a variable viscosity, b magnetic parameter, c permeable parameter and d partial velocity slip 
parameter
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research findings of [9] and [14]. Magnetic parameter and 
the wall property effects on the velocity profile match with 

the graphical representations of [9] and [20]; hence our 
results can be justified. Examination of Fig. 4a puts forth 
that enhancing the yield stress reduces the velocity. Fig-
ure 4b exposes that the fluid velocity accelerates with the 
non-uniform parameter. This result agrees with the result 
of [20]. Figure 4c discloses the effect of elevation in the 
magnetic field’s inclination angle and infers that the veloc-
ity profile comes down at the walls but increases in the 
mid-region of the channel.

Plots in Fig. 5a–d explain the response of various param-
eters on temperature. Figure 5a specifies the reduction of 
velocity with a rise in the variable viscosity. Analysis of 
Fig. 5b reveals the growth in temperature with ascending 
values of variable thermal conductivity. It is known that 
the fluid’s thermal conductivity gives the amount of the 
liquid’s capacity to preserve or liberate heat in its neigh-
borhood. Hence, the thermal value of the liquid increases 
when the fluid’s thermal conductivity inside the channel 
is more than the temperature of the wall. Similar analyses 
done by [9] on the Jeffery fluid The growing deviation in 
the magnetic parameter diminishes the measure of tem-
perature, as noticed from Fig. 5c, due to the restraining 

Fig. 3  Plots of velocity for different values of elastic parameters

Fig. 4  Plots of velocity for different values of a yield stress parameter, b non-uniform parameter and c angle of inclination parameter
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nature of the magnetic field. This result agrees with the 
results of [9] and [18]. Figure 5d clarifies that increasing 
Biot number reduces the temperature profile since incre-
ment in the Biot number lowers the thermal conductivity 
and contributes to the fall in the temperature profile.

The concentration profile behaves converse to the tem-
perature profile, which is physically reasonable because 
heat and mass are known to behave contrarily. Plots in 
Fig. 6a–d highlight the effects of various parameters on 
the concentration distribution. The graph in Fig. 6a shows 
the reducing affect on the concentration distribution as 
the homogeneous reaction parameter strengthens. On the 
other hand, the reverse behavior is noticed with the het-
erogeneous reaction parameter variation and is depicted 
in Fig. 6b. Figure 6c gives evidence that an increasing 
nonuniform parameter declines the concentration distri-
bution. The outcomes of Schmidt number on f (y) is shown 
in Fig. 6d. In agreement with the results of [9] the graph 
shows reduction in concentration distribution, which 
holds on to the feature that the mass of fluid particles 
decreases with the Schmidt number and promotes the 

fluid transport. Thus it can be inferred that the fluid parti-
cles having less density promotes the speed and acquire 
higher molecular vibrations that decrease the concen-
tration of the liquid. This result is in agreement with the 
results of [16].

The streamlines play a vital role in understanding the 
movement of the bolus through biological organs. Spe-
cifically, it helps in understanding the chime movement 
in the gastrointestinal tract and the thrombus formation. 
The variation in the variable viscosity slightly enhances the 
size of the bolus, as observed in Fig. 7, and the result is in 
agreement with [9]. It is noticed that the magnetic param-
eter shrinks the bolus from Fig. 8, which matches with the 
result of [18]. Thus, it is possible to control the formation of 
bolus with an increase/decrease in variable viscosity and 
magnetic parameter.

Fig. 5  Plots of temperature for different values of a variable viscosity, b variable thermal conductivity, c magnetic parameter and d Biot 
number
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Fig. 6  Plots of f(y) for different values of a homogeneous reaction, b heterogeneous reaction, c non-uniform parameter and d Schmidt num-
ber

Fig. 7  Streamlines for varying variable viscosity when a �1 = 0.01 
and b �1 = 0.03

Fig. 8  Streamlines for varying magnetic parameter when a M = 1.5 
and b M = 2
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5  Conclusions

The consequences of variable liquid properties on the 
MHD peristaltic flow of Bingham fluid are detailed in this 
analysis. The heat and mass transfer features are inspected 
through convective and wall property effects in a non-
uniform, inclined channel having permeable walls. The 
solution obtained under the assumptions of low Reyn-
olds number and long wavelength are graphically plotted 
through MATLAB and analyzed. Velocity, Temperature and 
concentration profiles are discussed for variations in dif-
ferent parameters. Stream lines are drawn to understand 
the bolus movement in biological organs.

The present article emphasizes the characteristics of 
peristaltic waves under heat and mass transfer with vary-
ing parameters that helps in understanding the behavior 
of blood when it is exposed to an external magnetic field. 
This may help in improving the design of peristaltic pump-
ing instruments in medical engineering and also in indus-
tries. The paper can be extended to study the entropy 
generation under variable liquid properties.
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Appendix

L0 = � cosh(hM) +
√

DaM sinh(hM)

L1 = 4M2 − (f − P)(h + y)

L2 = 4M2 − (f − P)(3h + y)

L3 = −�(−1 + h2M2)(f − P) +
√

DaM2

L4 = M(−f +M2 + P) y L0 + �(f − P) sinh(My)

L5 = M(−f +M2 + P) y L0 + �(f − P) sinh(My)

L6 = M(
√

Da h2M2(P − f ))

L7 = 4�
√

Da hM2 + DaM4(−2h2 + y2) + �2(−2 +M2(2h2 − y2))

L8 = �2 − DaM2

L9 = 2�(M2(f − P)y2 cosh(My)L0 + L6 + �ML1

cosh(hM) + (L3L2 sinh(hM)) sinh(My)) �1

L10 = �2 + DaM2

L11 = −4 L10 + ((y − 4)L10 + 2�
√

DaM2y2) �1

L12 = −8�
√

Da + (2�
√

Da(−4 + y) + L10y
2)�1

L13 = M(cosh(M(2h − y))L11 +M sinh(M(2h − y))L12)

L14 =L6 +M�(−fh + 4M2 + hP) cosh(hM)

+ L3(−3fh + 4M2 + 3hP) sinh(hM)

L15 = cosh(M(2h − y0))

L16 = sinh(M(2h − y0))

L17 = 2(�2 − � h(2
√

Da + � h)M2 + Da h2M2) sinh(My0)

L18 =L15(3L10 − 2�
√

DaM2y0) −ML16(−6�
√

Da + L10y0)

+ L8(3 cosh(My0) +M sinh(My0)y0)

L19 = 4M(4L10 L15M(L8 cosh(My0) + 2�
√

DaM L16) + L17 +My0L18)

L20 = −1 + y2M2

L21 = L7 sinhMy �1 +ML8 coshMy (−4 + (y − 4)�1) + L13

L22 = (−L6 +M�(−4M2 + (f − P)(h − y))) cosh(hM)

L23 = (�(−1 + h2M2)(f − P) +
√

DaM2

(−4M2 + (f − P)(3h − y))) sinh(hM)
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